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Rotating convection is considered on the tilted f -plane where gravity and rotation are not
aligned. For sufficiently large rotation rates, �, the Taylor–Proudman effect results in the
gyroscopic alignment of anisotropic columnar structures with the rotation axis giving rise
to rapidly varying radial length scales that vanishes as �−1/3 for � → ∞. Compounding
this phenomenon is the existence of viscous (Ekman) layers adjacent to the impenetrable
bounding surfaces that scale as �−1/2. In this investigation, these constraints are relaxed
upon utilising a non-orthogonal coordinate representation of the fluid equations where
the upright coordinate aligns with rotation axis. This exposes the problem to asymptotic
perturbation methods that permit: (i) relaxation of the constraints of gyroscopic alignment;
(ii) the filtering of Ekman layers through the uncovering of parameterised velocity
pumping boundary conditions; and (iii) the development of reduced quasi-geostrophic
systems valid in the limit � → ∞. Linear stability investigations reveal excellent
quantitative agreement between results from parameterised or unapproximated mechanical
boundary conditions. For no-slip boundaries, it is demonstrated that the associated Ekman
pumping alters convective onset through an enhanced destabilisation of large spatial
scales. The range of unstable modes at a fixed thermal forcing is thus significantly extended
with a direct dependence on �. This holds true even for geophysical and astrophysical
regimes characterised by extreme values of the non-dimensional Ekman number E. The
nonlinear regime is explored via the global heat and momentum transport of single-mode
solutions to the quasi-geostrophic systems which indicate O(1) changes which do not scale
with the size of E.

Key words: Bénard convection, quasi-geostrophic flow, boundary layer structure

1. Introduction

Buoyantly driven convection that is constrained by the Coriolis force is a ubiquitous
phenomenon occurring within planetary and stellar interiors. It serves as the power source
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for the generation of large-scale magnetic fields (Jones 2011; Roberts & King 2013;
Aurnou et al. 2015), and may also be the driving mechanism for the observed large-scale
zonal winds (Vasavada & Showman 2005; Kaspi et al. 2020) and vortices observed on
giant planets (Adriani et al. 2018; Siegelman et al. 2022). It is also thought to be an
important source of turbulent mixing even within the recently discovered global subsurface
oceans of icy moons (Soderlund 2019; Bire et al. 2022). Non-dimensional parameters that
characterise these geophysical and astrophysical phenomena are extreme. Estimates based
on the characteristic flow speed U, domain scale H, rotation rate� and kinematic viscosity
ν, indicate that the global scale Reynolds number measuring turbulent intensity is large,
i.e.

ReH = τν

τu
= UH

ν
� 1, (1.1a)

with eddy turnover time τu = H/U and viscous diffusion time τν = H2/ν. In addition,
the Ekman and bulk Rossby numbers measuring the magnitude and constraint of rotation,
respectively, are small, i.e.

E = ν

2�H2 = τ�

τν
� 1, RoH = U

2�H
= ReHE = τ�

τu
� 1, (1.1b)

with system rotation time τ� = (2�)−1. Also evident from laboratory experiments,
numerical simulations and theory is the existence of strong spatial anisotropy due to the
gyroscopic alignment resulting from the Taylor–Proudman constraint that arises through a
leading-order geostrophic force balance between the Coriolis and pressure gradient forces
(Julien et al. 2006; Julien & Knobloch 2007; Aurnou et al. 2015). Anisotropy is quantified
by the aspect ratio A = �/H ∼ E1/3 � 1 with O(�) non-axial and O(H) axial eddy length
scales.

Equations (1.1) provide the ordering E � Ro � 1 that also implies the relative time
ordering τ� � τu � τν . As an example, for the Earth’s outer core estimates suggest Ro =
O(10−7), E = O(10−15) and Re = O(108) indicating 15 decades of temporal separation
between fast inertial waves that propagate on timescale τ� and the viscous time τν
(or seven decades when compared with the eddy turnover time τu) (Roberts & King
2013). These parameters are far beyond the current investigative capabilities of direct
numerical simulations (DNS) in both global spherical or local planar domains which
remain limited to E � O(10−7) and ReH � O(104). This restriction is largely due to the
stiffness that arises in simulating the Navier–Stokes equation as a consequence of several
factors. Specifically, (i) the aforementioned prohibitive temporal range, (ii) the presence
of strong spatial anisotropy, and (iii) the presence of thin viscous (Ekman) boundary
layers of O(E1/2H) appearing unconditionally for no-slip boundaries and conditionally for
stress-free boundaries when the direction of gravity and axis of rotation are misaligned.
In turn, the abatement of these constraint can be achieved by (1) implementing implicit
time-stepping treatments for the Coriolis force thus removing the impact of fast inertial
waves on the Courant–Friedrich–Levy (CFL) timestepping constraint (Burns et al. 2020;
Miquel 2021), (2) utilising an axially aligned non-orthogonal coordinate system that
is scaled anisotropically in horizontal and axial directions (Julien & Knobloch 1998;
Ellison 2023) and (3) circumventing the need to resolve Ekman boundary layers via their
parameterisation. Items (2) and (3) are focal points of the present paper and explored
within the configuration for rotating Rayleigh–Bénard convection (RRBC) within the tilted
f -plane approximation located at an arbitrary colatitude ϑf .

For upright RRBC, Niiler & Bisshopp (1965), Heard & Veronis (1971) and Homsy
& Hudson (1971) first established the quantitative difference between the critical onset of
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convection in the presence of no-slip and stress-free boundaries as an O(Ek1/6) asymptotic
correction. The existence of a boundary condition parameterising the effect of Ekman
pumping for this case was first uncovered by Julien et al. (2016). However, to-date, a
full exploration of the impact of Ekman pumping on marginal onset and the asymptotic
robustness of parameterised boundary conditions at finite (E,Ro) has yet to be performed.
Moreover, these open questions extend to the more geophysically relevant RRBC on the
tilted f -plane. Here, it is also known that Ekman boundary layers also exist in the presence
of stress-free mechanical boundaries (Julien & Knobloch 1998). Zhang & Jones (1993)
derive the velocity normal to the boundary for small slope angles using a rotating annulus
model. In this paper, we uncover parameterised boundary conditions, which on the tilted
f -plane allow for O(1) slope angles. For no-slip boundaries, it is demonstrated that Ekman
pumping strongly destabilises the onset of convection at large scales to an extent that the
range of unstable wavenumbers is greatly extended. In the nonlinear regime, it is found that
pumping results in a net transport of heat due to a direct correlation between thermal and
vertical velocity fluctuations that strongly enhances the global heat flux. For stress-free
boundaries, it is demonstrated that despite the existence of Ekman boundary layers, no
net heat transport occurs due to a 90◦ phase-lag between thermal and vertical velocity
fluctuations.

The organisation of this paper is as follows. In § 2, the RRBC problem on the tilted
f -plane is formulated with the incompressible Navier–Stokes equations (iNSEs) along
with its asymptotic reduction to the low-Ro quasi-geostrophic rotating Rayleigh–Bénard
convection (QG-RBC) equations that constitute a foundation for a point of comparison
throughout for all results presented. For analytic and numerical advancement, a
non-orthogonal coordinate representation is pursued where the upright coordinate is taken
to be the axis of rotation as opposed to the vertical coordinate of gravity. In § 3, a matched
asymptotic analysis is performed on the tilted f -plane establishing the existence of three
regions: an inner Ekman boundary layer (§ 3.1), a middle thermal wind layer (§ 3.3) and an
outer or interior region (§ 3.2). It is demonstrated that the Ekman boundary-layer dynamics
is captured by the classic fourth-order linear ordinary differential equation (ODE) system
(Greenspan 1969) but with the axial direction serving as the boundary coordinate.
This generic result holds irrespective of the selected colatitude away from the equator.
Parameterised boundary conditions determined entirely in terms of outer region variables
are presented in § 3.2 for no-slip and stress-free mechanical boundaries. Extension of the
QG-RBC to incorporate parameterised boundary conditions is formulated in § 3.4 as the
composite QG-RBC (CQG-RBC). Analytic and numerical results for the linear stability
problem for the marginal onset of convection in the quasi-geostrophic limit is discussed
in § 4 along with a hypothesis of its sensitivity to Ekman pumping and predictions of a
critical wavenumber at which it achieves dominance and departs quantitatively from the
stress-free case (§ 4.2). Section 5 formulates the problem computing for fully nonlinear
exact single-mode solutions to the QG-RBC and CQG-RBC permitting an analysis of the
impact of Ekman pumping into the nonlinear regime. Discussion and concluding remarks
are found in § 6.

2. Formulation and preliminaries

2.1. Incompressible Navier–Stokes equations
We consider thermal convection on the tilted f -plane in the classical Rayleigh–Bénard
configuration, i.e. in a horizontal plane layer of depth H heated from below and cooled
from above rotating with a constant angular velocity � relative to the rotation axis Ω̂ .
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z = 0

z = 1
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ŷ
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Ω̂

η̂ = 1/η3

Figure 1. Slice of the local f -plane domain along a meridian. Spatial coordinates are non-dimensionalised with
respect to layer depth H. Here, x̂ represents the zonal direction (out of the page), ŷ represents the meridional
direction and η̂ = η2ŷ + η3ẑ is the local axis of rotation. It follows that a box ranging from z = 0 to z = 1 has
η̂ values ranging from 0 to 1/η3 with η3 = cosϑf and where ϑf denotes the colatitude.

The plane layer is considered to be tangent to a spherical shell at a reference colatitude ϑf
(see figure 1). In the rotating reference frame, fluid motions are assumed incompressible
and governed by the iNSEs under the Boussinesq approximation. In non-dimensional form

∂tu + u · ∇u + 1
η3Ro

η̂ × u + Eu∇p = 1
Re

∇2u + Γ θ ẑ, (2.1a)

∂tθ + u · ∇θ − Aẑ · u = 1
Pe

∇2θ, (2.1b)

∇ · u = 0, (2.1c)

where u, p, θ are the velocity, pressure and convecting temperature fields, respectively.
The iNSE is non-dimensionalised by characteristic velocity scale U, horizontal length
scale �, vertical depth scale H, advective timescale �/U, pressure scale P and temperature
difference �T . This results in the appearance of non-dimensional parameters given by

Ro = U
2�η3�

, Γ = gα�T�
U2 , Eu = P

ρ0U2 , Re = U�
ν
, Pe = U�

κ
, A = �

H
.

