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Abstract
Selective compliance articulated robot arms (SCARA) robotic manipulators find wide use in industry. A nonlinear
optimal control approach is proposed for the dynamic model of the 4-degrees of freedom (DOF) SCARA robotic
manipulator. The dynamic model of the SCARA robot undergoes approximate linearization around a temporary
operating point that is recomputed at each time-step of the control method. The linearization relies on Taylor series
expansion and on the associated Jacobian matrices. For the linearized state-space model of the system, a stabiliz-
ing optimal (H-infinity) feedback controller is designed. To compute the controller’s feedback gains, an algebraic
Riccati equation is repetitively solved at each iteration of the control algorithm. The stability properties of the
control method are proven through Lyapunov analysis. The proposed control method is advantageous because: (i)
unlike the popular computed torque method for robotic manipulators, it is characterized by optimality and is also
applicable when the number of control inputs is not equal to the robot’s number of DOFs and (ii) it achieves fast and
accurate tracking of reference setpoints under minimal energy consumption by the robot’s actuators. The nonlinear
optimal controller for the 4-DOF SCARA robot is finally compared against a flatness-based controller implemented
in successive loops.

1. Introduction
Selective compliance articulated robot arms (SCARA) robots are widely used in industrial tasks as well
as in the teaching of robotics and in the related testing of new robot control algorithms [1–5]. The rapid
development of the Computer, Communication and Consumer Electronics Industry (3C industry) has
led also to the spread of the use of SCARA robots [6–10]. SCARA robots exhibit agility in assembly
tasks for the 3C industry and particularly in the fabrication of electronic devices, as well as in welding,
handling of objects, and pick and place tasks with high speed, short time-cycle, accurate path following,
and in general much flexible operation [11–15]. Of course, to achieve the precise execution of such tasks
SCARA robots have to be equipped with computationally powerful microprocessors and have to be also
supplied with elaborated nonlinear control algorithms [16–20].

SCARA robots are high-performance robotic manipulators with relatively simple structure. With
three revolute joints (named as shoulder, elbow, and wrist, respectively), a SCARA robot can move its
end-effector horizontally, while with a prismatic joint it can move the end-effector vertically [21–26].
The configuration of the SCARA robot (Fig. 1) is outlined as follows: First it comprises a revolute joint
about the vertical axis. This joint swings a rigid arm and at the end of this arm there is a second revolute
joint which swings the second arm again about the vertical axis. The first two revolute joints enable
to move horizontally a load picked by the robot’s end-effector. A prismatic joint (tool) is mounted at

C© The Author(s), 2023. Published by Cambridge University Press.

https://doi.org/10.1017/S0263574723000450 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000450
https://orcid.org/0000-0002-2972-7030
https://doi.org/10.1017/S0263574723000450


2398 G. Rigatos et al.

Figure 1. The 4-DOF SCARA robotic manipulator and the reference frames (coordinate systems)
associated with the robot’s links and joints.

the end of the second arm. This can move straight up and down. Finally, at the end of the tool there is
a third revolute joint which allows for the precise positioning and orientation of the load. Indicative
recent results showing the application of SCARA robots in industrial tasks can be found in refs.
[27–31]. Potential application areas for the article’s developments, always related to industrial robotics,
are described in refs. [32–35].

In the present article, a nonlinear optimal control method is proposed for the nonlinear model of
a 4-degrees of freedom (DOF) SCARA robot [36, 37]. The dynamic model of the 4-DOF SCARA
robot undergoes first approximate linearization around a temporary operating point which is updated at
each sampling instance. This operating point is defined by the present value of the robot’s state vector
and by the last sampled value of the control inputs vector. The linearization process relies on the first-
order Taylor series expansion and on the computation of the associated Jacobian matrices [38–40]. The
modeling error, which is due to the truncation of higher-order terms in the Taylor series expansion,
is proven to be small and is asymptotically compensated by the robustness of the control algorithm.
For the approximately linearized state-space description of the system, a stabilizing H-infinity feedback
controller is defined.

The proposed H-infinity controller achieves the solution of the optimal control problem for the
SCARA robot under model uncertainty and external perturbations. Actually, it represents a min-max
differential game which takes place between (i) the control inputs of the system that try to minimize
a cost function comprising a quadratic term of the state vector’s tracking error and (ii) the model
uncertainty and exogenous perturbation terms which try to maximize this cost function. To compute the
stabilizing feedback gains of this controller, an algebraic Riccati equation has to be also solved at each
time-step of the control method [1, 41]. The global stability properties of the control scheme are proven
through Lyapunov analysis. First, it is proven that the control loop satisfies the H-infinity tracking
performance criterion [1, 42]. Next, it is proven that under moderate conditions, global asymptotic
stability of the control loop is ensured. To implement state estimation-based control without need to
measure the entire vector of the system, the H-infinity Kalman filter is used as a robust state estimator
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[1]. The nonlinear optimal control method retains the advantages of linear optimal control, that is, fast
and accurate tracking of reference setpoints under moderate variations of the control inputs.

The article has a meaningful contribution to the area of nonlinear control. One can point out the
advantages of the nonlinear optimal control method against nonlinear model predictive control (NMPC)
[37]. In NMPC, the stability properties of the control scheme remain unproven and the convergence of
the iterative search for an optimum often depends on initialization and parameter values’ selection. It is
also noteworthy that the nonlinear optimal control method is applicable to a wider class of dynamical
systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE
approaches can be applied only to dynamical systems which can be transformed to the linear parameter
varying form. Besides, the nonlinear optimal control method performs better than nonlinear optimal
control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation
by Galerkin series expansions. The stability properties of the Galerkin series expansion-based optimal
control approaches are still unproven.

The structure of the article is as follows: In Section 2, the dynamic model of the 4-DOF SCARA
robot is given and the associated state-space model in the affine-in-the-input nonlinear state-space form
is formulated. In Section 3, the dynamic model of the SCARA robot undergoes approximate lineariza-
tion through Taylor series expansion and with the computation of the associated Jacobian matrices. In
Section 4, the H-infinity optimal control problem is formulated for the dynamic model of the SCARA
robot. In Section 5, the global stability properties of the H-infinity control scheme are proven through
Lyapunov analysis. Besides, the H-infinity Kalman filter is introduced as a robust state estimator. In
Section 6, the differential flatness properties of the 4-DOF SCARA robotic manipulator are proven and
a flatness-based control in successive loops is developed for this robotic system. In Section 7, the accu-
racy of setpoints tracking by the state variables of the SCARA robot, under the nonlinear optimal control
method, is further confirmed through simulation experiments. Finally, in Section 8 concluding remarks
are stated.

2. Dynamic model of the 4-DOF SCARA robotic manipulator
2.1. State-space model of the SCARA robot
The diagram of the 4-DOF SCARA robot is shown in Fig. 1. The associated state-space model of the
robot’s dynamics takes the form [1, 2]

M(θ )θ̈ + C̃(θ , θ̇ )θ̇ + G(θ ) + d̃ = τ (t) (1)

where θ = [θ1, θ2, θ3, θ4]T is the robot’s vector of state variables, θi, i = 1, 2, 4 are the joints’ turn angle,
θ̇i, i = 1, 2, 4 are the joints’ angular speeds, θ3 is the position of the prismatic joint, θ̇3 is the velocity of
the prismatic joint, d̃ is the disturbances vector, M(θ ) is the inertia matrix, C̃(θ , θ̇) is the Coriolis and
centrifugal forces matrix, and G(θ ) is the gravitational forces vector. These parameters of the robotic
model are defined as follows [2]:

M(θ ) =

⎛
⎜⎜⎜⎜⎝

p1 + p2cos(θ2) p3 + 0.5p2cos(θ2) 0 −p5

p2 + 0.5p2cos(θ2) p2 0 −p5

0 0 p4 0

−p5 −p5 0 p5

⎞
⎟⎟⎟⎟⎠ (2)

C̃(θ , θ̇ ) =

⎛
⎜⎜⎜⎜⎝

−p2cos(θ1)θ̇2 −0.5p2sin(θ2)θ̇2 0 0

0.5p2sin(θ2)θ̇1 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠G(θ ) =

⎛
⎜⎜⎜⎜⎝

0

0

p4ḡ

0

⎞
⎟⎟⎟⎟⎠ d̃ =

⎛
⎜⎜⎜⎜⎝

b1θ̇1

b2θ̇2

b3θ̇3

b4θ̇4

⎞
⎟⎟⎟⎟⎠ (3)
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In the previous model, τi are the control inputs, Ii are the moments of inertia around the centroid (the
center of rotation of each link is at distance κ from the end of the link), mi is the mass of the ith link,
di is the center of mass of the ith link, li is the length of the ith link, θi is the angle (position) of the ith
joint, while ḡ is the acceleration of gravity. It holds that Ii = miκ

2
i , p1 = ∑4

i=1Ii + m1d2
1 + m2(d2

1 + l2
1) +

(m3 + m4)(l2
1 + l2

2), p2 = 2[l1d2m2 + l1l2(m3 + m4)], p3 = m3 + m4, p4 = m3 + m4, and p5 = I4.
About the elements of the inertia matrix, one has m11 = p1 + p2cos(θ2), m12 = p3 + 0.5p2cos(θ2),

m13 = 0, m14 = −p5, m21 = p2 + 0.5p2 cos (θ2), m22 = p2, m23 = 0, m34 = −p5, m31 = 0, m32 = 0, m33 = p4,
m34 = 0, m41 = −p5, m42 = −p5, m43 = 0, m44 = p5.

About the elements of the Coriolis matrix, one has: c11 = −p2cos(θ1)θ̇2, c12 = −0.5p2sin(θ2)θ̇2, c13 = 0
c14 = 0, c21 = 0.5p2sin(θ2)θ̇1, c22 = 0, c23 = 0, c24 = 0, c31 = 0, c32 = 0, c33 = 0, c34 = 0, c41 = 0, c42 = 0,
c43 = 0, c44 = 0.

About the elements of the gravitational forces vector, one has: g1 = 0, g2 = 0, g3 = p4ḡ, and g4 = 0.
About the elements of the disturbances (friction) vector, one has: d1 = b1θ̇1, d2 = b2θ̇2, d3 = b3θ̇3, and

d4 = b4θ̇4.
Next, the inverse of the inertia matrix M is defined as

N−1 = 1

detM

⎛
⎜⎜⎜⎜⎝

M11 −M21 M31 −M41

−M12 M22 −M32 M42

M13 −M23 M33 −M43

−M14 M24 −M34 M44

⎞
⎟⎟⎟⎟⎠ (4)

where the above noted subdeterminants Mij i = 1, · · · , 4 and j = 1, · · · , 4 are defined as

M11 = m22(m33m44 − m43m34) − m23(m32m44 − m43m34 + m24)(m32m43 − m42m33)

M12 = m21(m33m44 − m43m34) − m23(m31m44 − m41m34 + m24)(m31m43 − m41m33)

M13 = m21(m32m44 − m42m34) − m22(m31m44 − m41m34 + m24)(m31m43 − m41m33)

M14 = m21(m32m43 − m42m33) − m22(m31m43 − m41m33 + m23)(m31m42 − m41m32)

M21 = m12(m33m44 − m43m34) − m13(m32m44 − m42m34 + m14)(m32m43 − m42m33)

M22 = m11(m23m24 − m43m44) − m13(m31m44 − m41m14 + m14)(m31m43 − m41m23)

M23 = m11(m32m44 − m42m44) − m12(m31m44 − m41m34 + m14)(m31m42 − m41m32)

M24 = m11(m32m43 − m42m33) − m12(m31m43 − m41m33 + m13)(m31m42 − m41m32)

M31 = m12(m23m44 − m43m24) − m13(m22m44 − m42m24 + m14)(m22m43 − m42m23)

M32 = m11(m23m44 − m42m24) − m13(m12m44 − m41m24 + m14)(m12m43 − m41m23)

M33 = m11(m22m44 − m42m24) − m12(m21m44 − m41m24 + m14)(m41m22 − m21m42)

M34 = m11(m22m43 − m42m23) − m12(m21m43 − m41m23 + m13)(m21m42 − m41m22)

M41 = m12(m23m34 − m33m24) − m13(m22m34 − m32m23 + m14)(m22m33 − m32m23)

M42 = m11(m22m43 − m33m42) − m31(m12m43 − m13m44 + m41)(m12m33 − m31m32)

M43 = m11(m22m34 − m32m24) − m12(m21m34 − m31m24 + m14)(m21m32 − m31m22)

M44 = m11(m22m33 − m32m23) − m12(m21m33 − m31m23 + m13)(m21m32 − m31m22)

The determinant of matrix M is

detM = m11M11 − m12M12 + m13M13 − m14M14
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For the dynamic model of the SCARA robot that was initially written in the form

M(θ )θ̈ + C̃(θ , θ̇ )θ̇ + G(θ ) + d̃ = τ (5)

it holds that

C̃(θ , θ̇ )θ̇ =

⎛
⎜⎜⎜⎜⎝

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

θ̇1

θ̇2

θ̇3

θ̇4

⎞
⎟⎟⎟⎟⎠ (6)

or equivalently

C(θ , θ̇ ) =

⎛
⎜⎜⎜⎜⎝

c1

c2

c3

c4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

c11θ̇1 c12θ̇2 c13θ̇3 c14θ̇4

c21θ̇2 c22θ̇2 c23θ̇3 c24θ̇4

c31θ̇3 c32θ̇2 c33θ̇3 c34θ̇4

c41θ̇4 c42θ̇2 c43θ̇3 c44θ̇4

⎞
⎟⎟⎟⎟⎠ (7)

Consequently, the dynamic model of the robot can be written as

M(θ )θ̈ + C(θ , θ̇ ) + G(θ ) + d̃(θ̇) = τ⇒
θ̈ + M−1(θ )C(θ , θ̇ ) + M−1(θ )G(θ ) + M−1(θ ))d̃(θ̇ ) = M−1(θ )τ⇒

