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Abstract. We provide a characterisation of differentially large fields in ar-
bitrary characteristic and a single derivation in the spirit of Blum axioms for
differentially closed fields. In the case of characteristic zero, we use these ax-
ioms to characterise differential largeness in terms of being existentially closed
in the differential algebraic Laurent series ring, and we prove that any large
field of infinite transcendence degree can be expanded to a differentially large
field even under certain prescribed constant fields. As an application, we show
that the theory of proper dense pairs of models of a complete and model-
complete theory of large fields, is a complete theory. As a further consequence
of the expansion result we show that there is no real closed and differential field
that has a prime model extension in closed ordered differential fields, unless it
is itself a closed ordered differential field.
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1. Introduction

The class of differentially large fields was introduced and studied by the authors in
[LST24]. Evidenced by the results in that paper, this class can be considered as
the differential analogue of the class of large fields. We recall that a field K is said
to be large (aka ample) if every irreducible algebraic variety over K with a smooth
K-point has a Zariski dense set of K-points. Equivalently, K is e.c. (existentially
closed) in the field of formal Laurent series K((t)).

In [LST24], a differential field (K,∆) of characteristic zero with commuting
derivations ∆ = {δ1, . . . , δm} is defined to be differentially large if K is large (as
a field) and for every differential extension (L,∆), if K is e.c. in L (as a field),
then (K,∆) is e.c. in (L,∆) as a differential field (see [LST24, 2.1] for the algebraic
meaning of e.c.). Several foundational properties and applications are explored in
[LST24]. In particular, it is shown that (K,∆) is differentially large if and only if
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2 OMAR LEÓN SÁNCHEZ AND MARCUS TRESSL

(K,∆) is e.c. in (K((t1, . . . , tm)),∆), where the derivations on K((t1, . . . , tm)) are
the natural ones extending those on K that commute with meaningful sums and
satisfy δj(ti) = dti

dtj
.

The first-order characterisation of differential largeness provided in [LST24, 4.7]
makes reference to the somewhat elaborate axiom scheme UC from [Tre05, 4.5]. In
2.8 below we give a significant simplification of this axiom scheme in the ordinary
case, i.e. the case of a single derivation, so ∆ = {δ}. The new scheme resembles the
Blum axioms for differentially closed fields of characteristic 0 (DCF0) and at the
same time allows an extension of the notion of differential largeness to arbitrary
characteristic (cf. 2.1). In subsequent sections we give applications of our new
simple description of differential largeness in the ordinary case as follows.

Henceforth we restrict to a single derivation. An immediate consequence of
the new axioms is the new characterisation 2.9 of closed ordered differential fields
(CODF), in the sense of Singer [Sin78], which does not make reference to the order.
A further corollary (2.12) provides geometric axioms for differentially large fields
in arbitrary characteristic in terms of D-varieties, in the spirit of the Pierce-Pillay
axioms for DCF0, see [PP98].

In the rest of the paper we readopt the characteristic zero assumption. In Sec-
tion 3, we prove that differential largeness can be characterised in terms of being
existentially closed in the differential algebraic formal Laurent series, see 3.5. Our
proof uses an approximation-type statement that resembles that of Denef-Lipshitz
in [DL84]. We then use this to produce a new way (or rather an improvement of
the construction in [LST24] for the ordinary case) to construct differentially large
fields using iterated differential algebraic Laurent series, see 3.8.

In section 4, we show that for any ordinary differential field (K, d) and any given
large field L ⊇ K of transcendence degree over K at least the size of K, there is an
extension δ of d to L such that (L, δ) is differentially large, see Theorem 4.3. This
has two consequences: Firstly, large fields of infinite transcendence degree (over Q)
are characterized in 4.5 as exactly those fields that possess a derivation d for which
(L, d) is differentially large (significantly generalizing an earlier result by Christian
Michaux saying that R carries a CODF structure). Secondly, we show in 6.2 that
no real closed field equipped with any derivation has a prime model extension in
CODF, unless it is already a CODF; this strengthens a result from [Sin78] stating
that the theory CODF does not have a prime model.

Theorem 4.3 is significantly strengthened in section 5 in the case when the con-
stant field C ofK is dense for the étale open topology of L (see 5.5 for its definition).
Namely we show in Theorem 5.8 that L can be expanded to a differentially large
field whose constant field is algebraic over C. This Theorem has an interesting con-
sequence for dense pairs of large fields: In Corollary 5.12 we show that for any com-
plete and model complete theory T of large fields of characteristic 0 in the language
L of rings, possibly extended by constants, the theory of proper dense pairs of mod-
els of T is complete and inherits various neostability theoretic properties from T .

By a differential ring in this paper we always mean a commutative unital ring
furnished with a single derivation.

Acknowledgements. We thank Antongiulio Fornasiero for pointing out 5.13
and the anonymous referee for thoroughly proof-reading the paper as well as for
providing 3.9.
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ON ORDINARY DIFFERENTIALLY LARGE FIELDS 3

2. Blum-style axioms for ordinary differentially large fields

In [LST24], differentially large fields in characteristic zero were introduced. The def-
inition there makes sense also for ordinary differential fields of characteristic p > 0.

2.1. Definition. A differential field (K, d), of arbitrary characteristic, is said to
be differentially large if it is large as a field and for every differential field extension
(L, δ)/(K, d), if K is e.c. in L as a field, then (K, d) is e.c. in (L, δ).

Examples of differentially large fields in characteristic p > 0 are differentially closed
fields in the sense of Wood [Woo73], and also separably differentially closed fields
in the sense of Ino and the first author [IL23]. Recall that a differential field (K, δ)
is said to be separably differentially closed if for every differential field extension
(L, δ)/(K, δ) with L/K separable (as fields), (K, δ) is e.c. in (L, δ). To see that this
class of differential fields is differentially large one only needs to note that if K is
e.c. in L as a field, then L/K is separable.

Let (K, δ) be a differential field (of arbitrary characteristic). In what follows we
freely and interchangeably view any differential polynomial f ∈ K{x} of order n
as a differential polynomial in the differential variables x = (x1, . . . , xm) and also
as a polynomial in m(n+ 1) algebraic variables x, δx, . . . , δnx. It will be clear from
the context which view we are taking; for instance, if a ∈ Km(n+1) and we write
f(a) = 0, we mean viewing f as a polynomial in m(n+ 1) variables.

In Theorem 2.8 below we provide Blum-style axioms for ordinary differentially
large fields of arbitrary characteristic. The proof relies on the following fact and its
consequences, about extending derivations.

2.2. Fact. [Jac64, Theorem 18, §IV.7] Suppose L/K is a separable field extension.
If δ : K → L is a derivation, then δ can be extended to a derivation L→ L.

2.3. Corollary. Let (K, δ) ⊆ (L, δ) be an extension of differential fields and let
E be a subset of L with L/K(E) separable. Then there is a derivation ∂ : K(E ∪
δ(E)) −→ K(E ∪ δ(E)) that restricts to δ on K(E).

If E is finite, then for each such ∂ there is some f ∈ K[E ∪ δ(E)] such that ∂
restricts to a derivation of the localisation K[E ∪ δ(E)]f −→ K[E ∪ δ(E)]f .

Proof. Since δ(K(E)) ⊆ K(E ∪ δ(E)) we may apply 2.2 to the derivation δ|K(E) :
K(E) −→ K(E ∪ δ(E)) and get a derivation ∂ : K(E ∪ δ(E)) −→ K(E ∪ δ(E))
that restricts to δ on K(E). Assume then that E is finite. There is some nonzero
f ∈ K[E ∪ δ(E)] such that f ·∂(δ(a)) ∈ K[E ∪ δ(E)] for each a ∈ E. Obviously f
has the required property. �

2.4. Proposition. Let K be a differential field and let S = (S, δ) be a differen-
tially finitely generated K-algebra and a domain such that S/K is separable, i.e.,
Quot(S)/K is a separable field extension. Let A be a finitely generated K-subalgebra
of S. Then there are an element f ∈ S, a finitely generated K-subalgebra B of Sf
containing A, a derivation ∂ on B and a differential K-algebra homomorphism
S −→ (B, ∂) that restricts to the identity map on A. In particular ∂a = δa for all
a ∈ A.