(2.2a–f )

Respectively, the Rossby, buoyancy, Euler, Reynolds, Peclét and aspect ratio numbers with
g the acceleration due to gravity, α the coefficient of thermal expansion, ρ0 the constant
fluid density, ν the kinematic viscosity and κ the thermal diffusivity. Importantly, we
note that the Rossby number is based on the Coriolis parameter 2�η3, and henceforth
interpreted as the colatitudinal Rossby number.

The local coordinate system for the iNSE may be defined by Cartesian orthogonal
unit vectors (x̂, ŷ, ẑ) pointing in the zonal (east–west), meridional (north–south) and
radial (vertical) directions, respectively. The local velocity field is then given by u =
ux̂ + vŷ + wẑ. The f -plane approximation assumes the constant local rotation vector can
be decomposed locally according to η̂ = η2ŷ + η3ẑ with

η2 = sin(ϑf ), η3 = cos(ϑf ), γ = η2/η3 = tan(ϑf ). (2.3a–c)

For rotationally constrained thermal convection it has been established that A ∼ Ro � 1
characterising the columnar spatial anisotropy of thermal convection (Julien et al. 2006;
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Aurnou, Horn & Julien 2020). Upon selection of a diffusive velocity scale U = ν/� as a
reference velocity, where � = Ek1/3H is the diffusive length scale, we obtain

Ro = Ek1/3 ≡ ε � 1, where Ek = ν

2(�η3)H2 (2.4)

is the colatitudinal Ekman number. This yields the canonical representation of
non-dimensional parameters for RRBC

Re = 1, Pe = σ, Γ = Raε3

σ
, Eu = ε−2, A = ε, (2.5a–e)

where σ = ν/κ is the Prandtl number, assumed O(1), and Ra = gα�TH3/(νκ) is the
thermal Rayleigh number. Note that the global-scale Reynolds number from (1.1a) is
ReH = ε−1 under this scaling.

With these ε-dependent distinguished limits, a leading-order geostrophic balance

ε−1η̂ × u + ε−2∇p ≈ 0, (2.6)

with ∇p ∼ O(ε) is observed at O(ε−1) in (2.1a) of the iNSE. Along with incompressibility
(2.1c), the Taylor–Proudman constraint

η̂ · ∇(u, p) ≈ 0 (2.7)

follows from (2.6) and operates axially on small O(�)-dimensional length scales (Julien
et al. 2006). Given � � H, axial modulations of O(H) spatial scales are permitted without
violation of the Taylor–Proudman constraint. Following Julien et al. (2006), it is therefore
convenient to pose the iNSE (2.1) in the non-orthogonal coordinate system defined by
the unit directions (x̂, ŷ, η̂) and where u = ux̂ + (v − γw)ŷ + w/η3η̂. For RRBC, the
non-dimensional radial coordinate z, rescaled by �/H to range from 0 to 1 (in units of
H), implies an axial coordinate η̃ ranging from 0 to 1/η3, as shown in figure 1. We
find it convenient to rescale η̃ in the η̂ direction as η = η3η̃ such that η ∈ (0, 1). All
fluid fields are now consider as functions of non-orthogonal coordinates (x, y, η) such
that the small-scale Taylor–Proudman constraint becomes ∂η(u, p) = o(1) (throughout
this paper f (x) = O(δ) implies lim supδ→0 ‖ f (x)‖/δ = c < ∞ and f (x) = o(δ) implies
lim supδ→0 ‖ f (x)‖/δ = 0). We thus invoke modulation on larger axial scales, i.e. the layer
depth scale (interpreted in units of �) with ∂η → ε∂Ω where Ω ∈ (0, 1) is the rescaled
axial coordinate.

Upon decomposition of fluid variables into mean horizontally averaged (overbarred) and
fluctuating (primed) components, i.e. f = f̄ + f ′, geostrophy requires ∇p′ = O(ε) such
that p′ → εp′, and from Γ the subdominance of buoyancy requires Raϑ ′/σ = o(ε−4). The
leading-order temperature fluctuating equations requires θ ′ → εθ ′ such that Ra = o(ε−5).
The projection of momentum equation (2.1a) onto unit bases {ĝj} ≡ (x̂, ŷ, η̂) gives

(∂t + u · ∇)u − 1
ε
(v − γw)+ 1

ε
∂xp′ = ∇2u, (2.8a)

(∂t + u · ∇)(v − γw)+ 1
ε

1
η2

3
(u + ∂yp′)− γ ∂Ωp′ = ∇2(v − γw)− γ R̃a

σ
θ ′, (2.8b)

(∂t + u · ∇)w − γ

ε
(u + ∂yp′)+ ∂Ωp′ = ∇2w + R̃a

σ
θ ′, (2.8c)
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(∂t + u · ∇)θ − εw = 1
σ

∇2θ, (2.8d)

∂xu + ∂y(v − γw)+ ε∂Ωw = 0, (2.8e)

where R̃a ≡ Raε4 is the reduced colatitudinal Rayleigh number. We note that this
projection is achieved via application of the dot product of the dual coordinates vector
bases gx̂ = x̂, gŷ = ŷ − γ ẑ, gη̂ = ẑ/η3 with orthogonality property ĝi · ĝj = δi

j where δi
j is

the Kronecker delta function. The advection and diffusion operators are given by

u · ∇ = u∂x + (v − γw)∂y + εw∂Ω, ∇2 = ∂2
x + 1

η2
3
∂2

y − 2εγ ∂y∂Ω + ε2∂2
Ω. (2.9a,b)

We find a subdominant mean velocity field ū = O(ε2) such that to leading order u ≈ u′.
This results in a leading-order mean hydrostatic balance ∂Ω p̄ ≈ (R̃a/σ)θ̄ .

The iNSE system (2.8) is accompanied with boundary conditions. We assume periodic
boundary conditions in the horizontal direction. We also consider here impenetrable, fixed
temperature boundary conditions

w = θ = 0, on Ω = 0, 1, (2.10)

where θ is the temperature minus a linear profile, that is, T = θ + 1 − z. This is
accompanied by either no-slip (NS) or stress-free (SF) mechanical boundary conditions

NS : (u, v) = 0, on Ω = 0, 1, (2.11a)

SF : ẑ · ∇(u, v) = (ε∂Ω − γ ∂y)(u, v) = 0, on Ω = 0, 1. (2.11b)

2.2. Reduced quasi-geostrophic model
Of particular utility as a point of comparison is the reduction of the iNSE (2.8) to the
QG-RBC model of Julien et al. (2006) in the limit of rapid rotation, ε → 0 (see also
Ellison 2023). The model is useful for obtaining analytic asymptotic results that serve as
a benchmark for results deduced from the iNSE. Substitution of the asymptotic expansion

v = v0 + εv1 + ε2v2 + ε3v3 + · · · , (2.12)

where v = (u, v,w, p, θ)T, into the system (2.8) results in geostrophic balance (2.6) at
leading order. Defining a geostrophic streamfunction ψ0 and setting

u0 = −∂yψ0, v0 − γw0 = ∂xψ0, p0 = ψ0 (2.13a–c)

solves the problem at leading order. At the next highest order, the resulting
non-homogeneous partial differential equation (PDE) system has associated solvability
conditions that imply the reduced quasi-geostrophic model for RRBC on the tilted f -plane
(QG-RBC), namely,

∂t∇2
⊥ψ0 + J[ψ0,∇2

⊥ψ0] − ∂ΩW0 + γ
R̃a
σ
∂xθ

′
1 = ∇2

⊥∇2
⊥ψ0, (2.14a)

∂tW0 + J[ψ0,W0] + ∂Ωψ0 = ∇2
⊥W0 + R̃a

σ
θ ′

1, (2.14b)

∂tθ
′
1 + J[ψ0, θ

′
1] + w0(∂ΩΘ̄0 − 1) = 1

σ
∇2

⊥θ
′
1, (2.14c)

∂Ω(w0θ
′
1) = 1

σ
∂ΩΩΘ̄0, (2.14d)

1000 A61-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

56
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.561


Parameterized Ekman boundary layers on the tilted f-plane

where ∇2
⊥ = ∂2

x + η−2
3 ∂2

y , W0 = η−2
3 w0 + γ ∂xψ0 and temperature is decomposed into

leading-order mean and fluctuating components, i.e. θ = Θ̄0 + εθ ′
1 such that θ ′

1 = 0. The
nonlinear terms have been written in terms of the Jacobian advection operator,

u0⊥ · ∇⊥ = u0∂x + (v0 − γw0)∂y = ∂xψ0∂y − ∂yψ0∂x = J[ψ0, ·]. (2.15)

The QG-RBC is fourth order in Ω , thus for closure, it is accompanied by the boundary

conditions (2.10) applied to w0 and Θ̄0 onΩ = 0, 1. From (2.14c), the variance θ ′2
1 satisfies

the equation ∂tθ
′2
1 = −σ−1|∇⊥θ ′

1|2 implying limt→∞ θ ′2
1 = 0. Thus, irrespective of the

thermal boundary condition on Θ̄ the criteria θ ′
1 = 0 on Ω = (0, 1) is automatically

satisfied if its initial value satisfies this boundary condition.
The QG-RBC is valid provided Ro � 1 which holds for R̃a = o(ε−1) or, equivalently,

Ra = o(Ek−5/3) (Julien et al. 2006, 2012, 2016; Sprague et al. 2006). By definition, given
u∗ = (ν/�)u dimensionally, then

Ro = ν

2�η3�2 ‖u‖ = ε‖u‖. (2.16)

It follows ‖u‖ ∼ ‖ψ0‖ ∼ ‖ζ0‖ = o(ε−1) for rotational constraint, where ζ0 = ∂xv0 − ∂yu0
is the radial vorticity. We note that the solutions to the QG-RBC can be generally
viewed asymptotically as an outer solutions because they do not automatically satisfy the
mechanical no-slip or stress-free boundary conditions (2.11). This requires boundary-layer
corrections via matched asymptotics that are discussed in the next section.