θ̈ = −M−1(θ )C(θ , θ̇ ) − M−1(θ )G(θ ) − M−1(θ ))d̃(θ̇) + M−1(θ )τ⇒
θ̈ = −M−1(θ )[C(θ , θ̇ ) + G(θ ) + d̃(θ̇)] + M−1(θ )τ (8)

Therefore, the dynamic model of the SCARA robot is written as
⎛
⎜⎜⎜⎜⎝

θ̈1

θ̈2

θ̈3

θ̈4

⎞
⎟⎟⎟⎟⎠ = − 1

detM

⎛
⎜⎜⎜⎜⎝

M11 −M21 M31 −M41

−M12 M22 −M32 M42

M13 −M23 M33 −M43

−M14 M24 −M34 M44

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

c1 + g1 + d1

c2 + g2 + d2

c3 + g3 + d3

c4 + g4 + d4

⎞
⎟⎟⎟⎟⎠ +

+ 1

detM

⎛
⎜⎜⎜⎜⎝

M11 −M21 M31 −M41

−M12 M22 −M32 M42

M13 −M23 M33 −M43

−M14 M24 −M34 M44

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

τ1

τ2

τ3

τ4

⎞
⎟⎟⎟⎟⎠ (9)

Equivalently, using that the torques vector τ = [τ1, τ2, τ3, τ4]T is the control inputs vector u =
[u1, u2, u3, u4]T , the dynamic model of the SCARA robot is written as

⎛
⎜⎜⎜⎜⎝

θ̈1

θ̈2

θ̈3

θ̈4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−M11(c1 + g1 + d1) + M21(c2 + g2 + d2) − M31(c3 + g3 + d3) + M41(c4 + g4 + d4)

detM
M12(c1 + g1 + d1) − M22(c2 + g2 + d2) + M32(c3 + g3 + d3) − M42(c4 + g4 + d4)

detM
−M13(c1 + g1 + d1) + M23(c2 + g2 + d2) − M33(c3 + g3 + d3) + M43(c4 + g4 + d4)

detM
M14(c1 + g1 + d1) − M24(c2 + g2 + d2) + M34(c3 + g3 + d3) − M44(c4 + g4 + d4)

detM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
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+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M11

detM
− M21

detM
M31

detM
− M41

detM

− M12

detM
M22

detM
− M32

detM
M42

detM
M13

detM
− M23

detM
M33

detM
− M34

detM

− M14

detM
M24

detM
− M34

detM
M44

detM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

u1

u2

u3

u4

⎞
⎟⎟⎟⎟⎠ (10)

The state vector of the SCARA robot is
x = [x1, x2, x3, x4, x5, x6, x7, x8]T⇒
x = [θ1, θ̇1, θ2, θ̇2, θ3, θ̇3, θ4, θ̇4]T (11)

Moreover, the following functions are defined:

f1(x) = x2 f2(x) = −M11(c1 + g1 + d1) + M21(c2 + g2 + d2) − M31(c3 + g3 + d3) + M41(c4 + g4 + d4)

detM

f3(x) = x4 f4(x) = M12(c1 + g1 + d1) − M22(c2 + g2 + d2) + M32(c3 + g3 + d3) − M42(c4 + g4 + d4)

detM

f5(x) = x6 f6(x) = −M13(c1 + g1 + d1) + M23(c2 + g2 + d2) − M33(c3 + g3 + d3) + M43(c4 + g4 + d4)

detM

f7(x) = x8 f8(x) = M14(c1 + g1 + d1) − M24(c2 + g2 + d2) + M34(c3 + g3 + d3) − M44(c4 + g4 + d4)

detM
g11(x) = 0 g12(x) = 0 g13 = 0 g14 = 0

g21(x) = M11

detM
g22(x) = − M21

detM
g23(x) = M31

detM
g24(x) = − M41

detM
g31(x) = 0 g32(x) = 0 g33(x) = 0 g34(x) = 0

g41(x) = − M12

detM
g42(x) = M22

detM
g43(x) = − M32

detM
g44(x) = M42

detM
g51(x) = 0 g52(x) = 0 g53(x) = 0 g54(x) = 0

g61(x) = M13

detM
g62(x) = − M23

detM
g63(x) = M33

detM
g64(x) = − M43

detM
g71(x) = 0 g72(x) = 0 g73(x) = 0 g74(x) = 0

g81(x) = − M14

detM
g82(x) = M24

detM
g83(x) = − M34

detM
g84(x) = M44

detM
Thus, the state-space model of the 4-DOF SCARA robot is written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

f6(x)

f7(x)

f8(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g11(x) g12(x) g13(x) g14(x)

g21(x) g22(x) g23(x) g24(x)

g31(x) g32(x) g33(x) g34(x)

g41(x) g42(x) g43(x) g44(x)

g51(x) g52(x) g53(x) g54(x)

g61(x) g62(x) g63(x) g64(x)

g71(x) g72(x) g73(x) g74(x)

g81(x) g82(x) g83(x) g84(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

τ1

τ2

τ3

τ4

⎞
⎟⎟⎟⎠ (12)
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or in concise form one has the affine-in-the-input nonlinear state-space model

ẋ = f (x) + g(x)u (13)

where x ∈ R8×1, f (x) ∈ R8×1, g(x) ∈ R8×4, and u ∈ R4×1.

3. Approximate linearization of the dynamic model of the SCARA robot
3.1. Linearization of the robot’s dynamics
The dynamic model of the 4-DOF SCARA robot being initially expressed in the state-space form

ẋ = f (x) + g(x)u (14)

undergoes approximate linearization at each sampling instance around the temporary operating point
(x∗, u∗), where x∗ is the present value of the system’s state vector and u∗ is the last sampled value of the
control inputs vector. The linearization process is based on Taylor series expansion and gives

ẋ = Ax + Bu + d̃ (15)

where d̃ is the cumulative disturbances vector which may be due to truncation of higher-order terms
from the Taylor series expansion (b) and exogenous perturbations (c) sensor measurements noise of any
distribution. Matrices A and B are Jacobian matrices of the Taylor series expansion which are defined
as:

A = ∇x[f (x) + g(x)u] |(x∗ ,u∗) ⇒
A = ∇xf (x) |(x∗ ,u∗) +∇xg1(x)u |(x∗ ,u∗

1) +∇xg2(x)u2 |(x∗ ,u∗)

+ ∇xg3(x)u3 |(x∗ ,u∗) +∇xg4(x)u4 |(x∗ ,u∗) (16)

B = ∇u[f (x) + g(x)u] |(x∗ ,u∗) ⇒B = g(x) |(x∗ ,u∗) (17)

where gi(x), i = 1, · · · , 4 are the columns of the control inputs gain matrix g(x).
This linearization approach which has been followed for implementing the nonlinear optimal control

scheme results into a quite accurate model of the system’s dynamics. Consider again the affine-in-the-
input state-space model

ẋ = f (x) + g(x)u⇒
ẋ = [f (x∗) + ∇xf (x) |x∗ (x − x∗)] + [g(x∗) + ∇xg(x) |x∗ (x − x∗)]u∗ + g(x∗)u∗ + g(x∗)(u − u∗) + d̃1⇒
ẋ = [∇xf (x) |x∗ +∇xg(x) |x∗ u∗]x + g(x∗)u − [∇xf (x) |x∗ +∇xg(x) |x∗ u∗]x∗ + f (x∗) + g(x∗)u∗ + d̃1 (18)

where d̃1 is the modeling error due to truncation of higher order terms in the Taylor series expansion of
f (x) and g(x). Next, by defining A = [∇xf (x) |x∗ +∇xg(x) |x∗ u∗], B = g(x∗) one obtains

ẋ = Ax + Bu − Ax∗ + f (x∗) + g(x∗)u∗ + d̃1 (19)

Moreover by denoting d̃ = −Ax∗ + f (x∗) + g(x∗)u∗ + d̃1 about the cumulative modeling error term in the
Taylor series expansion procedure, one has

ẋ = Ax + Bu + d̃ (20)

which is the approximately linearized model of the dynamics of the system of Eq. (15). The term f (x∗) +
g(x∗)u∗ is the derivative of the state vector at (x∗, u∗) which is almost annihilated by −Ax∗.

3.2. Computation of the Jacobian matrices
The computation of the Jacobian matrices A and B proceeds as follows:
Computation of the Jacobian matrix ∇xf (x) |(x∗ ,u∗):
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First row of the Jacobian matrix ∇xf (x) |(x∗ ,u∗):
∂f1

∂x1

= 0,
∂f1

∂x2

= 1,
∂f1

∂x3

= 0,
∂f1

∂x4

= 0,
∂f1

∂x5

= 0,
∂f1

∂x6

= 0,
∂f1

∂x7

= 0, and
∂f1

∂x8

= 0.

Second row of the Jacobian matrix ∇xf (x) |(x∗ ,u∗): It holds that f2(x) = f2,num

f2,den
with f2,num = −M11(c1 +

g1 + d + 1) + M21(c2 + g2 + d2) − M31(c3 + g3 + d3) + M41(c4 + g4 + d4) and f2,den = detM. Thus, for
i = 1, 2, · · · , 8 one has

∂f2,num

∂xi

= −∂M11

∂xi

(c1 + g1 + d1) − M11

(
∂c1

∂xi

+ ∂g1

∂xi

+ ∂d1

∂xi

)
+

+ ∂M21

∂xi

(c2 + g2 + d2) + M21

(
∂c2

∂xi

+ ∂g2

∂xi

+ ∂d2

∂xi

)
−

− ∂M31

∂xi

(c3 + g3 + d3) − M31

(
∂c3

∂xi

+ ∂g3

∂xi

+ ∂d3

∂xi

)
+

+ ∂M41

∂xi

(c4 + g4 + d4) + M41

(
∂c4

∂xi

+ ∂g4

∂xi

+ ∂d4

∂xi

)
(21)

and also
∂f2,den

∂xi

= ∂detM
∂xi

(22)

and finally

∂f2

∂xi

=
∂f2,num

∂xi
f2,den − f2,num

∂f2,den
∂xi

detM2
(23)

Third row of the Jacobian matrix ∇xf (x) |(x∗ ,u∗):
∂f3

∂x1

= 0,
∂f3

∂x2

= 0,
∂f3

∂x3

= 0,
∂f3

∂x4

= 1,
∂f3

∂x5

= 0,
∂f3

∂x6

=

0,
∂f3

∂x7

= 0 and
∂f3

∂x8

= 0.

Fourth row of the Jacobian matrix ∇xf (x) |(x∗ ,u∗): It holds that f4(x) = f4,num

f4,den
with f4,num = M12(c1 +

g1 + d + 1) − M22(c2 + g2 + d2) + M32(c3 + g3 + d3) − M42(c4 + g4 + d4) and f4,den = detM. Thus, for
i = 1, 2, · · · , 8 one has

∂f4,num

∂xi

= ∂M12

∂xi

(c1 + g1 + d1) + M12

(
∂c1

∂xi

+ ∂g1

∂xi

+ ∂d1

∂xi

)
+

−∂M22

∂xi

(c2 + g2 + d2) − M22

(
∂c2

∂xi

+ ∂g2

∂xi

+ ∂d2

∂xi

)
−

∂M32

∂xi

(c3 + g3 + d3) + M32

(
∂c3

∂xi

+ ∂g3

∂xi

+ ∂d3

∂xi

)
−

−∂M42

∂xi

(c4 + g4 + d4) − M42

(
∂c4

∂xi

+ ∂g4

∂xi

+ ∂d4

∂xi

)
(24)

and also
∂f4,den

∂xi

= ∂detM
∂xi

(25)

and finally

∂f4

∂xi

=
∂f4,num

∂xi
f4,den − f4,num

∂f4,den
∂xi

detM2
(26)

https://doi.org/10.1017/S0263574723000450 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000450


Robotica 2405

Fifth row of the Jacobian matrix ∇xf (x) |(x∗ ,u∗):
∂f5

∂x1

= 0,
∂f5

∂x2

= 0,
∂f5

∂x3

= 0,
∂f5

∂x4

= 0,
∂f5

∂x5

= 0,
∂f5

∂x6

= 1,
∂f5

∂x7

= 0, and
∂f5

∂x8

= 0.

Sixth row of the Jacobian matrix ∇xf (x) |(x∗ ,u∗): It holds that f6(x) = f6,num

f6,den
with f6,num = −M13(c1 +

g1 + d + 1) + M23(c2 + g2 + d2) − M33(c3 + g3 + d3) + M43(c4 + g4 + d4) and f6,den = detM. Thus, for
i = 1, 2, · · · , 8 one has

∂f6,num

∂xi

= −∂M13

∂xi

(c1 + g1 + d1) − M13

(
∂c1

∂xi

+ ∂g1

∂xi

+ ∂d1

∂xi

)
+

+∂M23

∂xi

(c2 + g2 + d2) + M23

(
∂c2

∂xi

+ ∂g2

∂xi

+ ∂d2

∂xi

)
−

−∂M33

∂xi

(c3 + g3 + d3) − M33

(
∂c3

∂xi

+ ∂g3

∂xi

+ ∂d3

∂xi

)
+

+∂M43

∂xi

(c4 + g4 + d4) + M43

(
∂c4

∂xi

+ ∂g4

∂xi

+ ∂d4

∂xi

)
(27)

and also
∂f6,den

∂xi

= ∂detM
∂xi

(28)

and finally

∂f6

∂xi

=
∂f6,num

∂xi
f6,den − f6,num

∂f6,den
∂xi

detM2
(29)

Seventh row of the Jacobian matrix ∇xf (x) |(x∗ ,u∗):
∂f7

∂x1

= 0,
∂f7

∂x2

= 0,
∂f7

∂x3

= 0,
∂f7

∂x4

= 0,
∂f7

∂x5

= 0,
∂f7

∂x6

= 0,
∂f7

∂x7

= 0, and
∂f7

∂x8

= 1.