Proof. Let b ∈ Sn be such that S is the differential K-algebra generated by b and
A ⊆ K[b]. Let p = {f ∈ K{x} | f(b) = 0} be the differential vanishing ideal of b
over K. Then p is a separable prime differential ideal; separability is due to fact
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that K{x}/p is K-isomorphic to S. By the differential basis theorem of Kolchin
[Kol73, Corollary 4, §III.5], there is a finite set Σ ⊆ p that generates p as a radical
differential ideal. Take d ≥ 1 such that each derivative of any x1, . . . , xn occurring
in some polynomial from Σ has order ≤ d. Finally take

E = {δkbi | i ∈ {1, . . . , n}, k ≤ d} ⊆ S.
By possibly taking a larger d, a result of Kolchin appearing in [Kol73, Lemma 1,
§III.2] tells us that S/K(E) is separable. By 2.3 there are f ∈ K[E ∪ δ(E)] and a
derivation ∂ of B := K[E ∪ δ(E)]f that restricts to δ on K[E]. Then ∂kbi = δkbi
for all i ∈ {1, . . . , n}, k ≤ d and therefore b is a solution to Σ = 0 in (B, ∂).
Consequently, the identity map of K ∪ {b1, . . . , bn} extends to a differential K-
algebra homomorphism ϕ : S −→ (B, ∂). By choice of b, the map ϕ restricts to the
identity map of A. �

2.5. Corollary. Let Σ be a set of differential polynomials over (K, δ) in finitely
many differential variables. Suppose Σ = 0 has a solution in some differential
field extension (L, δ) with L/K separable. Then there is a finitely generated K-
subalgebra B of L and a derivation ∂ of B such that (B, ∂) has a solution to Σ = 0.
In particular, (B, ∂) is differentially algebraic over (K, δ) and B/K is separable.

Notice that if K is e.c. in L as a field then K is also e.c. in B as a field.

Proof. By assumption, there is a solution of Σ = 0 in a differentially finitely gener-
ated K-subalgebra S of L. Now apply 2.4 to S and A = K. �

2.6. Remark. In the case of several commuting derivations statements similar
to 2.4 and 2.5 fail in general. This follows from examples produced by John-
son, Reinhart, and Rubel [JRR95, Theorem 2]. In particular, working over
(C(z1, z2), δ1 ≡ ∂

∂z1
, δ2 ≡ ∂

∂z2
), they prove that the PDE

δ2(x) =

(
1− z1

z2

)
x+ 1

has no differential algebraic solutions (equivalently, has no solution in a differential
field extension of finite transcendence degree over C).

Given a differential field K and a differential polynomial f ∈ K{x}, where x is a
single differential variable, we denote by sf the separant of f ; namely, the formal
partial derivative of f with respect to its highest order variable. We write [f ] for
the differential ideal generated by f in K{x} and

[f ] : s∞f = {g ∈ K{x} : smg ∈ [f ] for some m ≥ 0}.

2.7. Observation. Let K be a differential field and let f ∈ K{x} for x a single
differential variable. Let n = ord(f) ≥ 0 and let a ∈ Kn+1 with f(a) = 0 and
sf (a) 6= 0. Then there is an irreducible factor h of f with ord(h) = n, h(a) = 0
and sh(a) 6= 0.

Proof. Let f0, f1 ∈ K{x}, with f0 irreducible, f = f0·f1 and ord(f0) = n. Then

(∗) sf =
∂f

∂xn
=
∂f0

∂xn
· f1 + f0 ·

∂f1

∂xn
.

If f0(a) = 0, then (∗) implies sf0(a) = ∂f0
∂xn

(a) 6= 0. If f0(a) 6= 0, then f1(a) = 0

and (∗) shows sf1(a) = ∂f1
∂xn

(a) 6= 0; hence also ord(f1) = n and in this case we may
replace f by f1 and proceed by induction. �
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ON ORDINARY DIFFERENTIALLY LARGE FIELDS 5

We now come to the promised axiomatisation.
2.8. Theorem. Let (K, δ) be an ordinary differential field of arbitrary character-
istic. The following conditions are equivalent.
(i) (K, δ) is differentially large.

(ii) K is large as a field and for every pair f, g ∈ K{x}, where x is a single
differential variable, with g nonzero and ord(f) > ord(g), if the system

f(x) = 0 & sf (x) 6= 0

has an algebraic solution in K, then f(x) = 0 & g(x) 6= 0 has a differential
solution in K.[1]

(iii) For every pair f, g ∈ K{x}, where x is a single differential variable, with
ord(f) ≥ 1 and ord(f) ≥ ord(g), if the system

f(x) = 0 & g(x) · sf (x) 6= 0

has an algebraic solution in K, then it has infinitely many differential solutions
in K.

Notice that each of the properties (ii) and (iii) gives an axiom scheme for a first
order axiomatization of differential largeness in the language of differential rings.
Proof. (i)⇒(iii). Let f, g ∈ K{x} with ord(f) ≥ 1 and ord(f) ≥ ord(g) and assume

(†) f(x) = 0 & g(x) · sf (x) 6= 0

has an algebraic solution in K. Let n = ord(f). By 2.7, we may assume that f is
irreducible. Let p = [f ] : s∞f . Since sf 6= 0, Theorem 3.1(2) of [IL23] says that p

is a separable prime differential ideal of K{x}. We write a = xmod p. Now, an
algebraic solution of f(x) = 0 & sf (x) 6= 0 in K is a smooth K-rational point of

K[x0, . . . , xn]/(f) ∼=K K[a, . . . , a(n)].

The largeness of K yields that K is e.c. in K(a, . . . , a(n)). Since the latter is equal
to the differential field K〈a〉 generated by a over K, differential largeness implies
that (K, δ) is e.c. in (K〈a〉, δ).

Since ord(f) ≥ ord(g) and (†) has an algebraic solution in K, Lemma 3.6(1) of
[IL23] implies that g · sf /∈ p. Hence a is a differential solution of (†) in K〈a〉. As
(K, δ) is e.c. in (K〈a〉, δ) also K has a differential solution α of (†). To argue that
there are infinitely many solutions, note that g · (x − α) has again order at most
ord(f). By largeness of K and the assumption ord(f) ≥ 1, there is an algebraic
solution of the new system where we replace g with g·(x−α). It follows, by repeating
the above argument, that there are infinitely many differential solutions of (†) in K.
(iii)⇒(ii) It suffices to show that K is large as a field. By [Jar11, Lemma 5.3.1,
p. 67], a field K is large if and only if for every absolutely irreducible polyno-
mial F (X,Y ) ∈ K[X,Y ], if there is a point (a, b) ∈ K2 with F (a, b) = 0 and
∂F
∂Y (a, b) 6= 0, then there are infinitely many such points.

So take an absolutely irreducible polynomial F (X,Y ) ∈ K[X,Y ] and some
(a, b) ∈ K2 with F (a, b) = 0 and ∂F

∂Y (a, b) 6= 0. Consider the differential polynomial
f(x) = F (x, x′). Then f(x) = 0 & sf (x) 6= 0 has an algebraic solution in K, namely
(a, b). By (iii) there are infinitely many differential solutions in K. But then there
are infinitely many solutions to F (X,Y ) = 0 and ∂F

∂Y (X,Y ) 6= 0 in K as well.

[1]By 2.7 we may also assume that f is irreducible in this condition.
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(ii)⇒(i). To prove differential largeness, let F be a differential field extension of K
such that K is e.c. in F as a field. Note that then F/K is separable. We need to
show that K is e.c. in F as a differential field. Let Σ be a system of differential
polynomials in n differential variables over K and assume that Σ = 0 has a solution
a ∈ Fn. We may assume that F = K〈a〉. By 2.5 applied to F , we may assume
that F is differentially algebraic over K (and F/K remains separable).