3. Boundary layers

While the interior of the domain for the iNSE system (2.8) is dominated by a leading-order
geostrophic balance, standard choices of mechanical boundary conditions are incompatible
with this balance on the tilted f -plane. Ekman boundary layers, where the dominant force
balance transitions from geostrophy to include viscous stresses, are thus generated at the
top and bottom of the domain (Greenspan 1969; Julien & Knobloch 1998). The QG-RBC
system (2.14) filters Ekman layers and, thus, may be evolved solely with the knowledge
that the boundaries are impenetrable and fixed temperature. This is consistent with the
observation that the QG-RBC is fourth order inΩ . However, this sidelines any assessment
of the impact of mechanical boundaries.

It is well established for the upright case (ϑf = 0◦) that impenetrable no-slip boundaries
generate Ekman layers whereas stress-free boundary conditions do not (Julien & Knobloch
1998). Here, we generalise the theory to non-zero tilt angles (colatitudes) where we find,
a posterori, all mechanical boundary conditions generate Ekman layers. The ultimate
objective of this section is to uncover the parameterised boundary conditions in terms
the interior fluid variables that characterise the dynamical impact of an Ekman layer and
thereby alleviate the need to resolve it numerically. These are often referred to as pumping
conditions (generically taken to capture the action of both pumping and suction). We
demonstrate in this section that away from the equatorial region (i.e. for γ = o(ε−1/2)),
the system of boundary-layer equations valid in the Ekman layer have the classical ODE
form for the upright case consisting of a fourth-order linear operator in space albeit now
operating in the axial direction.

The boundary-layer theory is formulated by decomposing the fluid variables into an
outer component (for the geostrophic interior) and inner components at the upper and
lower boundaries located atΩ = 0, 1 (for the Ekman boundary layers). Julien et al. (2016)
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have established that for no-slip boundaries the presence of an Ekman boundary layer
also drives a thermal wind layer (a middle boundary-layer region), a required thermal
response to satisfy the thermal boundary condition θ ′ = 0 on Ω = 0, 1. We establish in
§ 3.3 that no such thermal wind layer is required in the presence of stress-free boundaries,
thus to leading order the fixed temperature boundary conditions are automatically satisfied
without need of a boundary-layer correction in a reduced model.

The following analysis is a generalisation of the results in Julien et al. (2016) to the tilted
f -plane and to stress-free boundary conditions. Readers familiar with that publication and
its notation may wish to skip the following two paragraphs and skim §§ 3.1 and 3.2 for
how the result changes with tilt angle and for choice of boundary condition.

The interior, thermal wind and Ekman layer components are respectively denoted by
superscripts (o), (m,±) and (i,±) that when combined form the composite solution,

v = v(o)(x, y,Ω, t)+ v(m,+)(x, y, 0, η−, t)+ v(m,−)(x, y, 1, η+, t)

+ v(i,+)(x, y, 0, μ−, t)+ v(i,−)(x, y, 1, μ+, t). (3.1)

Here, + (−) refer to the lower (upper) boundary. Thus, η+ = ε−1Ω and η− =
ε−1(1 −Ω), both ≥ 0, are the middle coordinates within the thermal wind layer which
in dimensional units translates to O(Ek1/3H) scales. Similarly, μ+ = ε−3/2Ω and μ− =
ε−3/2(1 −Ω) ≥ 0 are the fast coordinate within the Ekman layer which in dimensional
units translates to O(Ek1/2H) scales. The dependency on the colatitudinal Ekman number
implies that the boundary-layer depths increase with ϑf by a factor of (cos(ϑf ))

−1.
To proceed, we employ a multiple-scale expansion in the axial direction

∂Ω → ∂Ω + δε−1∂η + δε−3/2∂μ, (3.2)

where, for convenience, we define

δ =
{

+1 bottom layer (Ω = 0),
−1 top layer (Ω = 1),

(3.3)

such that the fast coordinate derivatives may be compactly interpreted. Each region of the
fluid layer may be accessed by the following actions for the outer (o), middle (m) and inner
(i) limits on (3.1):

lim(v)o = lim
μ→∞
η→∞

(v) = v(o)

=⇒ lim(v(o))o = v(o), lim(v(m), v(i))o = 0, (3.4a)

lim(v)m = lim
μ→∞
Ω→0

(v) = v(o)(0)+ v(m)

=⇒ lim(v(o))m = v(o)(0), lim(v(m))m = v(m), lim(v(i))m = 0, (3.4b)

lim(v)i = lim
η→0
Ω→0

(v) = v(o)(0)+ v(m)(0)+ v(i)

=⇒ lim(v(o) + v(m))i = v(o)(0)+ v(m)(0), lim(v(i))i = v(i). (3.4c)

Identical expressions hold for the upper middle and inner layers located at Ω = 1. By
definition, middle variables are identically zero in the outer region, whereas inner variables
are identically zero in both the outer and middle regions. Contributions to the inner
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Parameterized Ekman boundary layers on the tilted f-plane

region from the outer and middle variables, and the middle region from outer variables
are obtained by Taylor-expanding variables in the relevant boundary-layer coordinate
and taking its limit to zero. The composite variables (3.1) (i.e. the superposition of the
geostrophic, thermal wind and Ekman layer components) must satisfy boundary conditions
(2.10) and either (2.11a) or (2.11b) at leading order as ε → 0.

3.1. Ekman layers (inner layers)
In order to deduce the system of equations satisfied by v(i), the inner limit of the iNSE (2.8)
must be taken and the outer and middle contributions subtracted out. Given that u(o)⊥ ≡
(u(o), v(o)) = O(1), u(m)⊥ = O(ε) (see § 3.2 on the middle layer analysis), together with
boundary conditions (2.10) and (2.11), the dominant contributions that may participate in
the analyses are deduced from (2.8) as

−v(i) ≈ ∂2
μu(i), (3.5a)

1
η2

3
u(i) − γ

ε1/2 δ∂μp(i) ≈ ∂2
μv

(i), (3.5b)

−γ u(i) + 1
ε1/2 δ∂μp(i) ≈ ∂2

μw(i), (3.5c)

∂xu(i) + ∂yv
(i) + ε−1/2δ∂μw(i) ≈ 0. (3.5d)

This follows from the observation that ( p(i),w(i)) = o(u(i)⊥ ) within the inner layer. This
holds for all non-equatorial values γ = o(ε−1/2).

The no-slip condition, (2.11a) and incompressibility (3.5d) simply imply

u(i)⊥NS = O(1), w(i)NS = O(ε1/2). (3.6a)

The dominant contributions from momentum equations (3.5b,c) then reveal

p(i)NS =
{

O(ε1/2γ ) for γ > O(ε1/2)

O(ε) for γ ≤ O(ε1/2).
(3.6b)

For stress-free conditions, the dominant terms in (2.11b) imply that we must take

u(i)⊥SF =

⎧⎪⎨⎪⎩
O(ε1/2γ ) for γ > O(ε) s.t. −γ ∂yu(o)⊥ + δε−1/2∂μu(i)⊥ ≈ 0

O(ε3/2) for γ = O(ε) s.t. (−γ ∂y + ε∂Ω)u
(o)
⊥ + δε−1/2∂μu(i)⊥ ≈ 0

O(ε3/2) for γ = o(ε) s.t. ε∂Ωu(o)⊥ + δε−1/2∂μu(i)⊥ ≈ 0,
(3.7a)

along with the dominant contributions from momentum equations (3.5b,c) that gives

w(i)⊥SF =
{

O(εγ ) for γ > O(ε)
O(ε2) for γ ≤ O(ε), (3.7b)

p(i)⊥SF =
{

O(εγ max [γ, ε1/2]) for γ > O(ε)
O(ε5/2) for γ ≤ O(ε).

(3.7c)
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Remarkably, irrespective of the case considered, elimination p(i) in (3.5) gives

−v(i) ≈ ∂2
μu(i), (3.8a)

u(i) ≈ ∂2
μv

(i), (3.8b)

∂xu(i) + ∂yv
(i) + ε−1/2δ∂μw(i) ≈ 0, (3.8c)

which is identical to existing theory for the classical upright Ekman layer (Greenspan
1969), albeit now for the non-orthogonal axial coordinate representation.

No-slip boundary conditions

u(o)⊥

∣∣∣∣
Ω=0,1

+u(i)⊥NS

∣∣∣∣
μ=0

= 0 (3.9)

yield the Ekman layer solutions

u(i)NS = − exp(−μ/
√

2)
(

u(o) cos
(
μ√

2

)
+ v(o) sin

(
μ√

2

))
, (3.10a)

v
(i)
NS = exp(−μ/

√
2)
(

u(o) sin
(
μ√

2

)
− v(o) cos

(
μ√

2

))
, (3.10b)

w(i)NS = δε1/2
√

2
exp(−μ/

√
2)
(
(∂yu(o) − ∂xv

(o))

(
cos

(
μ√

2

)
+ sin

(
μ√

2

)))
. (3.10c)

For stress-free boundaries, with the absence of a thermal wind layer at leading order,

ẑ · ∇u(o)⊥

∣∣∣∣
Ω=0,1

+δε−1/2∂μu(i)⊥SF

∣∣∣∣
μ=0

= 0, (3.11)

where ẑ · ∇ = −γ ∂y + ε∂Ω ≡ LB. This yields the solution

u(i)SF = δε1/2
√

2
exp(−μ/

√
2)LB

(
(u(o) + v(o)) cos

(
μ√

2

)
− (u(o) − v(o)) sin

(
μ√

2

))
,

(3.12a)

v
(i)
SF = −δε

1/2
√

2
exp(−μ/

√
2)LB

(
(u(o) + v(o)) sin

(
μ√

2

)
+ (u(o) − v(o)) cos

(
μ√

2

))
,

(3.12b)

w(i)SF = −ε exp(−μ/
√

2)LB
(
(∂yu(o) − ∂xv

(o)) cos
(
μ√

2

))
. (3.12c)

Note, these solutions automatically capture the situations γ = O(ε) and/or ∂y = O(ε).
The stress-free boundary conditions, now ẑ · ∇u(o)⊥ = o(ε), are automatically achieved to
leading order without need for boundary-layer corrections. Inspection of the iNSE (2.8) at
the boundaries reveal the geostrophic outer boundary constraint ∂Ωp(o) = o(1).