Eighth row of the Jacobian matrix ∇xf (x) |(x∗ ,u∗): It holds that f4(x) = f8,num

f8,den
with f8,num = M14(c1 +

g1 + d + 1) − M24(c2 + g2 + d2) + M34(c3 + g3 + d3) − M44(c4 + g4 + d4) and f8,den = detM. Thus, for
i = 1, 2, · · · , 8 one has

∂f8,num

∂xi

= ∂M14

∂xi

(c1 + g1 + d1) + M14

(
∂c1

∂xi

+ ∂g1

∂xi

+ ∂d1

∂xi

)
+

−∂M24

∂xi

(c2 + g2 + d2) − M24

(
∂c2

∂xi

+ ∂g2

∂xi

+ ∂d2

∂xi

)
−

∂M34

∂xi

(c3 + g3 + d3) + M34

(
∂c3

∂xi

+ ∂g3

∂xi

+ ∂d3

∂xi

)
−

−∂M44

∂xi

(c4 + g4 + d4) − M44

(
∂c4

∂xi

+ ∂g4

∂xi

+ ∂d4

∂xi

)
(30)

and also
∂f8,den

∂xi

= ∂detM
∂xi

(31)

and finally

∂f8

∂xi

=
∂f8,num

∂xi
f8,den − f8,num

∂f8,den
∂xi

detM2
(32)

Computation of the Jacobian matrix ∇xg1(x) |(x∗ ,u∗).
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First row of the Jacobian matrix ∇xg1(x) |(x∗ ,u∗):
∂g11(x)

∂x1

= 0 for i = 1, 2, · · · , 8.

Second row of the Jacobian matrix ∇xg1(x) |(x∗ ,u∗):
∂g21(x)

∂xi

=
∂M11
∂xi

detM − M11
∂detM

∂xi

detM2
, for i = 1, 2, · · · , 8

Third row of the Jacobian matrix ∇xg1(x) |(x∗ ,u∗):
∂g31(x)

∂xi

= 0, for i = 1, 2, · · · , 8.

Fourth row of the Jacobian matrix ∇xg1(x) |(x∗ ,u∗):
∂g41(x)

∂xi

=
− ∂M12

∂xi
detM + M12

∂detM
∂xi

detM2
, for i =

1, 2, · · · , 8

Fifth row of the Jacobian matrix ∇xg1(x) |(x∗ ,u∗):
∂g51(x)

∂xi

= 0, for i = 1, 2, · · · , 8.

Sixth row of the Jacobian matrix ∇xg1(x) |(x∗ ,u∗):
∂g61(x)

∂xi

=
∂M13
∂xi

detM − M13
∂detM

∂xi

detM2
, for i = 1, 2, · · · , 8

Seventh row of the Jacobian matrix ∇xg1(x) |(x∗ ,u∗):
∂g71(x)

∂xi

= 0, for i = 1, 2, · · · , 8.

Eighth row of the Jacobian matrix ∇xg1(x) |(x∗ ,u∗):
∂g81(x)

∂xi

= − ∂M14
∂xi

detM + M14
∂detM

∂xi

detM2
, for i = 1, 2, · · · , 8

Computation of the Jacobian matrix ∇xg2(x) |(x∗ ,u∗).

First row of the Jacobian matrix ∇xg2(x) |(x∗ ,u∗):
∂g12(x)

∂x1

= 0 for i = 1, 2, · · · , 8.

Second row of the Jacobian matrix ∇xg2(x) |(x∗ ,u∗):
∂g22(x)

∂xi

= − ∂M21
∂xi

detM + M21
∂detM

∂xi

detM2
, for i = 1, 2, · · · , 8

Third row of the Jacobian matrix ∇xg2(x) |(x∗ ,u∗):
∂g32(x)

∂xi

= 0, for i = 1, 2, · · · , 8.

Fourth row of the Jacobian matrix ∇xg2(x) |(x∗ ,u∗):
∂g42(x)

∂xi

=
∂M22
∂xi

detM − M22
∂detM

∂xi

detM2
, for i = 1, 2, · · · , 8

Fifth row of the Jacobian matrix ∇xg2(x) |(x∗ ,u∗):
∂g52(x)

∂xi

= 0, for i = 1, 2, · · · , 8.

Sixth row of the Jacobian matrix ∇xg2(x) |(x∗ ,u∗):
∂g62(x)

∂xi

= − ∂M23
∂xi

detM + M23
∂detM

∂xi

detM2
, for i = 1, 2, · · · , 8

Seventh row of the Jacobian matrix ∇xg2(x) |(x∗ ,u∗):
∂g72(x)

∂xi

= 0, for i = 1, 2, · · · , 8.

Eighth row of the Jacobian matrix ∇xg2(x) |(x∗ ,u∗):
∂g82(x)

∂xi

=
∂M24
∂xi

detM − M24
∂detM

∂xi

detM2
, for i = 1, 2, · · · , 8

Computation of the Jacobian matrix ∇xg3(x) |(x∗ ,u∗).

First row of the Jacobian matrix ∇xg3(x) |(x∗ ,u∗):
∂g13(x)

∂x1

= 0 for i = 1, 2, · · · , 8.

Second row of the Jacobian matrix ∇xg3(x) |(x∗ ,u∗):
∂g23(x)

∂xi

=
∂M31
∂xi

detM − M31
∂detM

∂xi

detM2
, for i = 1, 2, · · · , 8
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Third row of the Jacobian matrix ∇xg3(x) |(x∗ ,u∗):
∂g33(x)

∂xi

= 0, for i = 1, 2, · · · , 8.

Fourth row of the Jacobian matrix ∇xg3(x) |(x∗ ,u∗):
∂g43(x)

∂xi

= − ∂M32
∂xi

detM + M32
∂detM

∂xi

detM2
, for i = 1, 2, · · · , 8

Fifth row of the Jacobian matrix ∇xg3(x) |(x∗ ,u∗):
∂g53(x)

∂xi

= 0, for i = 1, 2, · · · , 8.

Sixth row of the Jacobian matrix ∇xg3(x) |(x∗ ,u∗):
∂g63(x)

∂xi

=
∂M33
∂xi

detM − M33
∂detM

∂xi

detM2
, for i = 1, 2, · · · , 8

Seventh row of the Jacobian matrix ∇xg3(x) |(x∗ ,u∗):
∂g73(x)

∂xi

= 0, for i = 1, 2, · · · , 8.

Eighth row of the Jacobian matrix ∇xg3(x) |(x∗ ,u∗):
∂g83(x)

∂xi

= − ∂M34
∂xi

detM + M34
∂detM

∂xi

detM2
, for i = 1, 2, · · · , 8

Computation of the Jacobian matrix ∇xg4(x) |(x∗ ,u∗).

First row of the Jacobian matrix ∇xg4(x) |(x∗ ,u∗):
∂g14(x)

∂x1

= 0 for i = 1, 2, · · · , 8.

Second row of the Jacobian matrix ∇xg4(x) |(x∗ ,u∗):
∂g24(x)

∂xi

= − ∂M41
∂xi

detM + M41
∂detM

∂xi

detM2
, for i = 1, 2, · · · , 8

Third row of the Jacobian matrix ∇xg4(x) |(x∗ ,u∗):
∂g34(x)

∂xi

= 0, for i = 1, 2, · · · , 8.

Fourth row of the Jacobian matrix ∇xg4(x) |(x∗ ,u∗):
∂g44(x)

∂xi

=
∂M42
∂xi

detM − M42
∂detM

∂xi

detM2
, for i = 1, 2, · · · , 8

Fifth row of the Jacobian matrix ∇xg4(x) |(x∗ ,u∗):
∂g54(x)

∂xi

= 0, for i = 1, 2, · · · , 8.

Sixth row of the Jacobian matrix ∇xg4(x) |(x∗ ,u∗):
∂g64(x)

∂xi

= − ∂M33
∂xi

detM + M33
∂detM

∂xi

detM2
, for i = 1, 2, · · · , 8

Seventh row of the Jacobian matrix ∇xg4(x) |(x∗ ,u∗):
∂g74(x)

∂xi

= 0, for i = 1, 2, · · · , 8.

Eighth row of the Jacobian matrix ∇xg4(x) |(x∗ ,u∗):
∂g84(x)

∂xi

=
∂M44
∂xi

detM − M44
∂detM

∂xi

detM2
, for i = 1, 2, · · · , 8

Next, one computes the partial derivatives of the sub-determinants Mij and of the determinant detM:
∂M11

∂xi

= ∂m22

∂xi

(m33m44 − m43m34) +

+ m22

(
∂m33

∂xi

m44 + m33

∂m44

∂xi

− ∂m43

∂xi

m34 − m43

∂m34

∂xi

)
−

− ∂m23

∂xi

(m32m44 − m42m34−)

− m23

(
∂m33

∂xi

m44 + m32

∂m44

∂xi

− ∂m42

∂xi

m34 − m42

∂m34

∂xi

)
+

+ ∂m24

∂xi

(m32m43 − m42m33) +

+ m24

(
∂m32

∂xi

m43 + m32

∂m43

∂xi

− ∂m42

∂xi

m33 − m42

∂m33

∂xi

)
(33)
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Equivalently, one has
∂M12

∂xi

= ∂m21

∂xi

(m33m44 − m43m34) +

+ m21

(
∂m13

∂xi

m44 + m13

∂m44

∂xi

− ∂m43

∂xi

m34 − m43

∂m34

∂xi

)
−

− ∂m23

∂xi

(m31m44 − m41m34−)

− m23

(
∂m31

∂xi

m44 + m31

∂m44

∂xi

− ∂m41

∂xi

m34 − m41

∂m34

∂xi

)
+

+ ∂m24

∂xi

(m31m43 − m41m33) +

+ m24

(
∂m31

∂xi

m43 + m31

∂m43

∂xi

− ∂m41

∂xi

m33 − m41

∂m33

∂xi

)
(34)

Moreover, it holds that
∂M13

∂xi

= ∂m21

∂xi

(m32m44 − m42m34) +

+ m21

(
∂m32

∂xi

m44 + m32

∂m44

∂xi

− ∂m43

∂xi

m34 − m43

∂m34

∂xi

)
−

− ∂m23

∂xi

(m31m44 − m41m34−)

− m23

(
∂m31

∂xi

m44 + m31

∂m44

∂xi

− ∂m41

∂xi

m34 − m41

∂m34

∂xi

)
+

+ ∂m24

∂xi

(m31m42 − m41m32) +

+ m24

(
∂m31

∂xi

m42 + m31

∂m42

∂xi

− ∂m41

∂xi

m32 − m41

∂m32

∂xi

)
(35)

Additionally, it holds that
∂M14

∂xi

= ∂m21

∂xi

(m32m43 − m42m33) +

+ m21

(
∂m32

∂xi

m43 + m32

∂m43

∂xi

− ∂m44

∂xi

m33 − m42

∂m32

∂xi

)
−

− ∂m22

∂xi

(m31m43 − m41m33−)

− m22

(
∂m31

∂xi

m43 + m31

∂m43

∂xi

− ∂m33

∂xi

m33 − m41

∂m33

∂xi

)
+

+ ∂m23

∂xi

(m31m42 − m41m32) +

+ m23

(
∂m31

∂xi

m42 + m31

∂m42

∂xi

− ∂m41

∂xi

m32 − m41

∂m32

∂xi

)
(36)
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In a similar manner, one obtains

∂M21

∂xi

= ∂m12

∂xi

(m33m44 − m43m34) +

+ m12

(
∂m33

∂xi

m44 + m33

∂m44

∂xi

− ∂m43

∂xi

m33 − m43

∂m34

∂xi

)
−

− ∂m13

∂xi

(m32m44 − m42m34−)

− m13

(
∂m32

∂xi

m44 + m32

∂m44

∂xi

− ∂m42

∂xi

m34 − m42

∂m34

∂xi

)
+

+ ∂m14

∂xi

(m32m43 − m42m33) +

+ m14

(
∂m32

∂xi

m43 + m32

∂m43

∂xi

− ∂m42

∂xi

m33 − m42

∂m33

∂xi

)
(37)

Equivalently, one has

∂M22

∂xi

= ∂m11

∂xi

(m23m24 − m43m44) +

+ m11

(
∂m23

∂xi

m24 + m23

∂m24

∂xi

− ∂m43

∂xi

m44 − m43

∂m44

∂xi

)
−

− ∂m13

∂xi

(m31m44 − m41m24−)

− m13

(
∂m31

∂xi

m44 + m31

∂m44

∂xi

− ∂m41

∂xi

m24 − m41

∂m24

∂xi

)
+

+ ∂m14

∂xi

(m31m43 − m41m23) +

+ m14

(
∂m31

∂xi

m43 + m31

∂m43

∂xi

− ∂m41

∂xi

m23 − m41

∂m23

∂xi

)
(38)

Following this procedure, one gets

∂M23

∂xi

= ∂m11

∂xi

(m32m44 − m42m34) +

+ m11

(
∂m32

∂xi

m44 + m32

∂m44

∂xi

− ∂m42

∂xi

m34 − m42

∂m34

∂xi

)
−

− ∂m12

∂xi

(m31m43 − m41m33−)

− m12

(
∂m31

∂xi

m43 + m31

∂m43

∂xi

− ∂m41

∂xi

m33 − m41

∂m33

∂xi

)
+

+ ∂m14

∂xi

(m31m42 − m41m32) +

+ m14

(
∂m31

∂xi

m43 + m31

∂m43

∂xi

− ∂m41

∂xi

m32 − m41

∂m32

∂xi

)
(39)
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Additionally, it holds that

∂M24

∂xi

= ∂m11

∂xi

(m32m43 − m42m33) +

+ m11

(
∂m32

∂xi

m43 + m32

∂m43

∂xi

− ∂m42

∂xi

m33 − m42

∂m33

∂xi

)
−

− ∂m12

∂xi

(m31m43 − m41m33−)