Condition (ii) guarantees that [K : CK ] is infinite; hence, by the differential
primitive element theorem [Kol73, Proposition 9, §II.8, p.103], the differential field
F is differentially generated over K by a single element b ∈ F . Let p be the prime
differential ideal of K{x} associated to b. Note that p is separable (over K).

Then, by Theorem 3.1(1) of [IL23], p = [f ] : s∞f for f ∈ p irreducible of minimal
rank. Write a = (a1, . . . , an) and let fi, g ∈ K{x} with ai = fi(b)

g(b) . By the differen-
tial division algorithm [Kol73, §I.9] there are h ∈ K{x} reduced with respect to f
and some r ≥ 0 with

(ifsf )rg ≡ h mod [f ].

Since f(b) = 0 and if (b)·sf (b) 6= 0 we get irf (b)srf (b)g(b) = h(b) 6= 0. Hence, we
may replace g by h and fi by (ifsf )r·fi if necessary and assume that g is reduced
with respect to f . Notice that ai ∈ K{b}g(b).

Now, since K e.c. in F as a field, the system f(x) = 0 & sf (x) 6= 0 has an
algebraic solutions in K. By condition (ii), the set

{f = 0} ∪ {q 6= 0 | q ∈ K{x} is nonzero and ord(q) < ord(f)}
is finitely satisfiable in the differential field K. Hence there is an elementary exten-
sion L of the differential field K having a differential solution c to f(x) = 0 such
that q(c) 6= 0 for all q ∈ K{x} with ord(q) < ord(f). Since f is irreducible, it
follows that q(c) 6= 0 for all q ∈ K{x} that are reduced with respect to f .

In particular f(c) = 0 & g(c) 6= 0. Since K ≺ L there is some d ∈ K with
f(d) = 0 & g(d) 6= 0. This means there is a differential K-homomorphism
(K{x}/p)gmod p −→ K. By choice of p we have (K{x}/p)gmod p

∼= K{b}g(b) as
differential K-algebras. Since K{a1, . . . , an} ⊆ K{b}g(b) we obtain a differential
K-algebra homomorphism K{a1, . . . , an} −→ K and this corresponds to a differ-
ential solution of Σ = 0 in Kn. �

When K is real closed, the above theorem yields a new axiomatisation of the the-
ory CODF. A differential field (K, δ) is a model of CODF if and only if it is an
existentially closed model of the theory of ordered differential fields. Axioms for
CODF appear in [Sin78]. While the axioms there make explicit reference to the
order, our new axioms are purely in the differential field language, namely:

2.9. Corollary. Let (K, δ) be a differential field. The following are equivalent.
(i) (K, δ) |= CODF.
(ii) K is real closed and for every pair f, g ∈ K{x}, where x is a single differential

variable, with g nonzero and ord(f) > ord(g), if the system

f(x) = 0 & sf (x) 6= 0

has an algebraic solution in K, then f(x) = 0 & g(x) 6= 0 has a differential
solution in K.

Notice that every field K is algebraically closed in the large field K((t)), but not
every field is large. In the differential phrasing this changes:
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2.10. Corollary. Let L/K be an extension of differential fields. If K is differen-
tially algebraically closed in L and L is differentially large, then K is differentially
large as well.

Proof. We verify 2.8(iii). Take f, g ∈ K{x}, x a single differential variable, with
ord(f) ≥ 1 and ord(f) ≥ ord(g), and assume that f(x) = 0 & g(x) · sf (x) 6= 0 has
an algebraic solution in K. Since L is differentially large, it has infinitely many
differential solutions to f(x) = 0 & g(x)·sf (x) 6= 0. But then each of these solutions
is differentially algebraic over K. Hence all these solutions are in K. �

2.11. Remark. We note that the condition of a differential field (K, δ) being dif-
ferentially algebraically closed in some extension (L, δ) is quite strong. Arguably,
being differentially algebraically closed in an extension is not quite the right dif-
ferential analogue of being algebraically closed in the field sense. We do not know
whether the assumption in 2.10 can be weakened to only assuming that K is con-
strainedly closed in L (namely, every finite tuple from L which is constrained over
K, in the sense of Kolchin [Kol73, §III.10], is from K).

We conclude this section with a geometric characterisation of being differentially
large. Namely, in terms of algebraic D-varieties. Recall that an algebraic D-variety
over K is a pair (V, s) where V is an algebraic variety over K and s : V → τV is a
section over K of the prolongation of V (see [KP05, §2], for instance). The latter is
the algebraic bundle π : τV → V with the characteristic property that for any dif-
ferential field extension (L, δ) of (K, δ) we have that if a ∈ V (L) then (a, δa) ∈ τV .

2.12. Corollary. Let K be a large field of arbitrary characteristic and let δ be a
derivation of K. The following conditions are equivalent.
(i) (K, δ) is differentially large
(ii) Let V and W be K-irreducible algebraic varieties with W ⊆ τV . If π|W :

W → V is a separable morphism and W has a smooth K-point, then the set

{(a, δa) ∈W : a ∈ V (K)}

is Zariski dense in W .
(iii) Let (V, s) be a K-irreducible algebraic D-variety. If V has a smooth K-point,

then the set
{a ∈ V (K) : s(a) = (a, δ(a))}

is Zariski dense in V .

Proof. (i)⇒(ii) Let (a, b) be a K-generic point of W . Since πW : W → V is a
separable morphism, we obtain that a is K-generic in V and K(a, b)/K(a) is a
separable extension. Since W ⊆ τV , there is a derivation δ : K(a) → K(a, b)
extending the one on K such that δ(a) = b. As K(a, b)/K(a) is separable, by
2.2, we can extend the derivation to K(a, b) → K(a, b). Then, for any nonempty
Zariski-open OW ⊆W over K, in the differential field extension (K(a, b), δ) we can
find a solution to x ∈ V and (x, δx) ∈ OW (namely, the tuple a). Since W has a
smooth K-point, we get that K is e.c. in K(W ) = K(a, b) as a field. By differential
largeness, (K, δ) is e.c. in (K(a, b), δ), and so we can find the desired solution in K.

(ii)⇒(iii) If we letW = s(V ) ⊆ τV , then the pair V andW satisfy the conditions
of (ii) (note that if b is a smooth point of V then (b, s(b)) is a smooth point of W ).
If follows that the set of points in W of the form (a, δa) with a ∈ V (K) is Zariski
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dense inW . But then, asW = s(V ), the set of points a ∈ V such that s(a) = (a, δa)
must be Zariski dense in V .

(iii)⇒(i) We verify 2.8(ii). Let f, g ∈ K{x} with ord(g) < ord(f) and g nonzero.
Assume the system

f(x) = 0 & sf (x) 6= 0

has an algebraic solution in K. In particular, sf 6= 0. By Observation 2.7, we may
assume that f is irreducible. By Theorem 3.1(1) of [IL23], p = [f ] : s∞f is a separable
prime differential ideal of K{x}. Let a = x + p in the fraction field of K{x}/p.
Letting n = ord(f), we see that (a, δa, . . . , δn−1a) is algebraically independent over
K and δna is separably algebraic over K(a, . . . , δn−1a). It follows that

δn+1a =
h(a, δa, . . . , δna)

sf (a)

for some h ∈ K[t0, . . . , tn]. Let V be the localisation at g · sf of the Zariski-locus of
(a, δa, . . . , δna) overK. From the assumptions (on existence of an algebraic solution
in K), we see that V has a smooth K-rational point and that the morphism on V
induced by

(t0, t1, . . . , tn) 7→ ((t0, t1, . . . , tn), (t1, t2, . . . , tn,
h(t0, t1, . . . , tn)

sf (t0, t1, . . . , tn)
)

yields a regular algebraic map s : V → τV . This equips V with a D-variety
structure. Then, the assumption of (iii) yields α ∈ V (K) such that s(α) = (α, δα).
But then α is the desired differential solution of f(x) = 0 & g(x) 6= 0 in K. �

3. Power series in characteristic zero

In this section we assume fields are of characteristic zero, and thus the results on
differentially large fields from [LST24] may be deployed. We prove, in 3.5, two
further characterisations of being differentially large.