3.2. The geostrophic interior and parameterised pumping conditions
Above, we have defined the Ekman layer (inner) variables u(i), v(i) and w(i), but we have yet
to define the boundary criteria on outer solution v(o) for the interior of the domain. Given
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Parameterized Ekman boundary layers on the tilted f-plane

the assumption of a geostrophic interior, for u(o) and v(o), we assert that a geostrophic
balance holds through to the impenetrable boundaries. That is, the dominant O(ε−1) terms
in (2.8a) and (2.8b), which we will define as Vg and Ug, must balance, yielding

Vg ≡ v(o) − γw(o) − ∂xp(o) = 0
Ug ≡ u(o) + ∂yp(o) = 0

}
on Ω = 0, 1, (3.13)

and for θ ,
θ(o) = 0 on Ω = 0, 1. (3.14)

The definitions for w(i) given by (3.10c) or (3.12c) do not satisfy impenetrability w = 0,
so the boundary condition on w(o) must compensate to ensure this remains so. Requiring

w(o)
∣∣∣∣
Ω=0,1

+w(i)
∣∣∣∣
μ=0

= 0, (3.15)

implies that

w(o)NS = δε1/2
√

2
(∂xv

(o) − ∂yu(o)), on Ω = 0, 1, (3.16a)

w(o)SF = −εẑ · ∇(∂xv
(o) − ∂yu(o)), on Ω = 0, 1. (3.16b)

Equation (3.16a) for no-slip boundaries is identical in form to the classical Ekman layer
(Greenspan 1969), extended to the upright QG-RBC by Julien et al. (2016) and now to the
f -plane. It illustrates that the presence of cyclonic (anticylonic) vertical vorticity ζ (o) =
∂xv

(o) − ∂yu(o) > 0 (ζ < 0) at the boundaries result in fluid being pumped away from
(suctioned into) the Ekman layer.

Equation (3.16b) for stress-free boundaries establishes that the important criteria for
pumping/suction at the boundaries is the normal gradient of vertical vorticity. Negative
gradients of vertical vorticity result in fluid be pumped away from the lower boundary and
suctioned into the upper boundary. The reverse is true for positive gradients.

3.3. Evidence for a thermal wind layer
We first recall from the discussion on (2.16) that validity of the QG-RBC system requires
R̃a = o(ε−1), Ro = o(1) and ζ (o)0 = o(ε−1). At Ω = (0, 1), the parameterised Ekman
velocity boundary conditions (3.16) imply an outer thermal response satisfying

∂tθ
′(o)
1 + J[ψ(o)0 , θ

′(o)
1 ] + w(o)0 (∂ΩΘ̄0 − 1) = 1

σ
∇2

⊥θ
′(o)
1 , (3.17a)

along with associated thermal variance equation

1
2
∂t(θ

′(o)
1 )2 + (w(o)0 θ

′(o)
1 )(∂ΩΘ̄0 − 1) = − 1

σ
|∇⊥θ ′(o)

1 |2. (3.17b)

From a statistically stationary viewpoint, this implies θ
′(o)
1 = O(σw(o)0 ∂ΩΘ̄0) and

convective flux w(o)0 θ
′(o)
1 ∼ σw(o)20 ∂ΩΘ̄0 on Ω = (0, 1). The stationary mean temperature

equation implies

σw(o)0 θ
′(o)
1 − ∂ΩΘ̄0 = Nu − 1, (3.18)

where Nu is the Nusselt number characterising the non-dimensional heat transport. It
follows that the convective flux due to Ekman pumping remains subdominant to heat

1000 A61-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

56
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.561


S. Tro, I. Grooms and K. Julien

transport by conduction, i.e. ∂ΩΘ̄0 ∼ Nu and w(o)0 θ
′(o)
1 = o(Nu), provided

w(o)0

∣∣∣∣
Ω=0,1

=
{

O(ε1/2ζ
(o)
0 ) = o(1) NS,

O(εζ (o)0 ) = o(1) SF.
(3.19)

If this holds, the above estimate for thermal fluctuations on the boundary implies θ ′(o)
1 =

o(1). Hence, thermal corrections are not required and thermal-wind boundary layers are
not necessary. Within the range of validity of the QG-RBC, criterion (3.19b) is always
satisfied asymptotically on stress-free boundaries. For no-slip boundaries the criteria is
violated when

O(ε−1/2) ≤ ζ
(o)
0,NS < O(ε−1) =⇒ O(1) ≤ θ

(o)
1,NS

∣∣∣∣
Ω=0,1

≤ O(ε−1/2) (3.20)

assuming Nu = O(1).
Rectifying the ability to satisfy thermal boundary conditions for no-slip boundaries thus

requires the presence of a middle layer, i.e. a thermal wind boundary layer. The middle
limit of the iNSE (2.8) must be taken and the outer contribution subtracted out. This
simplifies to

−v(m)1 + ∂xp′(m)
2 = 0, (3.21a)

u(m)1 + ∂yp′(m)
2 = 0, (3.21b)

∂ηp′(m)
2 = R̃a

σ
θ

′(m)
1 , (3.21c)

∂tθ
′(m)
1 + u(o)0 · ∇θ ′(m)

1 + w(o)0 ∂ηΘ̄
(m)
1 − w(o)0 ∂ηθ

′(m)
1 = 1

σ
∇2θ

′(m)
1 , (3.21d)

∂xu(m)1 + ∂yv
(m)
1 = 0, (3.21e)

where w′(m)
1 ≡ 0. Thus, rectification to support θ ′

1 = 0 on boundaries drives a
thermal-wind layer as identified by (3.21a–c).

3.4. CQG-RBC
Following Julien et al. (2016), the system of equations for the outer and middle regions
can be reconstituted to form the CQG-RBC on the f -plane:

∂t∇2
⊥ψ0 + J[ψ0,∇2

⊥ψ0] − ∂ΩW0 + γ
R̃a
σ
∂xθ

′
1 = ∇2

⊥∇2
⊥ψ0, (3.22a)

∂tW0 + J[ψ0,W0] + ∂Ωψ0 = ∇2
⊥W0 + R̃a

σ
θ ′

1, (3.22b)

∂tθ
′
1 + J[ψ0, θ

′
1] + ε∇⊥ · (u1⊥θ ′

1)+ ε∂Ω(w0θ
′
1 − w0θ

′
1)+ w0(∂ΩΘ̄0 − 1)

= 1
σ

∇2θ ′
1, (3.22c)

∂Ω(w0θ
′
1) = 1

σ
∂ΩΩΘ̄0, (3.22d)

∇⊥ · u1⊥ + ∂Ωw0 = 0, (3.22e)
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Parameterized Ekman boundary layers on the tilted f-plane

Model Thermal Kinematic Mechanical

iNSE equation (2.8) with
physical BCs

θ ′ = 0 w = 0 NS: u, v = 0
or

SF: ẑ · ∇(u, v) = 0

iNSE equation (2.8) with
parameterised BCs

θ ′(o) = 0 NS: w(o) = δε1/2
√

2
(∂xv

(o) − ∂yu(o)) U(o)g,V(o)g = 0

or
SF: w(o)SF = −εẑ · ∇(∂xv

(o) − ∂yu(o))
QG-RBC equation (2.14) w(o)0 = 0

CQG-RBC equation (3.22)
with parameterised BCs

θ ′(o) = 0 NS: w(o) = δε1/2
√

2
(∂xx + ∂yy)ψ

(o)
0

or
SF: w(o)SF = −εẑ · ∇(∂xx + ∂yy)ψ

(o)
0

Table 1. Summary of the various fluid equations and associated boundary conditions considered for linear
stability analysis: iNSE eighth order in Ω; QG-RBC second order; and CQG-RBC, fourth order. Boundary
conditions (BCs) are applied at Ω = (0, 1) and superscript (o) denotes outer variables. In the non-orthogonal
coordinate representation ẑ · ∇ ≡ −γ ∂y + ε∂Ω . U(o)g = u(o) + ∂yp(o) and V(o)g = v(o) − γw(o) − ∂xp(o) are
the ageostrophic variables. For the fully nonlinear problem, mean temperature boundary condition Θ̄ = 0 on
Ω = (0, 1) must be added.

along with pumping boundary conditions (3.16) and fixed temperature conditions
Θ̄0 = θ ′

1 = 0. Note ∇2 = ∇2
⊥ + ε2∂ΩΩ . All variables are now interpreted as composite

variables, namely

ψ
(c)
0 = ψ

(o)
0 + εψ

(m)
1 , w(c)0 = w(o)0 , θ

′(c)
1 = θ

′(o)
1 + θ

′(m)
1 , Θ̄

(c)
0 = Θ̄

(o)
0 + εΘ̄

(m)
1 .

(3.23a–d)

For convenience, the superscript (c) has been dropped.
We remark that the previous subsection has established that in the presence of stress-free

boundaries, pumping conditions result in θ ′(o)
1 = 0 on the boundaries due to the absence of

a middle thermal-wind layer. This occurs because pumping velocities remain weak within
the quasi-geostrophic limit. In this situation, the underlined term above is subdominant
and ∇2 → ∇2

⊥ such that the CQG-RBC and QG-RBC become equivalent. This alludes
to the expectation that results should be indistinguishable between the CQG-RBC model
with parameterised stress-free pumping conditions and QG-RBC model with impenetrable
boundaries. Indeed this finding is validated in the results section.