− m12

(
∂m31

∂xi

m43 + m31

∂m43

∂xi

− ∂m41

∂xi

m33 − m41

∂m33

∂xi

)
+

+ ∂m13

∂xi

(m31m42 − m41m22) +

+ m13

(
∂m31

∂xi

m42 + m31

∂m42

∂xi

− ∂m41

∂xi

m22 − m41

∂m22

∂xi

)
(40)

In this context, one obtains

∂M31

∂xi

= ∂m12

∂xi

(m23m44 − m43m24) +

+ m12

(
∂m23

∂xi

m44 + m23

∂m44

∂xi

− ∂m43

∂xi

m24 − m43

∂m24

∂xi

)
−

− ∂m13

∂xi

(m22m44 − m42m24−)

− m13

(
∂m22

∂xi

m44 + m22

∂m44

∂xi

− ∂m42

∂xi

m24 − m42

∂m24

∂xi

)
+

+ ∂m14

∂xi

(m22m43 − m42m23) +

+ m14

(
∂m32

∂xi

m43 + m22

∂m43

∂xi

− ∂m42

∂xi

m23 − m42

∂m23

∂xi

)
(41)

Additionally, one has

∂M32

∂xi

= ∂m11

∂xi

(m23m44 − m42m24) +

+ m11

(
∂m23

∂xi

m44 + m23

∂m44

∂xi

− ∂m42

∂xi

m24 − m42

∂m24

∂xi

)
−

− ∂m13

∂xi

(m12m44 − m41m24−)

− m13

(
∂m12

∂xi

m44 + m12

∂m44

∂xi

− ∂m41

∂xi

m24 − m41

∂m24

∂xi

)
+

+ ∂m14

∂xi

(m12m43 − m41m23) +

+ m14

(
∂m12

∂xi

m43 + m12

∂m43

∂xi

− ∂m41

∂xi

m23 − m41

∂m23

∂xi

)
(42)

https://doi.org/10.1017/S0263574723000450 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000450


Robotica 2411

Furthermore, one has

∂M33

∂xi

= ∂m11

∂xi

(m22m44 − m42m24) +

+ m11

(
∂m22

∂xi

m44 + m22

∂m44

∂xi

− ∂m42

∂xi

m24 − m42

∂m24

∂xi

)
−

− ∂m12

∂xi

(m21m44 − m41m24−)

− m12

(
∂m21

∂xi

m44 + m21

∂m44

∂xi

− ∂m41

∂xi

m24 − m41

∂m24

∂xi

)
+

+ ∂m14

∂xi

(m41m22 − m21m42) +

+ m14

(
∂m41

∂xi

m22 + m41

∂m22

∂xi

− ∂m21

∂xi

m42 − m21

∂m42

∂xi

)
(43)

Continuing in this manner, one gets

∂M34

∂xi

= ∂m11

∂xi

(m22m43 − m42m23) +

+ m11

(
∂m22

∂xi

m43 + m22

∂m43

∂xi

− ∂m42

∂xi

m23 − m42

∂m23

∂xi

)
−

− ∂m12

∂xi

(m21m43 − m41m23−)

− m12

(
∂m21

∂xi

m43 + m21

∂m43

∂xi

− ∂m41

∂xi

m23 − m41

∂m23

∂xi

)
+

+ ∂m13

∂xi

(m21m42 − m41m22) +

+ m13

(
∂m22

∂xi

m42 + m22

∂m42

∂xi

− ∂m41

∂xi

m22 − m41

∂m22

∂xi

)
(44)

Besides, one has

∂M41

∂xi

= ∂m12

∂xi

(m22m34 − m33m24) +

+ m12

(
∂m22

∂xi

m34 + m22

∂m34

∂xi

− ∂m33

∂xi

m24 − m33

∂m24

∂xi

)
−

− ∂m13

∂xi

(m23m34 − m32m23−)

− m13

(
∂m22

∂xi

m34 + m22

∂m34

∂xi

− ∂m32

∂xi

m23 − m32

∂m23

∂xi

)
+

+ ∂m14

∂xi

(m22m33 − m32m23) +

+ m14

(
∂m22

∂xi

m33 + m22

∂m33

∂xi

− ∂m32

∂xi

m23 − m32

∂m23

∂xi

)
(45)
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Equivalently, one obtains

∂M42

∂xi

= ∂m11

∂xi

(m32m43 − m33m42) +

+ m11

(
∂m32

∂xi

m43 + m32

∂m42

∂xi

− ∂m33

∂xi

m42 − m33

∂m42

∂xi

)
−

− ∂m31

∂xi

(m12m43 − m13m42−)

− m31

(
∂m12

∂xi

m43 + m12

∂m43

∂xi

− ∂m13

∂xi

m42 − m13

∂m42

∂xi

)
+

+ ∂m41

∂xi

(m12m33 − m13m32) +

+ m41

(
∂m12

∂xi

m33 + m12

∂m33

∂xi

− ∂m13

∂xi

m32 − m13

∂m32

∂xi

)
(46)

In a similar manner, one gets

∂M43

∂xi

= ∂m11

∂xi

(m22m34 − m32m24) +

+ m11

(
∂m22

∂xi

m34 + m22

∂m34

∂xi

− ∂m32

∂xi

m24 − m32

∂m24

∂xi

)
−

− ∂m12

∂xi

(m21m34 − m31m24−)

− m12

(
∂m21

∂xi

m34 + m21

∂m34

∂xi

− ∂m31

∂xi

m24 − m31

∂m24

∂xi

)
+

+ ∂m14

∂xi

(m21m32 − m31m22) +

+ m14

(
∂m21

∂xi

m32 + m21

∂m32

∂xi

− ∂m31

∂xi

m22 − m31

∂m22

∂xi

)
(47)

Finally, one has that

∂M44

∂xi

= ∂m22

∂xi

(m22m33 − m32m23) +

+ m11

(
∂m22

∂xi

m33 + m22

∂m33

∂xi

− ∂m32

∂xi

m23 − m32

∂m23

∂xi

)
−

− ∂m12

∂xi

(m22m33 − m31m23−)

− m12

(
∂m22

∂xi

m33 + m23

∂m33

∂xi

− ∂m31

∂xi

m23 − m31

∂m23

∂xi

)
+

+ ∂m13

∂xi

(m21m32 − m31m22) +

+ m13

(
∂m21

∂xi

m32 + m21

∂m32

∂xi

− ∂m31

∂xi

m22 − m31

∂m22

∂xi

)
(48)

https://doi.org/10.1017/S0263574723000450 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000450


Robotica 2413

About the partial derivatives of the determinant detM one has for i = 1, 2, · · · , 8

∂detM
∂xi

= ∂m11

∂xi

M11 + m11

∂M11

∂xi

− ∂m12

∂xi

M12 − m12

∂M12

∂xi

+

+ ∂m13

∂xi

M13 + m13

∂M13

∂xi

− ∂m14

∂xi

M14 − m14

∂M14

∂xi

(49)

Next, the derivatives of the elements of the inertia matrix M are computed.

It holds that m11 = p1 + p2cos(x3). Thus one has:
∂m11

∂x1

= 0,
∂m11

∂x2

= 0,
∂m11

∂x3

= −p2sin(x3),
∂m11

∂x4

= 0,
∂m11

∂x5

= 0,
∂m11

∂x6

= 0,
∂m11

∂x7

= 0,
∂m11

∂x8

= 0.

Besides, it holds that m12 = m21 = p3 + 0.5p2sin(x3)x4, thus
∂m12

∂x1

= ∂m21

∂x1

= 0,
∂m12

∂x2

= ∂m21

∂x2

= 0,
∂m12

∂x3

= ∂m21

∂x3

= 0.5p2cos(x3)x4,
∂m12

∂x4

= ∂m21

∂x4

= 0.5p2sin(x3),
∂m12

∂x5

= ∂m21

∂x5

= 0,
∂m12

∂x6

= ∂m21

∂x6

= 0,
∂m12

∂x7

= ∂m21

∂x7

= 0,
∂m12

∂x8

= ∂m21

∂x8

= 0.

Moreover, it holds that m13 = m31 = 0, thus
∂m13

∂x1

= ∂m31

∂x1

= 0,
∂m13

∂x2

= ∂m31

∂x2

= 0,
∂m13

∂x3

= ∂m31

∂x3

= 0,
∂m13

∂x4

= ∂m31

∂x4

= 0,
∂m13

∂x5

= ∂m31

∂x5

= 0,
∂m13

∂x6

= ∂m31

∂x6

= 0,
∂m13

∂x7

= ∂m31

∂x7

= 0,
∂m13

∂x8

= ∂m31

∂x8

= 0.

Additionally, it holds that m14 = m41 = −p5, thus
∂m14

∂x1

= ∂m41

∂xi

= 0
∂m14

∂x2

= ∂m41

∂x2

= 0,
∂m14

∂x3

=
∂m41

∂x3

= 0,
∂m14

∂x5

= ∂m41

∂x5

= 0,
∂m14

∂x6

= ∂m41

∂x6

= 0,
∂m14

∂x7

= ∂m41

∂x7

= 0,
∂m14

∂x8

= ∂m41

∂x8

= 0

Moreover, it holds that m22 = p2, thus
∂m22

∂x1

= 0,
∂m22

∂x2

= 0,
∂m22

∂x3

= 0,
∂m22

∂x4

= 0,
∂m22

∂x5

= 0,
∂m22

∂x6

= 0,
∂m22

∂x7

= 0,
∂m22

∂x8

= 0

Furthermore, it holds that m23 = m32 = 0, thus
∂m23

∂x1

= ∂m23

∂x1

= ∂m23

∂x2

= ∂m32

∂x2

= 0,
∂m23

∂x3

= ∂m32

∂x3

= 0,
∂m23

∂x4

= ∂m32

∂x4

= 0,
∂m23

∂x5

= ∂m32

∂x5

= 0,
∂m23

∂x6

= ∂m32

∂x6

= 0,
∂m23

∂x7

= ∂m32

∂x7

= 0,
∂m23

∂x8

= ∂m32

∂x8

= 0.

Besides, it holds that m24 = m42 = −p5, thus
∂m24

∂x1

= ∂m42

∂x1

= ∂m24

∂x2

= ∂m42

∂x2

= 0,
∂m24

∂x3

= ∂m42

∂x3

= 0,
∂m24

∂x4

= ∂m42

∂x4

= 0,
∂m24

∂x5

= ∂m42

∂x5

= 0,
∂m24

∂x6

= ∂m42

∂x6

= 0,
∂m24

∂x7

= ∂m42

∂x7

= 0,
∂m24

∂x8

= ∂m42

∂x8

= 0.

Moreover, it holds that m33 = p4, thus
∂m33

∂x1

= 0,
∂m33

∂x2

= 0,
∂m33

∂x3

= 0,
∂m33

∂x4

= 0,
∂m33

∂x5

= 0,
∂m33

∂x6

= 0,
∂m33

∂x7

= 0,
∂m33

∂x8

= 0

Additionally, it holds that m34 = m43 =, thus
∂m34

∂x1

= ∂m43

∂x1

=,
∂m34

∂x2

= ∂m43

∂x2

=,
∂m34

∂x3

= ∂m43

∂x3

=,
∂m34

∂x4

= ∂m43

∂x4

=,
∂m34

∂x5

= ∂m43

∂x5

=,
∂m34

∂x6

= ∂m43

∂x6

=,
∂m34

∂x7

= ∂m43

∂x7

=,.
∂m34

∂x8

= ∂m43

∂x8

=.

Finally, it holds that m44 = p5, thus
∂m44

∂x1

= 0,
∂m44

∂x2

= 0,
∂m44

∂x3

= 0,
∂m44

∂x4

= 0,
∂m44

∂x5

= 0,
∂m44

∂x6

= 0,
∂m44

∂x7

= 0,.
∂m44

∂x8

= 0.
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Finally, about the computation of the partial derivatives of the Coriolis forces vector one has

C(x, ẋ)ẋ =

⎛
⎜⎜⎜⎜⎝

c11x2 + c12x4 + c13x6 + c14x8

c21x2 + c22x4 + c23x6 + c24x8

c31x2 + c22x4 + c23x6 + c24x8

c41x2 + c42x4 + c43x6 + c44x8

⎞
⎟⎟⎟⎟⎠ (50)

It holds that for i = 1.3, 5, 7

∂c1

∂xi

= ∂c11

∂xi

x2 + ∂c12

∂xi

x4 + ∂c13

∂xi

x6 + ∂c14

∂xi

x8 (51)

and also
∂c1

∂x2

= ∂c11

∂x2

x2 + c11 + ∂c12

∂x2

x4 + ∂c13

∂x2

x6 + ∂c14

∂x2

x8 (52)

∂c1

∂x4

= ∂c11

∂x4

x2 + ∂c12

∂x4

x4 + c12 + ∂c13

∂x4

x6 + ∂c14

∂x4

x8 (53)

∂c1

∂x6

= ∂c11

∂x6

x2 + ∂c12

∂x6

x4 + ∂c13

∂x6

x6 + c13 + ∂c14

∂x6

x8 (54)

∂c1

∂x8

= ∂c11

∂x8

x2 + ∂c12

∂x8

x4 + ∂c13

∂x8

x6 + ∂c14

∂x8

x8 + c14 (55)

Equivalently, it holds that for i = 1.3, 5, 7

∂c2

∂xi

= ∂c21

∂xi

x2 + ∂c22

∂xi

x4 + ∂c23

∂xi

x6 + ∂c24

∂xi

x8 (56)

and also
∂c2

∂x2

= ∂c21

∂x2

x2 + c21 + ∂c22

∂x2

x4 + ∂c23

∂x2

x6 + ∂c24

∂x2

x8 (57)

∂c2

∂x4

= ∂c21

∂x4

x2 + ∂c22

∂x4

x4 + c22 + ∂c23

∂x4

x6 + ∂c24

∂x4

x8 (58)