For a differential field K (ordinary throughout) we endow K((t)) with its natural
derivation extending the given derivation on K and satisfying δ(t) = 1; that is,

δ(
∑
n≥k

ant
n) =

∑
n≥k

δ(an)tn +
∑
n≥k

nant
n−1.

In [LST24, 4.3] it is shown that (K, δ) is differentially large if and only if (K, δ)
is e.c. in (K((t)), δ). We do not know if this characterisation extends to positive
characteristic, the proof relies on the existence of a twisted version of the Taylor
morphism [LST24, 3.4], whose construction picks up rational denominators. Below
we prove that it suffices to ask for (K, δ) to be e.c. in the differential subfield of
(K((t), δ) consisting of differential algebraic elements (over K).

3.1. Definition. Let K be a differential field and let S be a differential K-algebra.
We write Sdiffalg for the differential subring of all a ∈ S that are differentially
algebraic over K.

3.2. Remark. Since K((t)) is the localization of K[[t]] at t, the fraction field of
K[[t]]diffalg is K((t))diffalg.

3.3. Proposition. Let (K, δ) be a differential field (of characteristic zero) that is
large as a field and let S be a differentially finitely generated K-algebra. If there
is a K-algebra homomorphism S → L for some field extension L/K in which K
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is e.c. (as a field, there are no derivations on L given), then there is a differential
K-algebra homomorphism S → K[[t]]diffalg.

Proof. By [LST24, 3.5] there is a differential K-algebra homomorphism ψ : S →
K[[t]]. Applying 2.4 to ψ(S) we may then find a finitely generated K-subalgebra
B of K((t)), a derivation ∂ of B extending δ on K together with a differential
K-algebra homomorphism ϕ : ψ(S) −→ (B, ∂). By [LST24, 3.5] applied to (B, ∂)
and the inclusion map B ↪→ K((t)) there is a differential K-algebra homomor-
phism γ : B → K[[t]]. Since B is a finitely generated K-algebra, the image of γ
is in K[[t]]diffalg. Hence the map γ ◦ ϕ ◦ ψ : S −→ K[[t]]diffalg has the required
property. �

A special case of 3.3 resembles an approximation statement over large and differ-
ential fields in the spirit of [DL84, Theorem 2.1]:

3.4. Corollary. Let (K, δ) be a differential field of characteristic zero such that K
is large as a field. Let Σ be a system of differential polynomials in finitely many
differential variables over K. If the differential ideal generated by Σ has an algebraic
solution in K((t)), then Σ = 0 has a differential solution in K[[t]]diffalg.

Proof. Apply 3.3 to the differential coordinate ring of Σ. �

3.5. Corollary. Let K be a large field of characteristic 0 and let δ be a derivation
of K. The following conditions are equivalent.
(i) (K, δ) is differentially large.
(ii) K is e.c. in K[[t]]diffalg as a differential field.
(iii) For every K-irreducible algebraic D-variety (V, s), if V has a K-point, then

there is a ∈ V (K) such that s(a) = (a, δa).

Proof. (i)⇒(ii) is a consequence of [LST24, 4.3(ii)], which says that K is e.c. in
K((t)) as a differential field.
(ii)⇒(i). By 3.4 one verifies that K is e.c. in K((t)) as a differential field. Hence
by [LST24, 4.3], (K, δ) is differentially large
(iii)⇒(i) We verify 2.12(iii). Let (V, s) be a K-irreducible D-variety with a smooth
K-point. Let h ∈ K[V ] nonzero. Then, there is an induced D-variety structure in
the localisation K[V ]h. Denote this D-variety by (W, t). As K is large and V has a
smooth K-point, we get that K is Zariski dense in V . Thus, W has a K-point. The
assumption now yields aK-point b inW such that s(b) = (b, δb). As h was arbitrary,
it follows that the set of points {a ∈ V (K) : s(a) = (a, δa)} is Zariski dense.
(i)⇒(iii) Let (V, s) be a K-irreducible D-variety with a K-point. Applying 3.3
with S = K[V ] and L = K, we find a K((t))-rational point b of V such that
s(b) = (b, δb). As K is differentially large, it is e.c. in K((t)) as a differential field.
Hence, we can find such a point in K. �

We may now improve the construction of differentially large fields from [LST24,
5.2] in the ordinary case. A few preparations are necessary.

3.6. Proposition. Let (Ki, fij)i,j∈I be a directed system of differential fields and
differential embeddings with the following properties.
(a) All Ki are large as fields.
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(b) All embeddings fij : Ki −→ Kj are isomorphisms onto a subfield of Kj that
is e.c. in Kj as a field.

(c) For all i ∈ I there exist j ≥ i and a differential homomorphism
Ki[[t]]diffalg −→ Kj extending fij.

Then the direct limit L of the directed system is a differentially large field.

Proof. The proof is identical to the proof of [LST24, 5.1], except we use 3.3 in that
proof instead of [LST24, 3.5]. �

3.7. Observation. Let K be a differential field. Then K[[t]]diffalg is a Henselian
valuation ring.

Proof. We write S = K[[t]]diffalg. Since S = K[[t]] ∩K((t))diffalg, it is a valuation
ring. Clearly the maximal ideal of S is t·S. To verify that S is Henselian it suffices
to show that for all µ2, . . . , µn ∈ m there is some f ∈ S with

1 + f + µ2f
2 + . . .+ µnf

n = 0.

As K[[t]] is Henselian, there is such an f in K[[t]]. Obviously, f ∈ S. �

3.8. Theorem. Let (K, δ) be any differential field of characteristic zero. Set K0 =

K and let Kn+1 = Kn((tn))diffalg. Then ⋃n≥0Kn is differentially large.

Proof. By 3.7, Kn[[tn]]diffalg is a Henselian valuation ring. By [Pop10],
Kn((tn))diffalg is a large field. We see that all assumptions of 3.6 are satisfied
for the Kn and the inclusion maps Kn ↪→ Kn+k. Now the argument for [LST24,
5.2(i)] can be copied, where we use 3.6 instead of [LST24, 5.1]. �

3.9. Remark. For every differential field K, there are power series in K((t)) that
are differentially transcendental over K (here K((t)) is furnished with the natural
derivation extending the given one on K and satisfying δ(t) = 1); for example,
the power series f(t) =

∑
n≥0 t

2n

. Indeed, this power series, which lives in Q((t)),
is differentially transcendental over Q by Mahler [Mah30] (also see [LR86]). Any
such power series, viewed in K((t)), remains differentially transcendental over K
because Q((t)) and K are linearly disjoint over Q in K((t)). This shows that, for
any differential field K, the subfield K((t))diffalg of differentially algebraic elements
is properly contained in K((t)).

We conclude this section by discussing possible improvements of 3.3.

3.10. Counterexample. If K is algebraically closed in 3.3 then a stronger conclusion
holds, namely there is a differential K-algebra homomorphism S → K[[t]] whose
image is constrained. The reason is that there is a differential homomorphism
ε : S −→ Kdiff and then one can apply 3.3 to obtain a differential embedding of
the image of ε into K[[t]].

However, ifK is not algebraically closed then in general there is no differentialK-
algebra homomorphism S → K[[t]] whose image is constrained. To see an example,
consider the ordered fieldR(z) where z > R and letK be its real closure. We furnish
K with the unique derivation extending the standard derivation d

dz on R(z). Let x
be a new transcendental element and let R be the real closure of the ordered field
K(x) with the ordering x > K. Extend the derivation ofK to R by setting δ(x) = 0.
Let y be a square root of x− z in R and let S be the differential K-subalgebra of
R generated by y, hence S = K[y, y−1]. Now if ϕ : S −→ K[[t]] is a differential K-
algebra homomorphism, then ϕ(x)′ = ϕ(x′) = 0 and ϕ(x) = ϕ(y2 + z) = ϕ(y)2 + z,
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hence ϕ(x) is a constant and ϕ(x)− z is a square. As z > R and R is the constant
field of K, we see that ϕ(x) cannot be in K. Hence ϕ(x) is a new constant of K[[t]]
and therefore it is not constrained over K.