4. Linear stability

The previous section deduced the parameterised pumping boundary conditions associated
with either stress-free or no-slip mechanical boundary conditions. In this section, the
marginal stability problem for the onset of steady convection in the RRBC configuration
is formulated using three linearised model systems: the iNSE defined in (2.1) and the two
asymptotically reduced models outlined in (2.14) and (3.22), respectively, the QG-RBC
and CQG-RBC models. Table 1 summarises these model systems along with associated
physical or pumping boundary conditions. Through linear stability analysis, we seek to
show the efficacy of the parameterised pumping boundary conditions across models.
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We seek solutions to the linearised version of each of the aforementioned systems about
the base state Θ̄ = 1 −Ω , u = θ ′ = 0 by substituting the normal mode ansatz

v = v̂(Ω) exp(st + ik⊥ · x⊥) (4.1)

for convective rolls. Here, we define the wavenumber k⊥ = (kx, ky) by its magnitude

|k⊥| =
√

k2
x + k2

y ≡ k⊥, such that kx = k⊥ cos(χ), ky = k⊥ sin(χ) and tan(χ) = ky/kx.

Here χ defines the roll orientation with χ = 0◦ for north–south rolls and χ = π/2 for
east–west rolls. Steady convective onset occurs when growth rate s = 0 which is known
to be independent of σ (Chandrasekhar 1961). For a specified colatitude ϑf , we find a
posteriori that the stability domain is bracketed by north–south convective roll orientations
(the gravest mode) and east–west roll orientations (the least excitable mode). Given the
uncovering of parameterised boundaries conditions, critical questions to be addressed are
as follows. (i) To what extent do solutions to the iNSE obtained with these boundary
conditions agree quantitatively with those obtained when the true physical unapproximated
boundary conditions are employed? (ii) How robust is this agreement across a range of
finite values of ε, i.e. is Ekman pumping captured through the parameterised boundary
conditions solely responsible for the departure from the asymptotic solution obtained
as ε → 0 by the QG-RBC. Separately, (iii) what is the fidelity of the CQG-RBC that
amends the QG-RBC with parameterised boundary conditions, i.e. again, how robust is
the agreement with the iNSE for finite ε?

4.1. Linear stability of the QG-RBC
Fortuitously, analytic progress can be made for the linear stability problem associated with
the QG-RBC. Here, the normal mode perturbations take the specific form

θ1 = θ̂ sin(nπΩ)h(x, y) est + c.c.,

w0 = ŵ sin(nπΩ)h(x, y) est + c.c.,

ψ0 =
(
ψ̂ cos(nπΩ)h(x, y)+ γ

1
k2
⊥

ŵ sin(nπΩ)∂xh(x, y)

)
est + c.c.,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.2)

where h(x, y) = exp(ikxx + ikyy). For n = 1, 2, 3, . . . , this ansatz automatically satisfies
the fixed-temperature impenetrable boundary conditions given in (2.10). The appearance
of amplitude ŵ (equivalently, the component ∂xw0) in the ansatz for ψ0 in (4.2c) is
evidence of non-axial buoyancy driving on the f -plane giving rise to a buoyancy torque
that generates axial vorticity when γ /= 0.

Substitution of (4.2) into the linearised QG-RBC system (2.14) results in an
eigenproblem yielding analytic expressions for the critical Rayleigh number, critical
wavenumber and maximum growth rate. For the case σ = 1, the characteristic polynomial
for the growth rate is given by

(k2
∇ + s)(k2

∇s2 + 2k4
∇s + k6

∇ + π2n2 − R̃a k2
⊥) = 0, (4.3)

where

k2
∇ ≡ |k∇|2 = k2

x + k2
y/η

2
3 = k2

⊥(1 + γ 2 sin2(χ)) (4.4)
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Parameterized Ekman boundary layers on the tilted f-plane

is the coefficient arising from applying the Laplacian operator ∇2
⊥. The solutions are given

by eigenvalues

s = −k2
∇ , (4.5a)

s = −k2
∇ ± 1

k∇

√
R̃ak2

⊥ − n2π2. (4.5b)

The first, (4.5a), poses no stability constraint, but the second, (4.5b), yields an instability
for the onset of steady convection when R̃a > R̃as, where

R̃as = k6
∇ + n2π2

k2
⊥

. (4.6)

The eigenvector containing the relative amplitudes for the linear roll solutions are given
by

(ŵ, ψ̂, θ̂ )T =
(

1,− nπ

k2
⊥k2

∇
,
σ

k2
∇

)T

ŵ. (4.7)

The smallest value on the marginal stability curve R̃as is the critical point

R̃ac = 3
2
(2π4)1/3(1 + γ 2 sin2(χ)), k⊥c = π1/3

21/6(1 + γ 2 sin2(χ))1/2
, (4.8a,b)

occurring when n = 1. The maximum growth rate achieved by (4.5b) for mode n = 1 is

smax = k2
∇

(
π2

2k6
∇

− 1

)
, (4.9)

and it occurs in the (k⊥, R̃a) plane along the curve

R̃a = π2

k2
⊥

(
π2

4k6
∇

+ 1

)
, for k⊥ ≤ k⊥c. (4.10)

The values given by (4.6), (4.8a,b) and (4.10) in the (k⊥, R̃a) plane are plotted in
figure 2 for various tilt angles ϑf (dashed lines). Note that for the upright case (γ = 0),
the expressions for the various for marginal stability properties simplify significantly,
and there is no longer dependence on roll orientation χ given |k∇|2 ≡ |k⊥|2. Thus,
the marginal stability and maximal growth rate are identical for all roll orientations,
north–south through east–west rolls. These upright expressions are also identical to the
north–south case χ = 0 for arbitrary colatitudes γ /= 0. Thus, as postulated, north–south
rolls provide the gravest (most unstable) mode (see the blue curves plotted in figure 2).
East–west rolls (case χ = π/2) are plotted in figure 2 at various γ since they provide the
bookend as the least grave or least supercritical mode.

4.2. Departure from the linear QG-RBC due to Ekman pumping
Equation (3.19) establishes the criteria for which Ekman pumping remains subdominant
and the asymptotic rotating convection problem remains adequately described by the
QG-RBC model with impenetrable boundaries. Recall, the reduction in the axial
spatial order indicates that no mechanical boundary conditions need be prescribed.
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Figure 2. The QG-RBC marginal stability curves, loci of the maximum growth rates and critical Rayleigh
and wavenumbers in the (k⊥, R̃a) plane for east–west convection rolls (χ = π/2) at various colatitudes ϑf
(annotated). The solid lines are the marginal stability curves defined by (4.6); dashed curves are the locations
of the maximum growth rates defined by (4.10); and the circles mark the critical values (kc, R̃ac) given by
(4.8a,b). North–south rolls with χ = 0 are coincident with solid blue line for all ϑf .

Their inclusion would require Ekman boundary-layer corrections which remain passive
in that they do not alter the marginal stability threshold or global heat and momentum
transport properties. We have established this to be the case solely for stress-free boundary
conditions.

Given the analytic results of the prior section for the linear QG-RBC model, it is possible
to estimate for no-slip boundaries when Ekman pumping becomes dominant along the
marginal stability curves defined in (4.6) and displayed in figure 2. This occurs when
pumping velocities become O(1), i.e. ŵ(0) = ŵ(1) = O(1). From (3.19b), (4.2c) and (4.7)
this implies

ŵ = −δ ε
1/2
√

2
k2
⊥ψ̂ � O(1), s.t.

ε1/2
√

2

nπ

k2
∇

� 1. (4.11)

Within the asymptotic validity of the QG-RBC, i.e. R̃a = o(ε−1), this is captured by the
low wavenumber bound and transitional Rayleigh number estimates

k⊥ � ε1/4
(

nπ√
2

1

(1 + γ 2 sin2(χ))

)1/2

, R̃at ∼ ε−1/2
√

2nπ(1 + γ 2 sin2(χ)).

(4.12a,b)

This transition always occurs within the quasi-geostrophic regime given R̃at = o(ε−1).
Moreover, the transition is delayed in R̃at and scale k−1

⊥ as tilt γ and roll orientation χ
increase.

4.3. Results: linear stability across models
In this section, we analyse the linear stability problem for the onset of steady convection
in the RRBC. Comparisons are made between results obtained from the iNSE and the
reduced QG-RBC and CQG-RBC models solved with the various boundary condition
configurations outlined in table 1. With k⊥, χ , ϑf , ε and, for convenience, σ = 1 as input
parameters, the resulting generalised eigenproblem is discretised with a spectral Galerkin
basis constructed from Chebyshev polynomials (Julien & Watson 2009; Burns et al. 2020)
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Figure 3. Comparison of marginal stability curves and critical Rayleigh numbers vs wavenumber for the iNSE
problem with physical (underlying translucent grey curves) and parameterised pumping boundary conditions
(solid coloured curves) and the analytic results from the QG-RBC problem (dotted curves) also illustrated in
figure 2. The case illustrated is ε = 10−3 (E = 10−9) and χ = π/2 (east–west rolls) at various colatitudes
ϑf (annotated). (a,b) No-slip boundaries. Excellent quantitative agreement exist between the iNSE and the
CQG-RBC models. The significant impact of Ekman pumping on the onset of convection at low wavenumbers
with respect to the QG-RBC model are the result of O(E1/2) boundary layers is evident. (c,d) Results for
stress-free boundaries illustrating excellent quantitative agreement between all models.

(see also Appendix B) and solved using MATLAB’s sparse eigensolver package. We note
the iNSE is solved using a vortical formulation that utilises the geostrophic variables Ug

and Vg (3.13), thus permitting the continuance of the geostrophic constraint within the
interior to the boundaries where parameterised conditions can be imposed (details are
relegated to Appendix A).

Figure 3 shows the marginal stability curves computed numerically from the
unapproximated iNSE with the mechanical boundary conditions and from the iNSE
with parameterised pumping boundary conditions for east–west rolls across a range
of colatitudes. Respectively, these two model results are depicted by the underlying
translucent grey curves and solid coloured curves. The representative case ε = 10−3

(Ek = 10−9) is considered. Figure 3(a,b) illustrate the case for no-slip boundaries and
figure 3(c,d) illustrate the stress-free case. Also included for reference are the asymptotic
marginal stability curves obtained from the QG-RBC system (dotted curves).