∂c2

∂x6

= ∂c1

∂x6

x2 + ∂c22

∂x6

x4 + ∂c23

∂x6

x6 + c23 + ∂c24

∂x6

x8 (59)

∂c2

∂x8

= ∂c21

∂x8

x2 + ∂c22

∂x8

x4 + ∂c23

∂x8

x6 + ∂c24

∂x8

x8 + c24 (60)

Similarly, it holds that for i = 1.3, 5, 7

∂c3

∂xi

= ∂c31

∂xi

x2 + ∂c32

∂xi

x4 + ∂c33

∂xi

x6 + ∂c34

∂xi

x8 (61)

and also
∂c3

∂x2

= ∂c31

∂x2

x2 + c31 + ∂c32

∂x2

x4 + ∂c33

∂x2

x6 + ∂c34

∂x2

x8 (62)

∂c3

∂x4

= ∂c31

∂x4

x2 + ∂c32

∂x4

x4 + c32 + ∂c33

∂x4

x6 + ∂c34

∂x4

x8 (63)
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∂c3

∂x6

= ∂c3

∂x6

x2 + ∂c32

∂x6

x4 + ∂c33

∂x6

x6 + c33 + ∂c34

∂x6

x8 (64)

∂c3

∂x8

= ∂c31

∂x8

x2 + ∂c32

∂x8

x4 + ∂c33

∂x8

x6 + ∂c34

∂x8

x8 + c34 (65)

Finally, it holds that for i = 1.3, 5, 7

∂c4

∂xi

= ∂c41

∂xi

x2 + ∂c42

∂xi

x4 + ∂c43

∂xi

x6 + ∂c44

∂xi

x8 (66)

and also
∂c4

∂x2

= ∂c41

∂x2

x2 + c41 + ∂c42

∂x2

x4 + ∂c43

∂x2

x6 + ∂c44

∂x2

x8 (67)

∂c4

∂x4

= ∂c41

∂x4

x2 + ∂c42

∂x4

x4 + c42 + ∂c43

∂x4

x6 + ∂c44

∂x4

x8 (68)

∂c4

∂x6

= ∂c4

∂x6

x2 + ∂c42

∂x6

x4 + ∂c43

∂x6

x6 + c43 + ∂c44

∂x6

x8 (69)

∂c4

∂x8

= ∂c41

∂x8

x2 + ∂c42

∂x8

x4 + ∂c43

∂x8

x6 + ∂c44

∂x8

x8 + c44 (70)

Next, the following partial derivatives of the elements cij i = 1, 2, 3, 4 and j = 1, 2, 3, 4 of the Coriolis
matrix are computed.

It holds c11 = −p2sin(x1)x4, thus one has that:
∂c11

∂x1

= −p2cos(x1)x4,
∂c11

∂x2

= 0,
∂c11

∂x3

= 0,
∂c11

∂x4

=

−o2sin(x1),
∂c11

∂x5

= 0,
∂c11

∂x6

= 0,
∂c11

∂x7

= 0,
∂c11

∂x8

= 0.

Additionally, it holds that c12 = −0.5p2sin(x3)x4, thus
∂c12

∂x1

= 0,
∂c11

∂x2

= 0,
∂c12

∂x3

= −0.5p2cos(x3)x4,
∂c12

∂x4

= −0.5p2sin(x3),
∂c12

∂x5

= 0,
∂c12

∂x6

= 0,
∂c12

∂x7

= 0,
∂c11

∂x8

= 0.

Moreover, it holds that c13 = 0; thus, one obtains:
∂c13

∂xi

= 0, for i = 1, 2, · · · , 8

Additionally, it holds that c14 = 0; thus, one obtains:
∂c14

∂xi

=, for i = 1, · · · , 8

Additionally, it holds that c21 = 0.5p2sin(x3)x2, thus, one obtains:
∂c21

∂x1

= 0,
∂c21

∂x2

= 0.5p2sin(x3),
∂c21

∂x3

=

0.5p2cos(x3)x2,
∂c21

∂x4

= 0,
∂c21

∂x5

= 0,
∂c21

∂x6

= 0,
∂c21

∂x7

= 0,
∂c21

∂x8

= 0.

Additionally, it holds that c22 = 0; thus, one obtains:
∂c22

∂xi

=, for i = 1, 2, · · · , 8

Moreover, it holds that c23 = 0; thus, one obtains:
∂c23

∂xi

= 0 for i = 1, 2, · · · , 8.

Furthermore, it holds that c24 = 0; thus, one obtains
∂c24

∂xi

= 0 for i = 1, 2, · · · , 8

Additionally, one has that c31 = 0; thus, one obtains:
∂c31

∂xi

=, for i = 1, 2, · · · , 8

Furthermore, it holds c32 = 0; thus, one obtains:
∂c32

∂xi

=, for i = 1, 2, · · · , 8.
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Moreover, it holds that c33 = 0; thus, one obtains:
∂c33

∂x1

= 0, for i = 1, 2, · · · , 8

Additionally, it holds that c34 = 0; thus, one obtains:
∂c34

∂x1

= 0, for i = 1, 2, · · · , 8

Furthermore, one has that c41 = 0; thus, one obtains:
∂c41

∂xi

=, for i = 1, 2, · · · , 8

Moreover, it holds that c42 = 0; thus, one obtains:
∂c42

∂xi

=, for i = 1, 2, · · · , 8

Furthermore, it holds that c43 = 0; thus, one obtains:
∂c43

∂xi

=, for i = 1, 2, · · · , 8.

Finally, it holds that c44 = 0. Thus, one obtains
∂c44

∂xi

= 0, for i = 1, · · · , 8.
In a similar manner, one computes the partial derivatives of the elements of the gravitational forces

matrix. It holds that g1 = 0; thus, one obtains
∂g1

∂xi

= 0, for i = 1, · · · , 8.

Additionally, it holds that g2 = 0; thus, one obtains
∂g2

∂xi

= 0, for i = 1, · · · , 8.

Moreover, it holds that g3 = p4ḡ; thus, one obtains
∂g3

∂xi

= 0, for i = 1, 2, · · · , 8.

Finally, it holds that g4 = 0; thus, one obtains
∂g4

∂xi

= 0, for i = 1, 2, · · · , 8.

In a similar manner, one computes the partial derivatives of the elements of the disturbances vector d̃.

It holds that d1 = b1x2; thus, one obtains
∂d1

∂xi

= 0, for i = 1, · · · , 8 and i �= 2, while
∂d1

∂x2

= b1.

Additionally, it holds that d2 = b2x4; thus, one obtains
∂d2

∂xi

= 0, for i = 1, · · · , 8 and i �= 4, while
∂d2

∂x4

=
b2.
Moreover, it holds that d3 = b3x6; thus, one obtains

∂d3

∂xi

= 0, for i = 1, · · · , 8 and i �= 6, while
∂d3

∂x6

= b3.

Finally, it holds that d4 = b4x8; thus, one obtains
∂d4

∂xi

= 0, for i = 1, · · · , 8 and i �= 8, while
∂d4

∂x8

= b4.

4. Design of an H-infinity nonlinear feedback controller
4.1. Equivalent linearized dynamics of the 4-DOF SCARA robot
After linearization around its current operating point, the dynamic model for the 4-DOF SCARA robot
is written as

ẋ = Ax + Bu + d1 (71)

Parameter d1 stands for the linearization error in the 4-DOF SCARA robot’s model that was given
previously in Eq. (15). The reference setpoints for the state vector of the aforementioned dynamic model
are denoted by xd = [xd

1, · · · , xd
8]. Tracking of this trajectory is achieved after applying the control input

u∗. At every time instant, the control input u∗ is assumed to differ from the control input u appearing in
Eq. (71) by an amount equal to �u, that is, u∗ = u + �u

ẋd = Axd + Bu∗ + d2 (72)

The dynamics of the controlled system described in Eq. (71) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (73)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (74)
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By subtracting Eq. (72) from Eq. (74), one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (75)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as d̃ = d3 − d2, the
tracking error dynamics becomes

ė = Ae + Bu + d̃ (76)

The above linearized form of the 4-DOF SCARA robot’s model can be efficiently controlled after
applying an H-infinity feedback control scheme.

4.2. The nonlinear H-infinity control
The initial nonlinear model of the 4-DOF SCARA robot is in the form

ẋ = f (x, u) x ∈ Rn, u ∈ Rm (77)

Linearization of the model of the 4-DOF SCARA robot is performed at each iteration of the control
algorithm around its present operating point (x∗, u∗) = (x(t), u(t − Ts)). The linearized equivalent of the
system is described by

ẋ = Ax + Bu + Ld̃ x ∈ Rn, u ∈ Rm, d̃ ∈ Rq (78)

where matrices A and B are obtained from the computation of the previously defined Jacobians and
vector d̃ denotes disturbance terms due to linearization errors. The problem of disturbance rejection for
the linearized model that is described by

ẋ = Ax + Bu + Ld̃ (79)

y = Cx

where x ∈ Rn, u ∈ Rm, d̃ ∈ Rq, and y ∈ Rp, cannot be handled efficiently if the classical linear quadratic
regulator control scheme is applied. This is because of the existence of the perturbation term d̃. The
disturbance term d̃ apart from modeling (parametric) uncertainty and external perturbation terms can
also represent noise terms of any distribution.

In the H∞ control approach, a feedback control scheme is designed for trajectory tracking by the
system’s state vector and simultaneous disturbance rejection, considering that the disturbance affects
the system in the worst possible manner. The disturbances’ effects are incorporated in the following
quadratic cost function:

J(t) = 1

2

∫ T

0

[yT(t)y(t) + ruT(t)u(t) − ρ2d̃T(t)d̃(t)]dt, r, ρ > 0 (80)

The significance of the negative sign in the cost function’s term that is associated with the perturbation
variable d̃(t) is that the disturbance tries to maximize the cost function J(t) while the control signal
u(t) tries to minimize it. The physical meaning of the relation given above is that the control signal and
the disturbances compete to each other within a min-max differential game. This problem of min-max
optimization can be written as minumaxd̃J(u, d̃).

The objective of the optimization procedure is to compute a control signal u(t) which can compensate
for the worst possible disturbance, that is, externally imposed to the 4-DOF SCARA robot. However,
the solution to the min-max optimization problem is directly related to the value of parameter ρ. This
means that there is an upper bound in the disturbances magnitude that can be annihilated by the control
signal.
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Figure 2. Diagram of the control scheme for the 4-DOF SCARA robotic manipulator.

4.3. Computation of the feedback control gains
For the linearized system given by Eq. (79), the cost function of Eq. (80) is defined, where the coefficient
r determines the penalization of the control input and the weight coefficient ρ determines the reward
of the disturbances’ effects. It is assumed that (i) the energy that is transferred from the disturbances
signal d̃(t) is bounded, that is,

∫ ∞
0

d̃T(t)d̃(t)dt < ∞, (ii) matrices [A, B] and [A, L] are stabilizable, and
(iii) matrix [A, C] is detectable. In the case of a tracking problem, the optimal feedback control law is
given by

u(t) = −Ke(t) (81)

with e = x − xd to be the tracking error, and K = 1

r
BTP where P is a positive definite symmetric matrix.

As it will be proven in Section 5, matrix P is obtained from the solution of the Riccati equation

ATP + PA + Q − P

(
2

r
BBT − 1

ρ2
LLT

)
P = 0 (82)

where Q is a positive semi-definite symmetric matrix. The worst case disturbance is given by

d̃(t) = 1

ρ2
LTPe(t) (83)

The solution of the H-infinity feedback control problem for the 4-DOF SCARA robot and the compu-
tation of the worst case disturbance that the related controller can sustain come from superposition of
Bellman’s optimality principle when considering that the robot is affected by two separate inputs: (i) the
control input u and (ii) the cumulative disturbance input d̃(t). Solving the optimal control problem for u,
that is, for the minimum variation (optimal) control input that achieves elimination of the state vector’s

tracking error, gives u = −1

r
BTPe. Equivalently, solving the optimal control problem for d̃, that is, for

the worst case disturbance that the control loop can sustain gives d̃ = 1

ρ2
LTPe.