3.11. On the canonicity of differentially algebraic solutions Let K be a
differential field. If S is a differentially finitely generatedK-algebra and ϕ : S −→ K
is a K-algebra homomorphism, then by [LST24, 3.5] one can explicitly construct
a differential K-algebra homomorphism ψ : S −→ K[[t]], namely one can take ψ
to be the twisted Taylor morphism T ∗ϕ associated to ϕ. Now, by 3.3 there is even
a differential K-algebra homomorphism ρ : S −→ K[[t]]diffalg and one might ask
whether ρ can also be obtained in some canonical form out of ϕ. However Gabriel
Ng has shown that this is not possible. We refer to [Ng23, Proposition 7.11] for
details.

4. Expansions of large fields to a differentially large field

The main goal of this section is 4.3 which implies that any large field of characteristic
zero of infinite transcendence degree over Q can be expanded to a differentially large
field. A further consequence of 4.3 is 6.2, which says that prime model extensions
in CODF only exist in the trivial case. Throughout this section fields are assumed
to be of characteristic zero.

4.1. Notation. Let K be a field (of characteristic zero). A differentially large
problem of K is a pair (f, g) of polynomials from K{x} = K[x0, x1, . . . ] such that
f is of order n ≥ 0, the order of g is strictly less than n and for which there is an
element (c0, . . . , cn) ∈ Kn+1 such that

f(c0, . . . , cn) = 0 & sf (c0, . . . , cn) 6= 0.[2]

We call c̄ an algebraic solution of the differentially large problem. Obvi-
ously a differentially large problem over K remains a differentially large problem
over every field extension of K. If d is a derivation of K, then a solution of a
differentially large problem of K in a differential field (L, δ) extending (K, d) is
an element a ∈ L with f(a) = 0 & g(a) 6= 0, where polynomials are now evaluated
as differential polynomials.

4.2. Proposition. Let L/K be a field extension, n ∈ N and assume that
tr.deg(L/K) ≥ n. Let (f, g) be a differentially large problem of K with ord(f) = n.
Let d be a derivation of K and assume L is large.

Then there is a subfield K1 of L that is finitely generated over K as a field, a
derivation δ of K1 extending d and a solution a ∈ K1 of the differentially large
problem (f, g) such that a, δa, . . . , δn−1a are algebraically independent over K.

Proof. Let x̄ = (x0, . . . , xn) and let Z be the solution set in L of the system

f(x̄) = 0 & sf (x̄) 6= 0.

Claim. There exists a point (a0, . . . , an) ∈ Z with tr.deg(a0, . . . , an/K) = n.
Proof. Let W be the variety defined by the two polynomials

f(x̄), y·sf (x̄)− 1 ∈ K[x̄, y].

Write h(x̄, y) = y·sf (x̄)−1. Then any common zero (ā, c) of f and h in the algebraic
closure of L is a regular point of W , because c·sf (ā) − 1 = 0 implies ∂f

∂xn
(ā) 6= 0

[2]Note that there is no condition on g here.
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and obviously ∂h
∂y = sf does not vanish at ā. Hence the determinant of the matrix(

∂f
∂xn

∂f
∂y

∂h
∂xn

∂h
∂y

)
is not zero at (ā, c). This shows that W is smooth.

Since (f, g) is a differentially large problem of K we know that W has a K-
rational point. By [Feh11, Theorem 1], using tr.deg(L/K) ≥ n = dim(W ), there is
a K-embedding K(W ) −→ L. A generic point of W in K(W ) is then mapped to a
point (a0, . . . , an) ∈ Z with tr.deg(a0, . . . , an/K) = n. �

As sf (a0, . . . , an) 6= 0, an is algebraic over K(a0, . . . , an−1). But now we see that
g(a0, . . . , an) 6= 0 as the order of g is strictly less than n, and K1 := K(a0, . . . , an)
is isomorphic to the quotient field of K{x}/p, where p = [f ] : s∞f . This induces a
derivation δ on K1 and this derivation has the required properties: a = a0 solves
the given differentially large problem. �

4.3. Theorem. Let L/K be an extension of fields of characteristic 0 and suppose
L is a large field. Let d be a derivation of K. If tr.deg(L/K) ≥ card(K), then
there is a derivation δ of L extending d such that (L, δ) is differentially large.

[Under necessary assumptions on the constant field C of K we will show in
Theorem 5.8 that we may in addition find such a δ whose constant field is algebraic
over C.]

Proof. Let κ = card(K). By extending K and d we may assume that
tr.deg(L/K) = κ. Let {ti | i < κ} be a transcendence basis of L over K and
let (fi, gi)i∈κ be a list of all differentially large problems of L; so here fi, gi ∈ L{x}
in the terminology of 4.1.

For i < κ we define a subfield Ki of L and a derivation di of Ki such that
(a) Ki contains ti, tr.deg(Ki/K) is finite for finite i and tr.deg(Ki/K) ≤ card(i)

for i ≥ ω,
(b) (Ki, di) extends (Kj , dj) for j < i, and
(c) (Ki, di) solves the differentially large problem (fi, gi).

Suppose i < κ and (Kj , dj) has already been defined with properties (a)–(c); this
also covers the case i = 0. Let b̄ ⊆ L be finite with fi, gi ∈ K(b̄){x} such that there
is an algebraic solution of the differentially large problem (fi, gi) in K(b̄). Let K∗
be the field generated by K(ti, b̄) ∪⋃j<iKj and extend the derivation ⋃j<i dj to
a derivation d∗ of K∗ arbitrarily. Obviously then tr.deg(K∗/K) is finite if i is finite
and ≤ card(i) otherwise.

Consequently tr.deg(L/K∗) is infinite and we may apply 4.2 to the extension
K∗ ⊆ L, the derivation d∗ and the differentially large problem (fi, di). We obtain
an extension (Ki, di) of (K∗, d∗) such that Ki is a subfield of L that is finitely
generated over K∗. Clearly (Ki, di) satisfies (a)–(c).

Then L = ⋃i<κKi and by 2.8 the differential field (L, ∂) with ∂ = ⋃i<κ di is
differentially large. �

4.4. Remark. In characteristic p > 0 the conclusion in 4.3 fails even under the
assumption that L/K is separable. For example L might be perfect (as a field),
and hence any derivation on L is trivial.

4.5. Corollary. A large field L of characteristic zero is of infinite transcendence
degree if and only if there is a derivation d of L such that (L, d) is differentially large.
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Proof. If L has infinite transcendence degree, then by 4.3 applied with K = Q

shows that there is a derivation d of L such that (L, d) is differentially large. For
the converse assume there is a derivation d of L such that (L, d) is differentially
large. By [LST24, 5.12], the algebraic closure L of L is differentially closed. We
may then replace L by the differential closure of Q. By the non-minimality of
the differential closure of Q ([Ros74]), there is an embedding L −→ L that is not
surjective. Hence L cannot have finite transcendence degree. �

5. Differentially large fields with prescribed constant field

We now aim to provide a version of Theorem 4.3 for all differentially large fields
of characteristic 0 without extending the constants. More precisely, we prove in
Theorem 5.8 below that for a field extension L/K with tr.deg(L/K) ≥ card(K),
if d be a derivation of K whose constant field CK is dense in L for the étale
open topology of L, then there is an extension δ of d on L such that (L, δ) is
differentially large and CL is algebraic over CK . Hence, under a density assumption
of the constants CK , if CK is algebraically closed in L, then the construction of the
derivation in Theorem 4.3 can be performed without introducing new constants.
We conclude this section with an application to dense pairs of large fields in 5.12.
We first (briefly) introduce the notion of L-prime ideals in the context of a fixed
field extension L/K. For a differential ring S we write Sped(S) for the subspace of
Spec(S) consisting of the differential prime ideals of S.