For stress-free boundaries, we observe excellent quantitative agreement for all
wavenumbers between both iNSE models and the asymptotic results (dotted curves) from
the QG-RBC system. This is consistent with the boundary-layer analysis of § 3 showing
that the O(ε) pumping velocities emanating from Ekman layers adjacent to stress-free
boundaries are too weak to induce corrections that alter the asymptotic predictions of the
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Figure 4. Marginal stability curves for the CQG-RBC problem with parameterised pumping boundary
conditions (solid coloured curves) in comparison with the iNSE with physical boundary conditions (grey
translucent curves) and the analytic results from the QG-RBC problem (dotted curves). Additional details
are as in figure 3.

QG-RBC model. In effect, Ekman boundary layers, while necessary for the maintenance
of stress-free boundaries, remain passive.

For no-slip boundaries results indicate excellent quantitative agreement between the
two iNSE models for all wavenumbers illustrating the accuracy and fidelity of the
parameterised pumping condition. However, figure 3 also reveals significant departures
of the no-slip iNSE models from the stress-free QG-RBC results for low wavenumbers.
Specifically, it is observed in the presence of no-slip boundaries, O(ε1/2) pumping
velocities from the Ekman layer act to further destabilise low-wavenumber (large-scale)
modes and thereby extends the wavenumber range for steady convective onset at a fixed
R̃a. This implies that at Rayleigh numbers above R̃at, when Ekman pumping is present,
a wider range of wavenumbers are driving convection. The impact of Ekman pumping
on the marginal curves is more clearly illuminated in the log–log plot (figure 3b) where
departures from the stress-free marginal curves first occur through an intermediate region
where the R̃a remains approximately constant followed by a monotonic increase in R̃a with
decreasing k⊥ that appears to parallel the asymptotic curve that scales with R̃a ∼ k−2

⊥ .
Note, as predicted by (4.12a,b), the departure (R̃at, k⊥t) from the stress-free marginal
curves are increasing and decreasing functions of ϑf , respectively.

Figure 4 illustrates that identical deductions hold for the CQG-RBC model with
parameterised pumping boundary conditions. Indeed, this asymptotic model is in excellent
quantitative agreement with both the iNSE models illustrated in figure 3. For stress-free
boundary conditions, this result establishes the predicted equivalence between the
CQG-RBC and QG-RBC models.
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Parameterized Ekman boundary layers on the tilted f-plane
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Figure 5. Marginal stability curves with parameterised no-slip pumping conditions on CQG-RBC, for
north–south convection rolls (χ = 0◦) and varying rotational constraint ε = {10−2, 10−3, 10−4, 10−5} (or,
equivalently, E = {10−6, 10−9, 10−12, 10−15}). Underlying translucent grey curves and solid coloured curves
represent the iNSE and CQG-RBC models, respectively. The black dashed line follows the maximal growth
rate from the analytic quasi-geostrophic model, and the underlying blue dashed line is the maximal growth rate
for iNSE with parameterised pumping at ε = 10−5.

Figure 5 illustrates how the marginal stability boundaries for north–south rolls, the
gravest mode, change as a function of ε for the CQG-RBC and the iNSE models with
parameterised pumping boundary conditions (respectively, solid coloured curves and
underlying translucent grey curves). Similar results hold for differing roll orientations.
It is observed that the models are in excellent quantitative agreement, as ε decreases the
transition region is delayed but also extended in logarithmic range. Moreover, and quite
remarkably, significant departures remain for geo- and astro-physically relevant values
such as ε = 10−5 (i.e. E = 10−15) when compared with the asymptotic QG-RBC model
(dotted line). The low-wavenumber departure from the QG-RBC model is consistent
with the prediction detailed in (4.12a,b) indicating transitional wavenumber |k⊥t| ∼ ε1/4

and Rayleigh number R̃at ∼ ε−1/2 and always occurs within the rotationally constrained
regime where R̃a = o(ε−1). Also consistent with (4.12a,b) is the delay in the transitional
values as a function of roll orientation χ , i.e. from north–south to east–west (as seen in
figures 3 and 4).

Figure 5 also illustrates that the loci of maximal growth rate with R̃a ∝ k−1/8
⊥ remains

insensitive to Ekman pumping (see dashed lines). Figure 6 expands on this point by
illustrating a contour map for the growth rate in the R̃a–k⊥ plane. One can observe that
the marginal stability boundary for the asymptotic QG-RBC model strongly constrains
the contours within it borders, however, the O(1) effect of Ekman pumping distorts the
exterior contours located at low wavenumbers. The inset illustrates a cross-section of the
growth rate at fixed R̃a = 300.

Figure 7 illustrates the asymptotic robustness of the parameterised boundary conditions
by tracking the minimum critical values (R̃ac, kc) as a function of ε (specifically the
Taylor number Ta = E−2 = ε−6) for the sample colatitude ϑ = 75◦. It can seen that
parameterising the Ekman layer with pumping boundary conditions (3.16) quantitatively
captures the departure from the asymptotic QG-RBC value (horizontal dashed line) for the
onset of convection to relatively large ε (i.e. small Ta) for all models. In the pertinent limit
ε → 0, the critical values approach the asymptotic result albeit slowly in the case of no-slip
boundaries. For all boundaries, one may visually observe discernible differences between
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Figure 6. Contours of the growth rate for iNSE with no-slip pumping, at ϑf = 0◦, χ = 0◦ and ε = 10−3.
The orange curve shows the marginal stability (where s = 0), and the black dashed curve is the analytic
quasi-geostrophic marginal curve given by (4.6). The blue dots mark the loci of the maximum growth rate
for each value of R̃a. The light blue line shows a slice of the growth rate s at R̃a = 300.

the iNSE with unapproximated boundary conditions and the iNSE with pumping boundary
conditions around Ta = 1010 (i.e. ε ∼ 10−5/3, ε ∼ 10−5). We also observe that results
from the asymptotic CQG-RBC model is in excellent quantitative agreement with those
obtained from the iNSE. However, as ε becomes large, departure from the iNSE model
with exact boundary conditions occurs in an opposite manner to its iNSE counterpart with
pumping boundary conditions. This may attributed to the absence of vertical momentum
diffusion and the unbreakable constraint of geostrophy in the CQG-RBC model.

A broader measure of the relative error between the critical onset of convection for
the unapproximated iNSE problem and that with a parameterised pumping as function
of roll orientation χ and ε is shown in figure 8 for colatitude ϑf = 75◦. We observe that
the error decays with ε across all roll orientations χ . For no-slip boundaries (figure 8a),
we observe that the relative error is insensitive as a function of χ with an evolution to
slightly greater accuracy occurring in the vicinity of north–south rolls χ < 15◦. This is
even more pronounced in the stress-free (figure 8b) case, but we observe a certain degree
of non-monotonicity near the top of the plot at χ = 0.

The eigenfunctions at the critical Rayleigh and wavenumber are shown for a
mid-latitude, ϑf = π/4, χ = π/4, and ε = 10−3 in figure 9. This figure represents a direct
illustration of the relaxation of spatial resolution constraints as a result of the utilisation
of pumping boundary conditions. Only the outer (i.e. interior) solution, v(o), is plotted
on the full domain (first and third rows) since the full iNSE problem and interior iNSE
problem with pumping boundary conditions are visually indistinguishable at this value
of ε except at the boundary. Within the Ekman boundary layer, figure 9(b,d) shows that
the numerically computed full problem (open circles), the outer solution (dashed-dotted
line) and the composite problem from the superposition of inner and outer solutions (solid
line). The composite solutions appear to match quantitatively at leading order. Note that
for no-slip case, u(o), ζ (o) and w(o) are all non-zero on the boundary, but the composite
solution correctly captures the decay to zero. The same is true for w(o) in the stress-free
case.

In the lower row of figure 9, we plot the profiles for ẑ · ∇(u, ζ ) in the stress-free case
instead of just (u, ζ ), since this is the quantity used to set the pumping condition. In the
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Figure 7. Critical reduced Rayleigh number and wavenumber vs Taylor number Ta (= E−2 = ε−6) for rolls
(χ = π/2) at colatitudes ϑf = 0◦ (a,b) and east–west rolls at ϑf = 5π/12 or 75◦ (c,d). The blue curves
correspond to no-slip boundary conditions and the red curves correspond to stress-free boundary conditions.
Solid grey lines indicate solutions to the iNSE without approximation, and solid and dashed coloured lines
correspond to solutions to the iNSE and CQG-RBC models, respectively, with pumping boundary conditions
described in § 3.2. The asymptotic values for the QG-RBC given by (4.8a,b) and kc are shown by the horizontal
dotted line in black.
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Figure 8. Relative error in critical Rayleigh number between the unapproximated iNSE and the iNSE with
parameterised pumping, for ϑf = 5π/12 (or 75◦), plotted over a range of wavenumber angles χ and Taylor
numbers ε−6: (a) no-slip boundary conditions and (b) stress-free conditions.
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Figure 9. Profiles at the critical Rayleigh and wavenumbers for ϑf = π/4, χ = π/4, and ε = 10−3: (a,b) (blue
curves) correspond to no-slip boundary conditions and (c,d) (red curves) correspond to stress-free boundary
conditions. The solid lines show the interior solution on the full domain, and (b,d) show the Ekman boundary
layer varying on the O(ε3/2) scale. The open circles are the numerically computed full problem, the solid line
is the numerically computed interior solution with pumping boundary conditions, and the × are the composite
solution (the numerically computed interior plus the analytic boundary layer).

immediate vicinity of the boundary, this shows slight differences between the solution
with pumping and the exact stress-free boundary conditions that were not apparent if
the derivative is not plotted. Figure 10 also illustrates this results as a hodograph of
∂zu vs ∂zv (the no-slip result u vs v is also included in the left plot). For the stress-free
case, there is an observable O(ε1/2) error in ∂z(u, v) between the full and composite
solutions due to the fact that the boundary condition (2.11b) is only satisfied to leading
order in the composite solution. This may be understood as follows. Recall, a stress-free
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Figure 10. Hodographs of the horizontal velocity in the Ekman layer for no-slip (a) and stress-free
(b) problems for ε = 10−4, ϑf = π/4, χ = π/4 and critical R̃a and wavenumber. For the no-slip case,
u is plotted against v, but for stress-free case we show ∂zu vs ∂zv. The open circles denote the numerically
computed full problem, and the × are the composite solution (the numerically computed interior plus the
analytic boundary layer).

boundary requires

ẑ · ∇v ≡ (−γ ∂y + ε∂Ω)v
(o) + (−γ ∂y + δε−1/2∂μ)v

(i) = 0. (4.13)

However, pumping boundary conditions are deduced from the leading-order expression

(−γ ∂y + ε∂Ω)v
(o) + δε−1/2∂μv(i) = 0, (4.14)

the difference being O(γ ∂yv
(i)) = O(ε1/2) given that v(i) = O(ε1/2).