The diagram of the considered control loop for the 4-DOF SCARA robot is depicted in Fig. 2.
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5. Lyapunov stability analysis
5.1. Stability proof
Through Lyapunov stability analysis, it will be shown that the proposed nonlinear control scheme assures
H∞ tracking performance for the 4-DOF SCARA robot, and that in case of bounded disturbance terms
asymptotic convergence to the reference setpoints is achieved. The tracking error dynamics for the 4-
DOF SCARA robot is written in the form

ė = Ae + Bu + Ld̃ (84)

where in the 4-DOF SCARA robot’s case L = ∈ R8×8 is the disturbance inputs gain matrix. Variable
d̃ denotes model uncertainties and external disturbances of the 4-DOF SCARA robot’s model. The
following Lyapunov equation is considered:

V = 1

2
eTPe (85)

where e = x − xd is the tracking error. By differentiating with respect to time, one obtains

V̇ = 1

2
ėTPe + 1

2
eTPė⇒V̇ = 1

2
[Ae + Bu + Ld̃]TPe + 1

2
eTP[Ae + Bu + Ld̃]⇒ (86)

V̇ = 1

2
[eTAT + uTBT + d̃TLT]Pe + 1

2
eTP[Ae + Bu + Ld̃]⇒ (87)

V̇ = 1

2
eTATPe + 1

2
uTBTPe + 1

2
d̃TLTPe + 1

2
eTPAe + 1

2
eTPBu + 1

2
eTPLd̃ (88)

The previous equation is rewritten as

V̇ = 1

2
eT(ATP + PA)e + (

1

2
uTBTPe + 1

2
eTPBu) + (

1

2
d̃TLTPe + 1

2
eTPLd̃) (89)

Assumption: For given positive definite matrix Q and coefficients r and ρ, there exists a positive definite
matrix P, which is the solution of the following matrix equation:

ATP + PA = −Q + P(
2

r
BBT − 1

ρ2
LLT)P (90)

Moreover, the following feedback control law is applied to the system

u = −1

r
BTPe (91)

By substituting Eqs. (90) and (91), one obtains

V̇ = 1

2
eT[ − Q + P(

2

r
BBT − 1

ρ2
LLT)P]e + eTPB( − 1

r
BTPe) + eTPLd̃⇒ (92)

V̇ = −1

2
eTQe + 1

r
eTPBBTPe − 1

2ρ2
eTPLLTPe

− 1

r
eTPBBTPe + eTPLd̃ (93)

which after intermediate operations gives

V̇ = −1

2
eTQe − 1

2ρ2
eTPLLTPe + eTPLd̃ (94)

or, equivalently

V̇ = −1

2
eTQe − 1

2ρ2
eTPLLTPe + 1

2
eTPLd̃ + 1

2
d̃TLTPe (95)
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Lemma: The following inequality holds:
1

2
eTLd̃ + 1

2
d̃LTPe − 1

2ρ2
eTPLLTPe≤1

2
ρ2d̃T d̃ (96)

Proof : The binomial (ρα − 1

ρ
b)2 is considered. Expanding the left part of the above inequality, one gets

ρ2a2 + 1

ρ2
b2 − 2ab ≥ 0 ⇒ 1

2
ρ2a2 + 1

2ρ2
b2 − ab ≥ 0 ⇒

ab − 1

2ρ2
b2 ≤ 1

2
ρ2a2 ⇒ 1

2
ab + 1

2
ab − 1

2ρ2
b2 ≤ 1

2
ρ2a2

(97)

The following substitutions are carried out: a = d̃ and b = eTPL and the previous relation becomes
1

2
d̃TLTPe + 1

2
eTPLd̃ − 1

2ρ2
eTPLLTPe≤1

2
ρ2d̃T d̃ (98)

Eq. (98) is substituted in Eq. (95) and the inequality is enforced, thus giving

V̇≤ − 1

2
eTQe + 1

2
ρ2d̃T d̃ (99)

Eq. (99) shows that the H∞ tracking performance criterion is satisfied. The integration of V̇ from 0 to T
gives ∫ T

0

V̇(t)dt≤ − 1

2

∫ T

0

||e||2
Qdt + 1

2
ρ2

∫ T

0

||d̃||2dt⇒

2V(T) +
∫ T

0

||e||2
Qdt≤2V(0) + ρ2

∫ T

0

||d̃||2dt

(100)

Moreover, if there exists a positive constant Md > 0 such that∫ ∞

0

||d̃||2dt ≤ Md (101)

then one gets ∫ ∞

0

||e||2
Qdt ≤ 2V(0) + ρ2Md (102)

Thus, the integral
∫ ∞

0
||e||2

Qdt is bounded. Moreover, V(T) is bounded and from the definition of the
Lyapunov function V in Eq. (85) it becomes clear that e(t) will be also bounded since e(t) ∈ 	e =
{e|eTPe≤2V(0) + ρ2Md}. According to the above and with the use of Barbalat’s lemma, one obtains
limt→∞ e(t) = 0.

After following the stages of the stability proof one arrives at Eq. (99) which shows that the H-infinity
tracking performance criterion holds. By selecting the attenuation coefficient ρ to be sufficiently small
and in particular to satisfy ρ2 < ||e||2

Q/||d̃||2, one has that the first derivative of the Lyapunov function is
upper bounded by 0. This condition holds at each sampling instance and consequently global stability
for the control loop can be concluded.

5.2. Robust state estimation with the use of the H∞ Kalman filter
The control loop has to be implemented with the use of information provided by a small number of sen-
sors and by processing only a small number of state variables. To reconstruct the missing information
about the state vector of the 4-DOF SCARA robot it is proposed to use a filtering scheme and based on it
to apply state estimation-based control [1, 41]. By denoting as A(k), B(k), C(k) the discrete-time equiv-
alents of matrices A, B, C which constitute the linearized state-space model of Eq. (15), the recursion of
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the H∞ Kalman Filter, for the model of the SCARA robot, can be formulated in terms of a measurement
update and a time update part.
Measurement update:

D(k) = [I − θW(k)P−(k) + CT(k)R(k)−1C(k)P−(k)]−1

K(k) = P−(k)D(k)CT(k)R(k)−1

x̂(k) = x̂−(k) + K(k)[y(k) − Cx̂−(k)] (103)

Time update:

x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT(k) + Q(k) (104)

where it is assumed that parameter θ is sufficiently small to assure that the covariance matrix P−(k)−1 −
θW(k) + CT(k)R(k)−1C(k) will be positive definite. When θ = 0, the H∞ Kalman filter becomes equiva-
lent to the standard Kalman filter. One can measure only a part of the state vector of the SCARA robot,
for instance state variables x1, x3, x5, and x7 and can estimate through filtering the rest of the state vector
elements (x2, x4, x6, and x8). Moreover, the proposed Kalman filtering method can be used for sensor
fusion purposes.

6. Flatness-based control in successive loops for the 4-DOF SCARA robotic manipulator
6.1. Differential flatness properties of the 4-DOF SCARA robot
The dynamic model of the 4-DOF SCARA robot is differentially flat. The flat outputs vector of the
system is Y = [y1, y2, y3, y4]T = [x1, x3, x5, x7]T . Differential flatness is associated with the following two
conditions: (i) all state variables of the system can be expressed as differential functions of its flat outputs
and (ii) the flat outputs and their derivatives are differentially independent which signifies that they are
not connected through a relation in the form of a linear homogeneous differential equation [1, 41].

Obviously, it holds that x2 = ẋ1, x4 = ẋ3, x6 = ẋ5, and x8 = ẋ7. This signifies that state variables x2, x4,
x6, and x8 are differential functions of the system’s flat outputs. Besides, using that⎛

⎜⎜⎜⎜⎝

ẍ1

ẍ3

ẍ5

ẍ7

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

f2(x)

f4(x)

f6(x)

f8(x)

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

g11(x) g21(x) g31(x) g41(x)

g12(x) g22(x) g32(x) g42(x)

g13(x) g23(x) g33(x) g43(x)

g14(x) g24(x) g34(x) g44(x)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

τ1

τ2

τ3

τ4

⎞
⎟⎟⎟⎟⎠ (105)

and by solving with respect to the control inputs one obtains
⎛
⎜⎜⎜⎜⎝

τ1

τ2

τ3

τ4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

g11(x) g21(x) g31(x) g41(x)

g12(x) g22(x) g32(x) g42(x)

g13(x) g23(x) g33(x) g43(x)

g14(x) g24(x) g34(x) g44(x)

⎞
⎟⎟⎟⎟⎠

−1 ⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

ẍ1

ẍ3

ẍ5

ẍ7

⎞
⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎝

f2(x)

f4(x)

f6(x)

f8(x)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ (106)

The above relation signifies that the control inputs τ1, τ2, τ3, and τ4 are also differential functions of the
flat outputs of the system. Consequently, the 4-DOF SCARA robot is differentially flat. The differential
flatness property means also [1, 42] that (i) the robotic model is input–output linearizable and (ii) set-
points for all state variables of the robot can be defined. Actually one selects first setpoints for the state
variables which coincide with the flat outputs xd

1, xd
3, xd

5, and xd
7, and next defines setpoints for the rest

of the state variables xd
2, xd

4, xd
6, and xd

8 which are associated with the flat outputs through the previously
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explained differential relations. The differential flatness property is also an implicit proof of the system’s
controllability.

6.2. Flatness-based control in successive loops for the SCARA robot
The state-space model for the SCARA robot that was previously defined in Eq. (12) and in Eq. (13)
is used again and the new state vector is defined as z = [z1, z2, z3, z4, z5, z6, z7, z8]T where z1 = x1, z2 =
x3, z3 = x5, z4 = x7, z5 = x2, z6 = x4, z7 = x6, and z8 = x8. Using the new notation for the robot’s state
variables, the associated state-space model becomes⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż1

ż2

ż3

ż4

ż5

ż6

ż7

ż8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z5

z6

z7

z8

f2(z)

f4(z)

f6(z)

f8(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

g21(z) g22(z) g23(z) g24(z)

g41(z) g42(z) g43(z) g44(z)

g61(z) g62(z) g63(z) g64(z)

g81(z) g82(z) g83(z) g84(z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

u1

u2

u3

u4

⎞
⎟⎟⎟⎟⎠ (107)

Next, the following subvectors and submatrices are defined:
z1,4 = [z1, z2, z3, z4]

T f1,4 = 04×1 g1,4 = I4×4 (108)

z5,8 = [z5, z6, z7, z8]
T f5,8 = [f2(z), f4(z), f6(z), f8(z)]T g5,8 =

⎛
⎜⎜⎜⎜⎝

g21(z) g22(z) g23(z) g24(z)

g41(z) g42(z) g43(z) g44(z)

g61(z) g62(z) g63(z) g64(z)

g81(z) g82(z) g83(z) g84(z)

⎞
⎟⎟⎟⎟⎠ (109)

Thus, the state-space model of the SCARA robot can be decomposed into two subsystems
ż1,4 = f1,4(z1,4) + g1,4(z1,4)z5,8 (110)

ż5,8 = f5,8(z1,4, z5,8) + g5,8(z1,4, z5,8)u (111)
As it has already been proven, the dynamic model of the SCARA robot is a differentially flat system with
flat outputs vector y = z1,4. Indeed from Eq. (110), one solves for z5,8, giving z5,8 = ż1,4 which confirms
that z5,8 is a differential function of flat outputs vector y. Moreover, from Eq. (111) one solves for u which
gives u = g−1

5,8(z1,4, z5.8)[ż5,8 − f5,8(z1,4, z5,8)], thus confirming that z5,8 is also a differential function of the
flat outputs vector y. This completes again the proof of differential flatness properties for the 4-DOF
SCARA robot.

Next, it will be proven that each one of the subsystems of Eqs. (110) and (111), if viewed indepen-
dently, is also differentially flat. For the subsystem of Eq. (110), the flat output is taken to be y1 = z1,4

and the virtual control input is v1 = z5,8. It holds that
v1 = z5,8 = ż1,4⇒v1 = h1(y1, ẏ1) (112)

while f1,4(z1,4), g1,4(z1,4) have constant elements. Therefore, the subsystem of Eq. (110) is differentially
flat. Additionally, for Eq. (111) the flat outputs vector is taken to y2 = z5,8 and the real control input is u,
while z1,4 is viewed as a vector of coefficients. It holds that

u = g−1
5,8(z1,4, z5.8)[ż5,8 − f5,8(z1,4, z5,8)]

⇒u = h1(y2, ẏ2)
(113)
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Therefore, the subsystem of Eq. (111) is also differentially flat. Using the differential flatness property
for each one of the subsystems of Eqs. (110) and (111), one has that each subsystem is input–output
linearizable [42]. Thus, one can design a stabilizing feedback controller about them by inverting their
input–-output linearized description.

For the subsystem of Eq. (110) and using the virtual control input v1 = z5,8, the stabilizing feedback
controller is taken to be

v1 = zd
5,8 = g−1

1,4(z1,4)[ż
d
1,4 − f1,4(z1,4) − K1(z1,4 − zd

1,4)] (114)

where K1 ∈ R4×4 is a diagonal gain matrix with diagonal elements k1,ii > 0, i = 1, · · · , 4.
For the subsystem of Eq. (111) and using the real control input u, the stabilizing feedback controller

is taken to be

u = g−1
5,8(z1,4, z5,8)[ż

d
5,8 − f5,8(z1,4, z5,8) − K2(z5,8 − zd

5,8)] (115)

where K2 ∈ R4×4 is a diagonal gain matrix with diagonal elements k2,ii > 0, i = 1, · · · , 4. In the above
equations, zd

1,4 and zd
5,8 are setpoints for state vectors z1,4 and z5,8, respectively. Moreover, in Eq. (115) one

has that the virtual control input v1 of the subsystem of Eq. (110) becomes setpoint zd
5,8 for the subsystem

of Eq. (111).
By substituting the control input of Eq. (114) into the subsystem of Eq. (110), one obtains

ż1,4 = f1,4(z1,4) + g1,4(z1,4)·g−1
1,4(z1,4)[ż

d
1,4 − f1,4(z1,4) − K1(z1,4 − zd

1,4)]

⇒(ż1,4 − żd
1,4) + K1(z1,4 − zd

1,4) = 0
(116)

By substituting the control input of Eq. (115) into the subsystem of Eq. (111), one obtains

ż5,8 = f5,8(z1,4, z5,8) + g1,4(z1,4, z5.8)·g−1
1,4(z1,4, z5,8)[ż

d
5,8 − f5,8(z1,4, z5,8) − K2(z5,8 − zd

5,8)]

⇒(ż1,4 − żd
1,4) + K1(z1,4 − zd

1,4) = 0
(117)

By defining the tracking error variables e1,4 = z1,4 − zd
1,4, e5,8 = z5,8 − zd

5,8, one has the following tracking
error dynamics for the two subsystems:

ė1,4 + K1e1,4 = 0 ⇒ limt→∞e1,4 = 0⇒limt→∞z1,4 = zd
1,4 (118)

By substituting the control input of Eq. (115) into the subsystem of Eq. (111), one obtains

ė5,8 + K2e5,8 = 0⇒limt→∞e5,8 = 0⇒limt→∞z5,8 = zd
5,8 (119)

Thus, all state variables xi, i = 1, · · · , 8 of the 4-DOF SCARA robotic manipulator converge to the
associated setpoints.