5.1. Definition. Let L/K be an extension of fields and let d be a derivation of K.
Let S be a differential K-algebra. We call a prime ideal p of S a differential L-
prime ideal if it is differential and S/p can be embedded into L as aK-algebra; ob-
serve that there is no derivation given on L. We write SpedL(S) for the subspace of
Sped(A) consisting of differential L-prime ideals. We say that a point p ∈ Sped(S) is
L-locally closed if it is a locally closed point of SpedL(S). If S is finitely generated
as a K-algebra and (0) is the unique point of SpedL(S) we say that S is L-simple.
Note that L-simplicity implies that there is a K-algebra embedding S −→ L.

5.2. Examples.
(i) If L is an algebraically closed field of infinite transcendence degree over K and

S is a differentially finitely generated K-algebra, then SpedL(S) = Sped(S),
and L-locally closed is the same as being constrained in the sense of Kolchin
[Kol74].

(ii) If K is real closed and L is an |S|+-saturated real closed field, then SpedL(S)
is the subspace of differential prime ideals p that are real, i.e. −1 is not a sum
of squares in S/p. When we are in this example we will say real constrained
instead of L-locally closed.

(iii) Clearly, being constrained and real implies real-constrained. However, the
converse does not always hold. For instance, consider the real closure
K = Q(t)rcl, where Q(t) is equipped with the unique ordering such that
t > Q and with the unique derivation extending d

dt on Q(t). Let α2 be a
transcendental over K. In the formally real field K(α2) define a derivation δ
that extends the one on K such that δ(α2) = −1

2α2
. Let α1 = t + α2

2. Then,
δ(α1) = 0 and α1 is transcendental over K (as α1 > Qrcl). Now consider
α = (α1, α2). Clearly α is not constrained over K (as α1 is a constant which
is not algebraic over CK = Qrcl). But α is real-constrained over K. Indeed,
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for any differential specialisation β = (β1, β2) of α over K with K〈β〉 formally
real, we see that β1 is transcendental over K (for the same reason that α1

was); thus, the map K(α)→ K(β) fixing K and mapping (α1, α2) 7→ (β1, β2)
is a differential isomorphism (not necessarily preserving the orderings).

5.3. Observation. Let L be a differentially large field and let K ⊆ L be a differen-
tial subfield. Then for every L-simple K-algebra there is a differential K-embedding
S −→ L.

Proof. As S is L-simple, there is a K-algebra embedding ϕ : S −→ L. Now
S ⊗K L is a finitely generated differential L-algebra and ϕ extends to an L-algebra
homomorphism S⊗K L −→ L. By differential largeness, [LST24, 4.3(iv)] says that
there is a differential L-algebra homomorphism ψ : S ⊗K L −→ L. Composing ψ
with the natural map S −→ S ⊗K L gives a differential K-algebra homomorphism
S −→ L. Since S is L-simple, this map is an embedding. �

5.4. Proposition. Let L/K be a field extension and let d be a derivation of K. Let
S be a differentially finitely generated K-algebra. If SpedL(S) is nonempty, then
there are L-locally closed points p of S and for each such point there is some q ∈ S
such that (S/p)q is L-simple.

Proof. By Noetherianity of Sped(S), there are points of SpedL(S) that are maximal
for inclusion in SpedL(S). These points are even closed in SpedL(S).

Now take an L-locally closed points p of S. Hence there is some q ∈ S such that
the prime ideal p is maximal for inclusion in D(q) ∩ SpedL(S). In other words the
zero ideal is the unique element of SpedL(A), where A = (S/p)q; in particular there
is a K-algebra embedding A −→ L.

By 2.4 there are a ∈ A and a (not necessary differential) finitely generated K-
subalgebra B of Aa and a derivation ∂ of B together with a differential K-algebra
homomorphism f : A −→ (B, ∂). In particular the kernel of f is in Sped(A). Since
B is a K-subalgebra of Aa, the kernel of f is even in SpedL(S) and so the kernel
of f is 0. Thus f is an embedding and qf(A) is a finitely generated field extension
of K. Since A is a differentially finitely generated K-algebra we may then localize
it at some element of A and see that A is finitely generated as a K-algebra. �

In what follows we will talk about the étale open topology on K-rational points
of K-varieties for a field K, cf. [JTWY24, p. 4034]. Explicitly we will only need a
few basic properties of the étale open topology of K itself and we only record what
we need later on:

5.5. The étale open topology. Let K be a field.
(i) We call a subset U of K standard étale open if it is the image of

the projection K2 −→ K onto the first coordinate of a set of the form
{(a, b) ∈ K2 | P (a, b) = 0 & Q(a, b) 6= 0}, where P,Q ∈ K[x, y] such that
∂
∂yP is invertible in the localization of K[x, y]/(P ) at Q. In the terminology
of [Poo17, Definition 3.5.38] these sets are precisely the images of K-rational
points of standard étale morphisms defined over K with codomain A1.
The standard étale open sets form a basis of a topology on K which is the
étale open topology, cf. [Poo17, Definition 3.5.38], [JTWY24, p. 4037].

(ii) [JTWY24] The field K is large if and only if the étale open topology is not
discrete. If K is algebraically closed, then the étale open topology is the
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Zariski topology. If K is real closed, then the étale open topology is the order
topology. If K possesses a nontrivial henselian valuation v, then the étale
open topology is the open ball topology of v.

5.6. Proposition. Let L/K be a field extension such that L is large and let d be a
derivation of K. Let S be an L-simple differential K-algebra. If K is algebraically
closed in L and CK is dense in L for the étale open topology of L, then the constant
field of qf(S) is CK .

Proof. By L-simplicity, we may assume that S is a K-subalgebra of L. We write
F = qf(S) and δ for the derivation of F . Since S is L-simple, there is g ∈ S such
that the localisation SpedL(Sg) only consist of the zero ideal.

Now suppose f = p
q ∈ F is a constant, thus δ(f) = 0. We aim to show that f is

in CK . We work in the localisation Sg·q, and we view it as the coordinate ring of
an affine variety V defined over K. Then f yields an algebraic map f : V (L)→ L.
The image W = f(V (L))[3] is K-definable in L in the language of rings.

Case 1. W is infinite.
Since W is an existentially L-definable set it must have nonempty interior for the
étale open topology of L by [WY23, Corollary A, p.613]. Since CK is dense in
L, there is ε ∈ V (L) – hence a K-algebra homomorphism Sg·q −→ L – such that
c := ε(f) ∈ CK and we claim that f = c.

Since δ(f−c) = 0, the ideal a := (f−c) of Sg·q is differential and contained in the
kernel q of ε. Choose any extension of the derivation of K to L and let T ∗ε : Sg·q −→
L[[t]] be the twisted Taylor morphism of ε and that derivation. We write q# for the
kernel of T ∗ε and obtain a differential K-algebra embedding Sg·q/q# ↪→ L[[t]][4]. It
follows that the K-variety V1 defined by Sg·q/q# has a smooth L[[t]]-rational point.
Since L is a large field, V1 also has a smooth L-rational point. Since S is a K-
subalgebra of L we see that tr.deg(L/K) ≥ tr.deg(S/K) ≥ tr.deg((Sg·q/q

#)/K).
By [Feh11, Theorem 1] we know that there is a K-algebra embedding Sg·q/q# ↪→ L.
We have shown that q# is in SpedL(A). But (0) is the only differential L-prime ideal
of Sg·q, thus q# = (0). On the other hand, a is a differential ideal and contained in
the kernel q of ε. This implies a ⊆ q# = (0), showing that f − c = 0 as required.

Case 2. W is finite.
Since V is irreducible and defined over K the assumption that K is algebraically
closed in L, implies that the variety V ×K L is also irreducible. Consequently V (L)
is an irreducible subset for the Zariski topology of the L-rational points of V . It
follows that the imageW of f seen as a map V (L) −→ L is also irreducible. AsW is
finite,W is a singleton set. Hence f is a constant algebraic map and thus f = c. �

5.7. Corollary. Let L/K be an extension of differential fields and suppose L is
large as a field. Suppose K is algebraically closed in L and CK is dense in L for
the étale open topology of L. Let a ∈ Ln and g ∈ K{x} with g(a) 6= 0.
(i) There is an L-simple differential K-algebra S such that the fraction field of S

has constant field CK , together with a differential K-algebra homomorphism
ϕ : K{a} −→ S satisfying g(ϕ(a)) 6= 0.