5. Strongly nonlinear solutions

5.1. The QG-RBC model
The QG-RBC equations (2.14) admit exact steady nonlinear single-mode solutions of the
form

(w0, θ1) = (ŵ, θ̂ )(Ω)h(x, y)+ c.c., ψ0 = (ψ̂(Ω)h(x, y)+ γ

k2
⊥

ŵ(Ω)hx(x, y))+ c.c.,

(5.1a)
with

θ̂ (Ω) = − σ

k2
∇
(∂ΩΘ̄0 − 1)ŵ(Ω). (5.1b)

Here h(x, y) satisfies the planform equation ∇2
⊥h = −k2

∇h. Single-mode solutions require
the Jacobian advection terms in the QG-RBC (2.14) be identically zero under this ansatz.
We note, the only such solutions for γ /= 0 are roll solutions h(x, y) = exp(ikxx + ikyy).
Single-mode solutions are known to be unstable to fully 3D multimodal perturbations
(Sprague et al. 2006), however, they provide a skeletal framework for dynamical
trajectories within phase-space and, thus, highly influence the evolution of realised
solutions. Here again, the dependence of ψ within the expression for vertical motions
ŵ(Ω) is a reflection of the non-axial buoyant driving of axial vorticity. The amplitudes
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ŵ(Ω), ψ̂(Ω) and mean temperature gradient ∂ΩΘ̄ − 1 satisfy the coupled ODE system

∂Ω ŵ + k2
⊥k2

∇ψ̂ = 0, ∂Ωψ̂ −
(

R̃aNu

k2
∇ + 2σ 2|ŵ|2 − k4

∇
k2
⊥

)
ŵ = 0, (5.2a,b)

∂ΩΘ̄0 − 1 = − k2
∇Nu

k2
∇ + 2σ 2|ŵ|2 , (5.2c)

with Nusselt number

Nu =
[∫ 1

0

k2
∇

k2
∇ + 2σ 2|ŵ|2 dΩ

]−1

(5.2d)

measuring the non-dimensional heat transport. Without loss of generality, the dependency
of σ can be absorbed by rescaling amplitudes according to (w0, ψ0, θ1) → (w0, ψ0, θ1)/σ .
System (5.2) is accompanied with impenetrable boundary conditions ŵ(0) = ŵ(1) = 0.
Equations (5.2a,b) may also be collapsed to

∂ΩΩ ŵ + k2
⊥k2

∇

(
R̃aNu

k2
∇ + 2σ 2|ŵ|2 − k4

∇
k2
⊥

)
ŵ = 0, w(0) = ŵ(1) = 0. (5.3a,b)

The single-mode analysis of Grooms (2015) for the upright QG-RBC may be extended
to the tilted f -plane for both the QG-RBC with impenetrable boundaries and CQG-RBC
with stress-free pumping conditions. Ensuring that all terms in (5.3a,b) are dominant at
the midplane Ω = 0.5 requires

|ŵ(0.5)|2 ∼ k2
⊥

k4
∇

R̃aNu, =⇒ ∂ΩΘ̄(0.5)− 1 ∼ k6
∇

k2
⊥

1
R̃a
, ε > 0. (5.4)

The latter result follows from (5.2c). Along loci k⊥ ∝ R̃aα , Grooms (2015, (33) and (41))
has established the sharp bounds

R̃a1+2α ≤ Nu ≤ R̃a1+2α ln(R̃a1−4αNu) ∼ R̃a1+2α+ε (5.5)

for −1/2 ≤ α ≤ 1/4 in QG-RBC, which imply

∂ΩΘ̄(0.5)− 1 ∼ R̃a4α−1
. (5.6)

We note that the analysis for the CQG-RBC with no-slip pumping boundary conditions
remains an open problem. Thus, as points of reference for comparison the QG-RBC (or
CQG-RBC with stress-free boundary conditions) give

k⊥ = fixed, α = 0, =⇒ ∂ΩΘ̄ ∼ R̃a−1
,

k⊥ = R̃a1/4
, =⇒ ∂ΩΘ̄ ∼ const.

⎫⎬⎭ (5.7)

The scaling exponent α = 1/4 corresponds to the maximal heat transport for the
single-mode solutions in QG-RBC and provides the upper bound Nu ∼ R̃a3/2 compared
with the fixed wavenumber case where Nu ∼ R̃a.
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Parameterized Ekman boundary layers on the tilted f-plane

5.2. The CQG-RBC model
Single-mode solutions to the CQG-RBC model of the form (5.1) may be pursued upon
neglecting nonlinear vertical advection of temperature fluctuation in (3.22c) that are
significant in the thermal wind layer. This results in the complex-valued system

∂Ω ŵ + k4
⊥(1 + γ 2 sin2 χ)ψ̂ = 0, (5.8a)

∂Ωψ̂ + k2
⊥(1 + γ 2 sin2 χ)2ŵ = R̃a

σ
θ̂, (5.8b)

σ(∂ΩΘ̄0 − 1)ŵ = [ε2∂ΩΩ − k2
⊥(1 + γ 2 sin2 χ)− 2iεγ k⊥ sinχ∂Ω ]θ̂ , (5.8c)

σ∂Ω(ŵθ̂∗ + c.c.) = ∂ΩΩΘ̄0. (5.8d)

System (5.8) is accompanied with fixed-temperature conditions θ̂ (0) = θ̂ (1) = 0, and
no-slip pumping boundary conditions given in (3.16). Recall that for stress-free pumping
boundary conditions the CQG-RBC is equivalent to the QG-RBC.

5.3. Results: fully nonlinear single-mode solutions
Investigations of single-mode solutions to the QG-RBC model (5.2) have been performed
by Grooms (2015) and Julien & Knobloch (1998) in the absence of Ekman pumping for
the upright and tilted f -plane cases, respectively. Julien et al. (2016) explored the impact
of pumping boundary conditions for upright RRBC. Such solutions are asymptotically
accurate but unstable solutions to the RRBC problem in the rapidly rotating limit ε → 0.
In totality, at a fixed R̃a these solutions may be interpreted as the skeletal structure of
the high-dimensional phase space that all realised solution trajectories must navigate.
Hence, under the assumption that they possess a close proximity to the realised fluid
state, the global properties of single-mode solutions are informative. Here, fully nonlinear
single-mode roll solutions are investigated in the R̃a vs k⊥ plane via a simulation suite
of the CQG-RBC model (5.8) with no-slip pumping boundary conditions at arbitrary ϑf .
This is compared with an identical simulation suite for the QG-RBC model that has been
established as equivalent to the CQG-RBC model with stress-free pumping conditions.

In figure 11, contour plots are illustrated at ε = 10−2 for Nu, Re = max(|ŵ|), and
midplane mean temperature gradient ∂Ω T̄ = ∂ΩΘ̄0 − 1 obtained from the CQG-RBC
model on the tilted f -plane for north–south rolls at any arbitrary ϑf < 90◦, (figure 11a–c).
We recall, based on the colatitudinal Rayleigh number R̃a, north–south rolls have the same
linear and nonlinear stability properties at any given ϑf . As a function of R̃a at fixed k⊥ it
can be observed from the contours that Nu and Re are monotonically increasing functions
of R̃a while ∂Ω T̄ is a monotonically decreasing function of R̃a indicating approach to an
isothermal interior. In figure 12, the opposite bookend case for east–west rolls is illustrated
at colatitudinal location ϑf = 75◦ and display identical features to the north–south case in
figure 11 albeit for delayed R̃a due to the increased stability of this roll orientation (see
figure 12(a–c)). Note that R̃a/R̃ac < ε−1, so we are still within the domain of validity.