A proof of the global stability properties of the proposed flatness-based control scheme in successive
loops can be also obtained through Lyapunov stability analysis. To this end, the following Lyapunov
function is defined:

V = 1

2
[eT

1,4e1,4 + eT
5,8e5,8] (120)

By differentiating in time, one has

V̇ = 1

2
[2eT

1,4ė1,4 + 2eT
5,8ė5,8]⇒V̇ = eT

1,4ė1,4 + eT
5,8ė5,8 (121)

Moreover from the equations about the tracking error dynamics of the two subsystems, given in Eqs.
(118) and (119), one has ė1,4 = −K1e1,4 and ė5,8 = −K2e5,8. Thus, it holds that
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Figure 3. Tracking of setpoint 1 for the SCARA robot under nonlinear optimal control (a) convergence
of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value), (b) convergence of state variables x5 to x8 to their reference setpoints.

V̇ = eT
1,4ė1,4 + eT

5,8ė5,8⇒V̇ = −eT
1,4K1e1,4 − eT

5,8K2e5,8

⇒V̇ < 0 ∀ e1,4 �= 0, e5,8 �= 0
(122)

while V̇ = 0 if and only if e1,4 = 0 and e5,8 = 0. Consequently, the Lyapunov function of the robotic
system converges asymptotically to 0 and finally one has again that limt→∞e1,4 = 0⇒limt→∞z1,4 = zd

1,4

and limt→∞e5,8 = 0⇒limt→∞z5,8 = zd
8,8.

7. Simulation tests
7.1. Results on nonlinear optimal control of the 4-DOF SCARA robot
The global stability properties of the control method and the elimination of the state vector’s tracking
error which were previously proven through Lyapunov analysis are further confirmed through simula-
tion experiments. The parameters of the model of the 4-DOF SCARA robot which have been used in the
simulation tests have been according to [2]. To compute the stabilizing feedback gains of the controller,
the algebraic Riccati equation of Eq. (90) had to be repetitively solved at each iteration of the control
algorithm. The obtained results are depicted in Figs. 3–18. The real values of the state variables of the
4-DOF SCARA robot are printed in blue, their estimates which are provided by the H-infinity Kalman
filter are printed in green color while the associated setpoints are printed in red. The performance of the
nonlinear optimal control method was very satisfactory. Actually, through all test cases it has been con-
firmed that the control method can achieve fast and accurate tracking of reference trajectories (setpoints)
under moderate variations of the control inputs. The simulation tests come to confirm that the control
method has global (and not local) stability properties. Under the nonlinear optimal control method, the
state variables of the SCARA robot can track precisely setpoints with fast and abrupt changes. Moreover,
the convergence to these setpoints is independent from initial conditions. The variations of the Lyapunov
function of the nonlinear optimal control method of the 4-DOF SCARA robotic manipulator are shown
in Figs. 19 and 20.
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Figure 4. Tracking of setpoint 1 for the SCARA robot under nonlinear optimal control (a) control inputs
u1, u2 applied to the robot and (b) tracking error variables e1, e3, e5, and e7 of the SCARA robot.
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Figure 5. Tracking of setpoint 2 for the SCARA robot under nonlinear optimal control (a) convergence
of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value) and (b) convergence of state variables x5 to x8 to their reference setpoints.
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Figure 6. Tracking of setpoint 2 for the SCARA robot under nonlinear optimal control (a) control inputs
u1, u2 applied to the robot and (b) tracking error variables e1, e3, e5, and e7 of the SCARA robot.
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Figure 7. Tracking of setpoint 3 for the SCARA robot under nonlinear optimal control (a) convergence
of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value), (b) convergence of state variables x5 to x8 to their reference setpoints.
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Figure 8. Tracking of setpoint 3 for the SCARA robot under nonlinear optimal control (a) control inputs
u1, u2 applied to the robot and (b) tracking error variables e1, e3, e5, and e7 of the SCARA robot.
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Figure 9. Tracking of setpoint 4 for the SCARA robot under nonlinear optimal control (a) convergence
of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value) and (b) convergence of state variables x5 to x8 to their reference setpoints.
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Figure 10. Tracking of setpoint 4 for the SCARA robot under nonlinear optimal control (a) control
inputs u1, u2 applied to the robot and (b) tracking error variables e1, e3, e5, and e7 of the SCARA robot.
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Figure 11. Tracking of setpoint 5 for the SCARA robot under nonlinear optimal control (a) convergence
of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value) and (b) convergence of state variables x5 to x8 to their reference setpoints.
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Figure 12. Tracking of setpoint 5 for the SCARA robot under nonlinear optimal control (a) control
inputs u1, u2 applied to the robot and (b) tracking error variables e1, e3, e5, and e7 of the SCARA robot.
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Figure 13. Tracking of setpoint 6 for the SCARA robot under nonlinear optimal control (a) convergence
of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value) and (b) convergence of state variables x5 to x8 to their reference setpoints.
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Figure 14. Tracking of setpoint 6 for the SCARA robot under nonlinear optimal control (a) control
inputs u1, u2 applied to the robot and (b) tracking error variables e1, e3, e5, and e7 of the SCARA robot.
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Figure 15. Tracking of setpoint 7 for the SCARA robot under nonlinear optimal control (a) convergence
of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value) and (b) convergence of state variables x5 to x8 to their reference setpoints.
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Figure 16. Tracking of setpoint 7 for the SCARA robot under nonlinear optimal control (a) control
inputs u1, u2 applied to the robot and (b) tracking error variables e1, e3, e5, and e7 of the SCARA robot.
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Figure 17. Tracking of setpoint 8 for the SCARA robot under nonlinear optimal control (a) convergence
of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value) and (b) convergence of state variables x5 to x8 to their reference setpoints.
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Figure 18. Tracking of setpoint 8 for the SCARA robot under nonlinear optimal control (a) control
inputs u1, u2 applied to the robot and (b) tracking error variables e1, e3, e5, and e7 of the SCARA robot.

Regarding the selection of values for the controller gains, it can be noted that parameters r, ρ, and Q
which appear in the method’s algebraic Riccati equations are assigned offline constant values, whereas
gains vector K is updated at each sampling instance, based on the positive definite and symmetric matrix
P which is the solution of the method’s algebraic Riccati equation. The tracking accuracy and the tran-
sient performance of the control scheme depend on the values of coefficients r, ρ and on the values of the
elements of the diagonal matrix Q. Actually, for relatively small values of r, one achieves elimination
of the state vectors’ tracking error one. Moreover, for relatively high values of the diagonal elements
of matrix Q, one achieves fast convergence of the state variables to reference trajectories. Finally, the
smallest value of the attenuation coefficient ρ that results into a valid solution of the method’s Riccati
equation in the form of the positive definite and symmetric matrix P, it the one that provides the control
loop with maximum robustness. Moreover, according to Parseval’s theorem the consumption of energy
by the actuators of the robot is proportional to the integral in time of the square of the associated control
inputs. This also gives a clear indicator on how the aggregate consumed power of the robot is distributed
to its actuators during the execution of several tasks.

Comparing to past attempts for solving the H-infinity control problem for nonlinear dynamical
systems, the article’s control approach is substantially different [37]. Preceding results on the use of
H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input sys-
tems with drift-only dynamics and considered that the control inputs gain matrix is not dependent on
the values of the system’s state vector. Moreover, in these approaches the linearization was performed
around points of the desirable trajectory whereas in the present article’s control method the linearization
points are related to the value of the state vector at each sampling instant as well as to the last sampled
value of the control inputs vector. The Riccati equation which has been proposed for computing the
feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov
analysis.

The proposed H-infinity (optimal) control method for the 4-DOF SCARA robot exhibits several
advantages when compared against other linear or nonlinear control schemes [37]. For instance, (i) in
contrast to global linearization-based control schemes (Lie algebra-based control and differential flat-
ness theory-based control) it does not need complicated changes of state variables (diffeomorphisms)
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Figure 19. Lyapunov functions for nonlinear optimal control of the 4-DOF SCARA robotic manipulator
when tracking setpoints 1–4.

and does not come against singularity problems in the computation of the control inputs, (ii) in con-
trast to sliding-mode control or to backstepping control the proposed nonlinear optimal control scheme
does not require the state-space model of the system to be in a specific form (e.g., triangular, canonical,
etc.), (iii) in contrast to proportional integral derivative control the proposed nonlinear optimal control
method is globally stable and functions well at changes of operating points, (iv) in contrast to multi-
model-based control and linearization around multiple operating points, the nonlinear optimal control
scheme requires linearization around one single operating point and thus it avoids the computational
burden for solving multiple Riccati equations or linear matrix inequalities, and (v) moreover, unlike the
popular computed torque method for robotic manipulators, the new control approach is characterized by
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Figure 20. Lyapunov functions for nonlinear optimal control of the 4-DOF SCARA robotic manipulator
when tracking setpoints 5–8.

optimality and is also applicable when the number of control inputs is not equal to the robot’s number
of DOFs.

To elaborate on the tracking performance and on the robustness of the proposed nonlinear optimal
control method for the SCARA robot, the following tables are given: (i) Table I which provides informa-
tion about the accuracy of tracking of the reference setpoints by the state variables of the SCARA robot’s
state-space model, (ii) Table II which provides information about the robustness of the control method
to parametric changes in the model of the SCARA robot’s dynamics (change �a% in the mass m2 of
the second link), (iii) Table III which provides information about the precision in state variables’ esti-
mation that is achieved by the H-infinity Kalman filter, (iv) Table IV which provides the approximate
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Table I. Nonlinear optimal control – Tracking RMSE ×10−3 for the SCARA robot in the
disturbance-free case.

RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6 RMSEx7 RMSEx8

test1 0.0009 0.0009 0.0008 0.0008 0.0001 0.0001 0.0017 0.0017
test2 0.0852 0.0875 0.0749 0.0788 0.0201 0.0494 0.0959 0.0955
test3 0.0289 0.0298 0.0865 0.0885 0.0547 0.1660 0.0228 0.0227
test4 0.8982 0.3706 0.0843 0.1459 0.9390 0.2377 0.0107 0.0174
test5 0.2994 0.2798 0.1588 0.2624 0.6638 0.7585 0.0027 0.0069
test6 0.3067 0.1814 0.5778 0.1789 0.3709 0.2655 0.0022 0.0148
test7 0.5771 0.2394 0.3309 0.1792 0.8170 0.6909 0.0050 0.0103
test8 0.4273 0.4844 0.2887 0.4649 0.2049 0.2183 0.0092 0.0056

Table II. Nonlinear optimal control – Tracking RMSE ×10−3 for the SCARA robot in the case
of disturbances.

�a% RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6 RMSEx7 RMSEx8

0% 0.0289 0.0298 0.0866 0.0885 0.0617 0.1660 0.0228 0.0227
10% 0.0288 0.0301 0.0870 0.0895 0.0646 0.1657 0.0228 0.0227
20% 0.0288 0.0301 0.0874 0.0901 0.0646 0.1657 0.0228 0.0226
30% 0.0287 0.0302 0.0877 0.0906 0.0646 0.1657 0.0227 0.0226
40% 0.0286 0.0302 0.0880 0.0912 0.0646 0.1657 0.0227 0.0226
50% 0.0295 0.0302 0.0883 0.0917 0.0646 0.1657 0.0227 0.0225
60% 0.0284 0.0303 0.0886 0.0921 0.0646 0.1657 0.0227 0.0225

Table III. Nonlinear optimal control – RMSE ·10−5 for the estimation performed by the H-
infinity KF.

RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6 RMSEx7 RMSEx8

test1 0.0001 0.0007 0.0001 0.0001 0.0001 0.0001 0.0001 0.0007
test2 0.0004 0.0736 0.0001 0.0045 0.0002 0.0369 0.0003 0.0591
test3 0.0002 0.0371 0.0001 0.0159 0.0007 0.1131 0.0001 0.0039
test4 0.0110 2.2850 0.0010 0.0820 0.0050 0.9320 0.0050 0.9030
test5 0.0110 2.2910 0.0010 0.2840 0.0060 0.2450 0.0030 0.6400
test6 0.0070 1.4090 0.0010 0.1470 0.0010 0.2960 0.0040 0.7460
test7 0.0170 3.4690 0.0020 0.4060 0.0070 0.1320 0.0070 0.1469
test8 0.0190 3.8890 0.0010 0.1870 0.0010 0.1880 0.0030 0.6540

convergence times of the SCARA robot’s state variables to the associated setpoints, and (v) Table V
which provides information about the % distribution of the total consumed power in the actuators of the
SCARA robot.

The proposed nonlinear optimal control method is of global (and not local) stability properties. This is
explicitly proven through Lyapunov stability analysis. The article’s Lyapunov stability proof makes use
of the tracking error dynamics of the initial nonlinear system. The computed control inputs are applied to
the initial nonlinear model of the 4-DOF SCARA robotic manipulator and not to its linear approximation.
It is ensured that the linearization error due to truncation of higher-order terms in the Taylor-series
expansion remains small because the linearization process is performed at each sampling period around
the present value of the SCARA robot’s state vector and not at a point on the desirable trajectory. By
taking the span between the linearization point and the system’s state vector at each sampling period to
be small, one concludes that the model which is obtained from linearization describes with precision
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Table IV. Nonlinear optimal control – Convergence time (sec) for the SCARA robot’s
state variables.

Ts x1 Ts x2 Ts x3 Ts x4 Ts x5 Ts x6 Ts x7 Ts x8

test1 3.5 3.0 4.5 3.5 3.5 3.6 3.5 3.0
test2 2.5 3.0 3.5 3.5 2.5 3.5 0.5 0.5
test3 3.0 3.0 3.5 3.5 3.0 2.0 3.5 3.5
test4 0.5 2.0 3.0 3.5 0.5 0.5 0.5 2.5
test5 2.5 3.0 3.0 2.5 1.0 2.0 3.5 3.5
test6 2.0 2.5 2.5 3.0 0.5 0.5 2.0 2.5
test7 2.5 2.5 1.0 1.5 2.5 3.5 2.5 2.5
test8 2.5 2.5 3.0 2.5 1.0 1.5 1.0 2.5

Table V. Nonlinear optimal control –- Distribution of power % in actuators.