[3]Formally: W is the set of all ε(f), where ε : Sg·q −→ L is a K-algebra homomorphism.
[4]We only need the derivation on L to obtain some K-algebra embedding as asserted, the

classical Taylor morphism would not deliver this.
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16 OMAR LEÓN SÁNCHEZ AND MARCUS TRESSL

(ii) If L is differentially large, then there is some b ∈ Ln with g(b) 6= 0 such that
CK〈b〉 = CK together with a differential K-algebra homomorphism K{a} −→
K{b} mapping a to b.

Proof. (i) Since (0) is a differential L-prime ideal, there is a differential L-prime
ideal p of K{a} with g /∈ p and some s ∈ K{a} \ p such that S = (K{a}/p)g(a)·s
is L-simple. In particular S can be embedded as a K-algebra into L. By 5.6, the
fraction field of S has constant field CK .

(ii) follows from (i) and 5.3. �

5.8. Theorem. Let L/K be a field extension such that L is large with
tr.deg(L/K) ≥ card(K). Let d be a derivation of K whose constant field C is
dense in L for the étale open topology of L. Then there is an extension δ of d on
L such that (L, δ) is differentially large whose constant field is algebraic over C.

Proof. Using 5.7 we adapt the strategy of the proof of 4.3. We may replace K by
its algebraic closure of K in L, hence we need to find a derivation on L extending
d with constant field C. Let κ = card(K). By extending K with sufficiently many
differentially algebraic independent elements we may assume that tr.deg(L/K) = κ;
this will not extend the constants as one verifies without difficulty. Let (fi, gi)i∈κ
be a list of all differentially large problems of L, where f0 = x, g0 = 1; so here
fi, gi ∈ L{x} in the terminology of 4.1.

For i < κ, starting with K0 = K we define a subfield Ki of L that is algebraically
closed in L and a derivation di of Ki such that
(a) (Ki, di) extends (Kj , dj) for j < i.
(b) tr.deg(Ki/K) ≤ max{ℵ0, card(i)}.
(c) tr.deg(L/Ki) is infinite (which is implied by (b) when L is uncountable).
(d) fi, gi ∈ Ki{x} and (Ki, di) solves the differentially large problem (fi, gi).
(e) (Ki, di) has constant field C.

Suppose 0 < i < κ and (Kj , dj) has already been defined for j < i with proper-
ties (a)–(e). Let K∗ = ⋃j<iKj with derivation d∗ = ⋃j<i dj . Obviously then
tr.deg(K∗/K) ≤ max{ℵ0, card(i)}. If i is infinite, then L is uncountable and of
size > card(i), hence tr.deg(L/K∗) is infinite. If i is finite, then K∗ = Ki−1 and
tr.deg(L/K∗) is infinite as well.

Since tr.deg(L/K∗) is infinite, there is a countable infinite set T ⊆ L that is
algebraically independent over K∗ such that tr.deg(L/K∗(T )) is infinite, such that
fi, gi ∈ K∗(T )alg{x} and such that there is an algebraic solution of the differentially
large problem (fi, gi) in K∗(T )alg (here the superscript ’alg’ stands for the algebraic
closure in L).

It follows that tr.deg(L/K∗(T )) ≥ card(K∗(T )) in either case. Now the field
K∗(T ) is isomorphic to the fraction field K∗〈x〉 of the differential polynomial ring
K∗{x} and therefore there is a derivation ∂ of K∗(T ) extending d∗ such that
(K∗(T ), ∂) is K∗-isomorphic to K∗〈x〉 with its natural derivation. It follows that
the constant field of ∂ is the constant field of K∗, which is C by property (e) in
the induction hypothesis. Hence we may extend ∂ to the algebraic closure K+ of
K∗(T ) in L without extending the constants.

Since tr.deg(L/K+) ≥ card(K+) we may now apply 4.3 and extend ∂ to a
derivation on L such that (L, ∂) is differentially large. Since C is dense in L it is
also dense in K+. Since (fi, gi) is a differentially large problem of K+ by choice of
T , we may apply 5.7(ii), which shows that (fi, gi) has a differential solution a in
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(L, ∂) such that (K+〈a〉, ∂) has constant field C. We may then define Ki to be the
algebraic closure of (K+〈a〉, ∂) in L and see that all conditions (a)–(e) are satisfied.

Finally, L = ⋃i<κKi because for each b ∈ L, the differentially large problem
(x− b, 1) is solved in the union. Hence the theorem follows. �

From the description of the étale open topology in 5.5 we see that every differentially
large field has a dense constant field for that topology, hence the density assumption
in 5.8 is necessary.

5.9. Corollary.
(i) For every real closed subfield K of the field R with tr.deg(R/K) ≥ 2ℵ0 and

any derivation d of K there is a derivation δ on R extending d such that (R, δ)
is a CODF whose constant field is the constant field of (K, d). Recall that the
étale open topology of R is the Euclidean topology of R.

(ii) For every p-adically closed subfield K of the field Qp with tr.deg(Qp/K) ≥ 2ℵ0

and any derivation d of K there is a derivation δ on Qp extending d such
that (Qp, δ) is differentially large, whose constant field is the constant field of
(K, d). Recall that the étale open topology of Qp is the valuation topology of
Qp and Q is dense in Qp.

(iii) For every pair K ⊆ L of countable fields, if L is large, K is algebraically
closed in L and dense in L for the étale open topology of L with tr.deg(L/K)
infinite, then there is a derivation δ on L such that (L, δ) is differentially large
with constant field K.

5.10. Example. Dense pairs of fields C ⊆ L as required in 5.8 – hence L is large, C
is dense for the étale open topology of L with tr.deg(L/C) ≥ card(C) – also occur
naturally in power series fields: Let k be any field of characteristic 0. We work in
the Henselian valued field k((tQ)) of generalized power series of k. Let C be the
algebraic closure of k(t) in k((tQ)) and let M be the completion of C for the valued
field C, hence M is the subfield of k((tQ)) consisting of power series whose support
is cofinal in Q and of order type ω.

Now for any Q-linearly independent set Λ ⊆ k of cardinality card(k) (a baby
version of) Ax’s solution to the functional Schanuel conjecture implies that the
series exp(λ·t) with λ ∈ Λ are algebraically independent over k.

So if L is a large subfield ofM (for example,M itself), containing all the exp(λ·t),
then the pair L/C has the required properties.

A further consequence of 5.8 is an application to dense pairs of large fields:

5.11. Theorem. Let T be a theory of large fields of characteristic 0 in the language
L of rings. Let Tpair be the L (P ) theory of proper pairs K ( L of models of T for
which K is algebraically closed in L and K is dense in the étale open topology of L;
here P is a new unary predicate.[5] Let T δ be the theory T together with the theory
of differentially large fields in the language L (δ) of ordinary differential rings.

If T δ is a complete theory, then the theory Tpair is also complete.

Proof. If (L,K) |= Tpair, then a standard compactness argument shows that there
is an elementary extension (L′,K ′) � (L,K) such that tr.deg(L′/K ′) is infinite.

[5]Notice that all these conditions are first order in the language L (P ), even when the étale
open topology is not a definable field topology. Density of the subfield is preserved by elementary
equivalence, as one sees by using the description of the open sets in 5.5.
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By the downwards Skolem-Löwenheim theorem there is a countable elementary
restriction (L′′,K ′′) ≺ (L′,K ′) such that tr.deg(L′′/K ′′) is infinite.

Now take (L1,K1), (L2,K2) |= Tpair. In order to show that the pairs (L1,K1)
and (L2,K2) are elementary equivalent we may apply the argument above to each
pair and assume that Li is countable and of infinite transcendence degree over Ki.
By 5.9 we may expand Li to a differentially large field (Li, δi) with constant field
Ki. Hence the completeness of T δ implies that (L1, δ1) and (L2, δ2) are elementary
equivalent as differential fields and therefore the pairs (L1,K1) and (L2,K2) are
elementary equivalent as well. �

5.12. Corollary. Let T be a complete and model complete theory of large fields
of characteristic 0 in the language L of rings, possibly expanded by constants. Let
Tpair be the theory of proper (étale-)dense pairs of models of T . Then Tpair is
complete and the following neostability theoretic properties transfer from T to Tpair:
(i) if T is stable, then Tpair is the theory of (beautiful) pairs of ACF0,
(ii) if T is simple, then Tpair is simple,
(iii) if T is NSOP1, then so is Tpair, and
(iv) if T is NIP, then so is Tpair.

Proof. By [LST24, Cor. 4.8(iii)], T δ is complete and model complete (recall that T δ
is the theory T together with the theory of differentially large fields). In particular,
5.11 yields that Tpair is complete. Now, (i) follows from the fact that a large field
of characteristic zero with a stable theory must be algebraically closed [JTWY24].
For (ii), by the argument in the proof of 5.11, it suffices to observe that T δ is simple
whenever T is simple. This appears in [ML24, Corollary 3.6(i)]. Similarly, from
[ML24, Corollary 3.6(ii)] we get that T δ is NSOP1 whenever T is NSOP1, and so (iii)
follows. By [Moh24, Cor 5.1], T δ has NIP if T has NIP, hence we obtain (iv). �

5.13. Remark. For the case of real closed fields, the completeness result of 5.12 is
A. Robinson’s theorem saying that the theory of proper pairs of dense real closed
fields is complete. More generally, under the assumptions of 5.12, the theory Tpair

coincides with the theory of geometrically-dense pairs of models of T in the sense
of Fornasiero [For11, §8]. Indeed, since T is a complete and model-complete theory
of large fields (in the ring language), then T is geometric (T is very slim by [JK10,
Theorem 5.4] and very slim implies geometric by [JY23, Corollary 2.9]); and so
it suffices to show that (in this context) étale-denseness coincides with geometric-
denseness. Recall that K is geometrically-dense in L iff K intersects every infinite
definable subset of L (see [For11, Example 7.2]). It is then clear that geometric-
denseness implies étale-denseness. But then completeness of Tpair (by 5.12) implies
that the two notion of denseness must coincide.

6. Prime models in CODF are algebraic

We now apply 4.3 to answer a question about prime model extensions for CODF.
Recall that a CODF in the sense of Singer (cf. [Sin78]) is the same as a differentially
large field that is real closed as a pure field. In [Sin78], Singer shows that CODF
has no prime model, i.e. there is no CODF that embeds into all other CODFs.[6]

We now show that in fact no differential and formally real field (i.e. it possesses an

[6]Note that CODF is model complete in the language of differential rings, i.e. every embedding
of CODFs is elementary.

https://doi.org/10.4153/S0008414X24001172 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24001172


ON ORDINARY DIFFERENTIALLY LARGE FIELDS 19

ordering) has a prime model extension for CODF[7], unless its real closure is already
a CODF. In particular, no formally real field equipped with the trivial derivation
has a prime model extension in CODF. The proof is essentially an application of
4.3 together with the following purely field theoretic fact.

6.1. Proposition. Let R be a real closed field and let κ be its cardinality. Then,
there are real closed fields M,N containing R of transcendence degree κ over R with
the following property: If S ⊇ R is a real closed field then S can be embedded over R
intoM and into N if and only if tr.deg(S/R) ≤ 1 and R is Dedekind complete in S.

Proof. We take M ⊇ R by successively adjoining infinitely large elements aα for
α < κ. Hence aα > R(aβ | β < α) in M and M is algebraic over R(aα | α < κ).
Then R is Dedekind complete in M and M has transcendence degree κ over R.
For N we may take any real closed subfield of R((tR)) of transcendence degree κ
over R. Such fields exist because of the following reason: Let Λ be a basis of the
Q-vector space R. Since R is real closed, the cardinality of Λ is κ. Then the set
{exp(λ·t) | λ ∈ Λ} ⊆ R[[t]] is an algebraically independent subset of R((tR)) over
R: this is a baby case of Ax’s positive solution to the functional Schanuel conjec-
ture, but is not difficult to prove directly. Hence we may take N as the real closure
of R(exp(λ·t) | λ ∈ Λ) in R((tR)). Clearly N has transcendence degree κ over R.

Since R is Dedekind complete in M and in N , any real closed field S containing
R with tr.deg(S/R) ≤ 1 in which R is Dedekind complete, can be embedded into
M and into N . It remains to show that any real closed subfield S of M containing
R that can be embedded into N over R is of transcendence degree at most 1 over
R; note that R is Dedekind complete in S because R is Dedekind complete in M
(and in N).

For a contradiction, suppose S has transcendence degree 2 over R. We furnish
M with the valuation whose valuation ring is the convex hull of R in M . Real
closures are now taken inM throughout and this is indicated by the superscript rcl.
Take ā = (aα1

, . . . , aαn
), α1 < . . . < αn such that S ⊆ R(ā)rcl. Then by choice

of the aα the chain R ⊆ R(aα1
)rcl ⊆ . . . ⊆ R(aα1

, . . . , aαn
)rcl witnesses that the

value group of R(aα1
, . . . , aαn

)rcl has height n, where height stands for the number
of convex subgroups of the value group. Since tr.deg(S/R) = 2, there are n − 2
elements b1, . . . , bn−2 from {aα1 , . . . , aαn} that are algebraically independent over
S. Since S can be embedded into R((tR)) we know that S has height 1: Crucially
we use here that any such embedding preserves the valuations because the natural
valuation on R((tR)) again has the convex hull of R in R((tR)) as its valuation ring.
But now the chain R ⊆ S ⊆ S(b1)rcl ⊆ . . . ⊆ S(b1, . . . , bn−2)rcl = R(aα1

, . . . , aαn
)rcl

witnesses that the value group of R(aα1 , . . . , aαn)rcl has height at most n−1, which
gives the desired contradiction. �

6.2. Theorem. Let K be a differential and formally real field. If K has a prime
model extension K̂ for CODF, then K̂ is algebraic over K.

Proof. Suppose there is a prime model extension K̂ of K for CODF but K̂ is not
algebraic over K. Let R be the algebraic closure of K in K̂. Then R is a differential
subfield of K̂ and K̂ is also a prime model of R for CODF: If R ⊆ M |= CODF,

[7]A prime model extension of K for CODF is a model K̂ of CODF having K as a differential
subfield such that K̂ embeds over K as a differential field into any other CODF that has K as a
differential subfield.
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then any K-embedding K̂ −→M must be the identity on R. Hence we may assume
that K is real closed all along.

Choose real closed fieldsM,N for K as in 6.1. By 4.3 there are extensions of the
derivation ofK toM,N respectively such thatM,N furnished with these extensions
are CODFs. Since K̂ can be embedded into M and into N by assumption, 6.1
implies that K̂ must be of transcendence degree ≤ 1 over K and K is Dedekind
complete in K̂. As K 6= K̂, we know that tr.deg(K̂/K) = 1.

Since K̂ is a CODF it follows that K̂ has a positive infinitesimal element t with
respect to K such that t′ = 1 (in particular t /∈ K). Then K̂ is a differential
subfield of K((tQ)) (endowed with the derivation extending the one on K and
satisfying t′ = 1). By [LST24, end of 5.3] we know that t−1 has no integral in
K((tQ)). This contradicts the fact that t−1 has an integral in the CODF K̂. �

6.3. Remark. The proofs of 6.1 and 6.2 can be adapted to get the analogous
statements about differential and formally p-adic fields and the class of p-adically
closed differentially large fields. One possible task for future work is to extend 6.2
(or rather 6.1) to topological differential fields in the sense of [GP10]. We do not
know if there is a version of 6.2 outside of that context. For example, if K is a
subfield of a pseudo-finite field and d is a derivation of K, it is unclear whether
there is a prime model over (K, d) in the class of differentially large and pseudo-
finite fields (all of characteristic zero).
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