P u1 P u2 P u3 P u4

test1 18.41 29.47 43.90 8.22
test2 12.86 32.74 48.14 6.26
test3 6.67 14.06 78.39 0.88
test4 2.55 45.68 50.11 1.76
test5 3.79 19.92 74.56 1.73
test6 8.01 32.65 53.84 3.50
test7 11.78 15.43 72.61 0.18
test8 6.17 52.03 40.77 1.03

the initial nonlinear dynamics of the robot. This is also proven in detail through Eqs. (18)–(20) which
appear in subsection 3.1 of the article.

External disturbances are taken into account in the design of the article’s nonlinear optimal (H-
infinity) controller through the disturbance inputs gain matrix L which appears in the method’s algebraic
Riccati equation (Eqs. (82) and (90)) as well as in the equation about the tracking error’s dynamics
(Eq. (84)). As explained in the end of subsection 4.3, the worst possible disturbance that the nonlinear

optimal control method can sustain is given by d̃ = 1

ρ2
LTPe; therefore, it is dependent on the attenuation

coefficient ρ and the disturbance inputs gain matrix L. Ideally, to achieve high disturbance rejection
capability, one should assign small values to ρ and large values to L. However, practically this can result
into a Riccati equation which may no longer be solvable. Therefore, there is a trade-off between those
values of ρ and L that give high disturbance rejection capability, and the values of these parameters
which ensure a solution for the method’s Riccati equation.

7.2. Results on flatness-based control in successive loops for the 4-DOF SCARA robot
Results about the tracking accuracy and the speed of convergence to setpoints of the successive-loops
flatness-based control method, in the case of the 4-DOF SCARA robotic manipulator, are shown in
Figs. 21–36. It can be noticed that under this control scheme one achieves fast and precise tracking of
reference setpoints for all state variables of the robotic system. It is noteworthy that through the stages
of this method one solves also the setpoints definition problem for all state variables of the redundant
robotic manipulator. Actually, the selection of setpoints for the state vector z1,4 = [x1, x3, x5, x7]T is uncon-
strained. On the other side by defining state vector z5,8 = [x2, x4, x6, x8]T as virtual control input for the
subsystem of z1,4, one can find the setpoints for z5,8 as functions of the setpoints for z1,4. The speed of

https://doi.org/10.1017/S0263574723000450 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000450


Robotica 2437

0 5 10 15 20
0.2

0.3

0.4

0.5

time (sec)

x
1

0 5 10 15 20
−0.1

0

0.1

0.2

0.3

time (sec)

x
2

0 5 10 15 20
0.05

0.1

0.15

0.2

0.25

time (sec)

x
3

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

time (sec)

x
4

0 5 10 15 20
0.2

0.3

0.4

0.5

time (sec)

x
5

0 5 10 15 20
−0.1

0

0.1

0.2

0.3

time (sec)

x
6

0 5 10 15 20
0.2

0.4

0.6

0.8

time (sec)

x
7

0 5 10 15 20
−0.1

0

0.1

0.2

0.3

time (sec)

x
8

(a) (b)

Figure 21. Tracking of setpoint 1 for the SCARA robot under flatness-based control in successive loops
(a) convergence of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) and (b) convergence of state variables x5 to x8 to their reference
setpoints.
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Figure 22. Tracking of setpoint 1 for the SCARA robot under flatness-based control in successive loops
(a) control inputs u1, u2 applied to the robot and (b) tracking error variables e1, e3, e5, and e7 of the
SCARA robot.

convergence of the state variables of the robotic system under flatness-based control implemented in
successive loops is dependent on the selection of values for the diagonal gain matrices K1, K2 of Eqs.
(114) and (115). The variations of the Lyapunov function of the flatness-based control loop of the 4-DOF
SCARA robotic manipulator are shown in Figs. 37 and 38.
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Figure 23. Tracking of setpoint 2 for the SCARA robot under flatness-based control in successive loops
(a) convergence of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) and (b) convergence of state variables x5 to x8 to their reference
setpoints.
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Figure 24. Tracking of setpoint 2 for the SCARA robot under flatness-based control in successive loops
(a) control inputs u1, u2 applied to the robot and (b) tracking error variables e1, e3, e5, and e7 of the
SCARA robot.
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Figure 25. Tracking of setpoint 3 for the SCARA robot under flatness-based control in successive loops
(a) convergence of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) and (b) convergence of state variables x5 to x8 to their reference
setpoints.
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Figure 26. Tracking of setpoint 3 for the SCARA robot under flatness-based control in successive loops
(a) control inputs u1, u2 applied to the robot and (b) tracking error variables e1, e3, e5, and e7 of the
SCARA robot.
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Figure 27. Tracking of setpoint 4 for the SCARA robot under flatness-based control in successive loops
(a) convergence of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) and (b) convergence of state variables x5 to x8 to their reference
setpoints.
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Figure 28. Tracking of setpoint 4 for the SCARA robot under flatness-based control in successive loops
(a) control inputs u1, u2 applied to the robot and (b) tracking error variables e1, e3, e5, and e7 of the
SCARA robot.
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Figure 29. Tracking of setpoint 5 for the SCARA robot under flatness-based control in successive loops
(a) convergence of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) and (b) convergence of state variables x5 to x8 to their reference
setpoints.
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Figure 30. Tracking of setpoint 5 for the SCARA robot under flatness-based control in successive loops
(a) control inputs u1, u2 applied to the robot and (b) tracking error variables e1, e3, e5, and e7 of the
SCARA robot.
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Table VI. Flatness-based control in successive loops – Tracking RMSE ×10−3 for the SCARA
robot in the disturbance-free case.

RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6 RMSEx7 RMSEx8

test1 0.0068 0.0052 0.0068 0.0052 0.0067 0.0052 0.0135 0.0104
test2 0.1712 0.2543 0.1700 0.2549 0.0560 0.0852 0.2255 0.3403
test3 0.0624 0.0846 0.1683 0.2554 0.1896 0.2893 0.2781 0.0918
test4 0.0317 0.0457 0.0111 0.0128 0.0074 0.0085 0.0148 0.0170
test5 0.0156 0.0139 0.0050 0.0042 0.0096 0.0067 0.0050 0.0042
test6 0.0048 0.0103 0.0126 0.0191 0.0023 0.0093 0.0127 0.0191
test7 0.0249 0.0251 0.0074 0.0069 0.0103 0.0099 0.0127 0.0108
test8 0.0231 0.0196 0.0099 0.0080 0.0014 0.0013 0.0063 0.0112
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Figure 31. Tracking of setpoint 6 for the SCARA robot under flatness-based control in successive loops
(a) convergence of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) and (b) convergence of state variables x5 to x8 to their reference
setpoints.

To elaborate on the tracking performance and on the robustness of the proposed flatness-based control
method in successive loops for the SCARA robot, the following tables are given: (i) Table VI which
provides information about the accuracy of tracking of the reference setpoints by the state variables of
the SCARA robot’s state-space model, (ii) Table VII which provides information about the robustness
of the control method to parametric changes in the model of the SCARA robot’s dynamics (change �a%
in the mass m2 of the second link), (iii) Table VIII which provides information about the precision in
state variables’ estimation that is achieved by the H-infinity Kalman filter, (iv) Table IX which provides
the approximate convergence times of the SCARA robot’s state variables to the associated setpoints,
and (v) Table X which provides information about the % distribution of the total consumed power in the
actuators of the SCARA robot.
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Figure 32. Tracking of setpoint 6 for the SCARA robot under flatness-based control in successive loops
(a) control inputs u1, u2 applied to the robot and (b) tracking error variables e1, e3, e5, and e7 of the
SCARA robot.
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Figure 33. Tracking of setpoint 7 for the SCARA robot under flatness-based control in successive loops
(a) convergence of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) and (b) convergence of state variables x5 to x8 to their reference
setpoints.
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Table VII. Flatness-based control in successive loops – Tracking RMSE ×10−3 for the SCARA
robot in the case of disturbances.

�a% RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6 RMSEx7 RMSEx8

0% 0.0624 0.0846 0.1683 0.2354 0.1898 0.2893 0.2381 0.0918
10% 0.0656 0.0915 0.1786 0.2762 0.2015 0.3131 0.2813 0.0994
20% 0.0690 0.0987 0.1891 0.2980 0.2136 0.3379 0.2847 0.1074
30% 0.0723 0.1062 0.1998 0.3208 0.2259 0.3637 0.2982 0.1157
40% 0.0757 0.1139 0.2100 0.3443 0.2383 0.3903 0.2920 0.1243
50% 0.0790 0.1219 0.2215 0.3686 0.2508 0.4179 0.2960 0.1332
60% 0.0824 0.1300 0.2326 0.3937 0.2635 0.4463 0.3003 0.1423

Table VIII. Flatness-based control in successive loops – RMSE ·10−5 for the estimation
performed by the H-infinity KF.

RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6 RMSEx7 RMSEx8

test1 0.0001 0.0099 0.0001 0.0005 0.0001 0.0060 0.0001 0.0103
test2 0.0022 0.4332 0.0001 0.0112 0.0004 0.0832 0.0020 0.3930
test3 0.0012 0.2334 0.0002 0.0438 0.0014 0.2858 0.0001 0.0289
test4 0.0100 2.0980 0.0010 0.0820 0.0040 0.8490 0.0050 0.8990
test5 0.0110 2.2510 0.0010 0.2760 0.0060 1.1870 0.0030 0.6440
test6 0.0070 1.3000 0.0010 0.1320 0.0020 0.3020 0.0040 0.7660
test7 0.0170 3.4010 0.0020 0.3970 0.0060 1.2550 0.0070 1.4770
test8 0.0190 3.8110 0.0010 0.1790 0.0010 0.2150 0.0010 0.6560

Table IX. Flatness-based control in successive loops – Convergence time (sec) for the SCARA
robot’s state variables.

Ts x1 Ts x2 Ts x3 Ts x4 Ts x5 Ts x6 Ts x7 Ts x8

test1 4.5 5.0 6.0 4.0 4.0 5.0 4.0 4.5
test2 3.0 4.5 4.5 5.0 4.0 6.0 5.5 4.0
test3 4.0 5.5 4.0 5.0 4.0 4.0 4.0 5.0
test4 0.5 2.0 2.5 3.5 4.0 4.0 0.5 2.0
test5 2.5 4.5 3.5 3.5 2.0 2.5 3.5 3.5
test6 2.0 2.5 2.0 2.5 0.5 2.0 2.0 3.0
test7 2.5 4.0 0.5 2.0 3.5 4.0 2.5 3.5
test8 3.0 4.0 3.0 4.0 1.0 2.0 2.0 2.0

Table X. Flatness-based control in successive loops – Distribution of power % in actuators.

P u1 P u2 P u3 P u4

test1 7.53 13.41 78.99 0.07
test2 5.70 15.41 78.84 0.06
test3 2.42 5.42 92.14 0.02
test4 2.28 43.50 54.01 0.21
test5 4.53 11.97 83.42 0.08
test6 6.03 20.67 73.18 0.12
test7 32.74 9.14 58.06 0.06
test8 2.87 14.16 83.39 0.16
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Figure 34. Tracking of setpoint 7 for the SCARA robot under flatness-based control in successive loops
(a) control inputs u1, u2 applied to the robot and (b) tracking error variables e1, e3, e5, and e7 of the
SCARA robot.
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Figure 35. Tracking of setpoint 8 for the SCARA robot under flatness-based control in successive loops
(a) convergence of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) and (b) convergence of state variables x5 to x8 to their reference
setpoints.
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Figure 36. Tracking of setpoint 8 for the SCARA robot under flatness-based control in successive loops
(a) control inputs u1, u2 applied to the robot and (b) tracking error variables e1, e3, e5, and e7 of the
SCARA robot.

8. Conclusions
SCARA-type robots are widely applied in several industrial tasks. To improve their accuracy, and speed
in tasks’ execution as well as to reduce the cost of their functioning, elaborated control algorithms
have to be used about them. In the present article, a novel nonlinear optimal control approach has been
used for the dynamic model of the 4-DOF SCARA robot with three revolute joints and one prismatic
joint. At a first stage, the dynamic model of the SCARA robot undergoes approximate linearization with
first-order Taylor series expansion and through the computation of the associated Jacobian matrices.
The linearization point is updated at each sampling instance and is defined by the present value of the
system’s state vector and by the last sampled value of the control inputs vector.

At a second stage, a stabilizing H-infinity feedback controller is designed. The H-infinity controller
achieves solution of the optimal control problem for the model of the SCARA robot under model uncer-
tainty and external perturbations. The H-infinity controller represents a min-max differential game which
takes place between (i) the control inputs which try to minimize a quadratic cost function of the state
vector’s tracking error and (ii) the model imprecision and the external perturbation terms which try to
maximize this cost function. To compute the stabilizing feedback gains of the H-infinity controller, an
algebraic Riccati equation had to be repetitively solved at each time-step of the control algorithm. The
global stability properties of the control scheme have been proven through Lyapunov analysis. First, it
has been demonstrated that the control method satisfies the H-infinity tracking performance criterion,
while under moderate conditions it has been proven that the control loop is globally asymptotically sta-
ble. Finally, to implement state estimation-based control, the H-infinity Kalman filter has been used as
a robust state estimator. The nonlinear optimal control approach retains the advantages of the standard
linear optimal control, that is, fast and accurate tracking of reference setpoints under moderate variations
of the control inputs. Finally, the nonlinear optimal control method has been tested against flatness-based
control implemented in successive loops.
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Figure 37. Lyapunov functions for flatness-based control in successive loops of the 4-DOF SCARA
robotic manipulator when tracking setpoints 1–4.
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Figure 38. Lyapunov functions for flatness-based control in successive loops of the 4-DOF SCARA
robotic manipulator when tracking setpoints 5–8.
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