The Nu, Re and ∂Ω T̄ values that appear in figures 11(a–c) and 12(a–c) are plotted
as a function of R̃a along different loci in figures 11(d–f ) and 12(d–f ), respectively
(coloured lines). These values are taken along the two loci highlighted in figures 11(a–c)
and 12(a–c): maximal linear growth rate (which is proportional to k−8

⊥ ) and extremal
values kmax achieved at a fixed Ra, as well as along fixed value kc⊥. These loci
are motivated by linear marginal onset, recent simulations of the QG-RBC that find
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Figure 11. The CQG-RBC model with no-slip pumping boundary conditions evaluated on tilted f -plane for
north–south rolls at any arbitrary ϑf < 90◦ with ε = 10−2. (a–c) Contours of Nu, Re and ∂Ω T̄ at the midplane
in the k⊥ vs R̃a plane. The solid blue denotes the marginal stability curve. For comparison, the dotted black
line is the analytic quasi-geostrophic marginal stability curve where pumping is omitted. (d–f ) Plots of Nu,
Re and ∂Ω T̄ as a function of R̃a along loci for maximal values at each R̃a (red solid line), maximal linear
growth rate s (yellow curve) and fixed critical wavenumber k⊥c (blue dotted line). For comparison, results for
the quasi-geostrophic model along identical loci are illustrated (grey lines).
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Figure 12. The CQG-RBC model with no-slip pumping boundary conditions evaluated on the tilted f -plane
at ϑf = 75◦ for east–west rolls (χ = 90◦) with ε = 10−2. Labelling is as in figure 11.
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Parameterized Ekman boundary layers on the tilted f-plane

that integral length scale of convection follows the maximal growth rate (Oliver
et al. 2023), and exploration of optimal global transport of heat and momentum.
For comparison, results along the equivalent loci are given for the QG-RBC model that
omits pumping (grey lines). As established, this is equivalent to the CQG-RBC with
stress-free pumping conditions. It is evident that Ekman pumping in presence of no-slip
boundaries significantly enhances the global heat and momentum transport as measured
by Nusselt number Nu and Reynolds number Re. It is observed that the lineplots for
Nu in the CQG-RBC model are insensitive to the particular choice of locus. Thus, we
consider fixed k⊥ and kmax as the representative markers, and plot for guidance scaling
lines Nu ∼ R̃a1 and Nu ∼ R̃a3/2, Re = |ŵ(0.5)| ∼ R̃a1 and ∂ΩΘ̄ ∼ Ra−1 established for
the QG-RBC model (see (5.7)), and by experiment in Bouillaut et al. (2021). It can be
seen that curves associated with loci of k⊥ fixed and extrema for Nu, Re and ∂Ω T̄ are in
compliance with these estimates. Thus, the impact of Ekman pumping appears to reside in
the prefactor, consistent with the findings of Plumley et al. (2017). However, instantaneous

scaling exponents along curves of maximal growth rate k⊥ ∝ R̃a−1/8 appear consistently
smaller for Re and ∂Ω T̄ . This is an expected result given that the single-mode theory is
one that captures nonlinear stationary states and, thus, excludes consideration of maximal
growth solutions. Consequently, loci tracking maximal values of contours at fixed R̃a
constitute upper bounds.

These qualitative features illustrated in figures 11 and 12 extend to cases with decreasing
ε across all colatitudes ϑf < 90◦ (see also Julien et al. 2016). As with the linear results, Nu
and Re vs R̃a for the CQG-RBC model experiences a delayed departure from that observed
in the QG-RBC model as ε decreases. However, the transition to a power law scaling is
increasingly abrupt as ε decreases and the larger values of Nu and Re are observed as in
Julien et al. (2016).

6. Discussion and conclusion

The boundary-layer reduction of RRBC in the limit of rapid rotation is considered on the
tilted f -plane located at arbitrary colatitude ϑf < 90◦. As a consequence of gyroscopic
alignment occurring through the Taylor–Proudman constraint, spatial variations of fluid
structures along the axis of rotation are observed to be O(H) as compared with O(E1/3H)
along ẑ (i.e. radial) direction. This motivates the use of a non-orthogonal coordinate
system representation where the upright coordinate aligns with the rotation axis as opposed
to gravity. A matched asymptotic analysis is performed on the iNSEs that govern the
fluid dynamics. Three regions are identified and matched asymptotically: a geostrophic
interior whose velocity and thermal fields are rectified by an inner Ekman boundary
layer of O(E1/2H) and a middle thermal wind layer of O(E1/3H), respectively. The
analysis reveals that these boundary layers obey classical equation sets but evolve with the
boundary-layer coordinates that align with the rotation axis. Specifically, an analysis of
the Ekman layer yields the fourth-order ODE system resulting from the Coriolis–viscous
force balance (Greenspan 1969). Mass continuity then uncovers parameterised boundary
conditions which serves as the kinematic condition that circumvents the numerical spatial
resolution requirements of a viscous layer and captures the effects of Ekman pumping and
suction. Closure of the iNSE system that utilises this kinematic condition requires it be
supplemented with geostrophic boundary conditions serving as the mechanical boundary
conditions for the interior dynamics. By contrast, for the non-hydrostatic quasi-geostrophic
equations (i.e. QG-RBC and CQG-RBC) constituting the asymptotic reductions of the
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iNSE in the limit of rapid rotation, no mechanical boundary conditions are required. The
thermal wind layers are in geostrophic and axial hydrostatic balance, the latter balance
ensuring thermal fluctuations that maintain fixed temperature boundary conditions.

In the presence of no-slip boundaries, the parameterised boundary condition is the
vertical velocity/vertical vorticity pumping relationship, w ∝ ε1/2ζ , or in dimensional
terms, w∗ ∝ (ν/2� cosϑf )

1/2ζ ∗. This is known in the literature through its application to
large-scale atmospheric and oceanic flows (Vallis 2006) but less familiar to convectively
driven flows. Linear stability investigations of the iNSE and the CQG-RBC with
parameterised pumping boundary conditions reveal that they are a quantitatively accurate
alternate to the unapproximated problem where Ekman boundary layers are unfiltered.
Importantly, to the best of the authors’ knowledge, it is demonstrated for the first time that
Ekman pumping strongly destabilises large-scale (low-wavenumber) convective modes
and, thus, significantly extended the spatial range of convectively unstable modes at fixed
R̃a. It is established that this occurs when pumping velocity w ∼ O(1) which is always
achieved in the quasi-geostrophic regime established to have the upper bound ζ = o(ε−1).
This implies some caution should be taken not to truncate the dynamical regime in
selecting the aspect ratio of computational domains in plane-layer investigations of RRBC.

For stress-free boundary conditions, the asymptotic analysis uncovered the vertical
velocity/vertical gradient of vertical vorticity pumping relationship, w ∝ εẑ · ∇ζ , or, in
non-dimensional terms, w∗ ∝ (ν/2� cosϑf )ẑ · ∇∗ζ ∗. Linear stability theory of the iNSE
and CQG-RBC with pumping boundary conditions again reveal excellent quantitative
agreement with the iNSE without approximation. In fact, it is found that all three of these
models are accurately captured by the QG-RBC constrained only by the requirement of
impenetrable boundary conditions. This is supported by the observation that the pumping
velocity always remains subdominant in the quasi-geostrophic regime where ζ = o(ε−1).
Thus, Ekman boundary layers while present remain passive. The pumping boundary
conditions for this case thus serve solely as a means of filtering these layers thus providing
relief on the numerical spatial resolution requirements.

Results from DNS with imposed pumping conditions will be pursued in the future,
as this has the potential to reduce computational cost by removing the need to resolve
the O(Ek1/2H) Ekman boundary layer. As an intermediate step, results for single-mode
solutions to the CQG-RBC model were presented for both no-slip and stress-free boundary
conditions. It is demonstrated that pumping in the presence of no-slip boundaries greatly
enhance the global heat and momentum transport properties of the fluid layer to the
remarkable extent that an O(E1/2H) layer generates �Nu,�Re = O(1). We also see that
the heat transport remains of similar magnitude across tilt angles, though it occurs on a
shifted domain of R̃a numbers. We note that the single-mode solutions, while instructive,
omit an important phenomenon, i.e. the lateral stirring and mixing of thermal field. As
such, the mean temperature field does not saturate to an unstable profile as R̃a → ∞ as
observed in fully nonlinear simulations (Julien et al. 1996; Sprague et al. 2006; Julien
et al. 2012). Instead, it continues to an isothermal interior; ∂ΩT ∼ R̃a−1 for stress-free
boundaries. This feature is inherent to the single-mode approximation including recent
works of Barker, Dempsey & Lithwick (2014) and Currie et al. (2020) based on the original
work of Stevenson (1979) that report mean temperature gradient power laws that evolve to
isothermality.

Acknowledgements. K.J. thanks Dr G. Vasil for fruitful interactions and discussions and Dr J. Aurnou for
useful remarks on the manuscript.
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Appendix A. Mixed vorticity–velocity formulation

The primitive variable formulation of the linearised iNSE (2.8) in the main text is of
ninth order in Ω . Specifically, the continuity equation requires the imposition of a ninth
auxiliary boundary condition applied to the pressure function p. Instead of pursuing this
option, we numerically solve the following modified set of equations for the variables
u = ux̂ + (v − γw)ŷ + w/η3η̂, U⊥ = Ugx̂ + Vgŷ, ω = ω1x̂ + ω2ŷ + ζ/η3η̂, p and θ ′:

ω1 = ∂y(w + γ v)− ε∂Ωv, (A1a)

ω2 = −∂x(w + γ v)+ ε∂Ωu, (A1b)

ζ = ∂xv − ∂yu, (A1c)

Ug = ε−1(u + ∂yp), (A1d)

Vg = ε−1(v − γw)− ∂xp, (A1e)

∂tu − Vg = (ε∂Ω − γ ∂y)ω
2 +

(
εγ ∂Ω − 1

η2
3
∂y

)
ζ, (A1f )

∂t(v − γw)+ 1
η2

3
Ug = −ε∂Ωω1 + γ ∂xω

2 + 1
η2

3
∂xζ + γ ∂Ωp − γ R̃a

σ
θ, (A1g)

∂tw + γUg = 1
η3
(γ ∂xζ − ∂yω

1 + ∂xω
2)+ ∂Ωp + R̃a

σ
θ, (A1h)

∂tθ − w = 1
σ

(
∂2

x θ + 1
η2

3
∂2

y θ − 2εγ ∂y∂Ωθ + ε2∂2
Ωθ

)
, (A1i)

∂xUg + ∂yVg + ∂Ωw = 0. (A1j)

This is a closed formulation that remains eighth order, i.e. compatible with either the
number of physical or pumping boundary conditions presented in table 1.

A.1. Boundary conditions
In the mixed vorticity–velocity formulation, we may avoid setting boundary conditions
on the mixed derivative ẑ · ∇ by using the following identities. For the unapproximated
stress-free iNSE problem,

ẑ · ∇u = ω2 + γ ζ on Ω = 0, 1, (A2a)

ẑ · ∇v = ω1 on Ω = 0, 1, (A2b)
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so the mixed boundary conditions on u and v become Dirichlet conditions on ω1 and
ω2 + γ ζ . For the parameterised iNSE stress-free problem,

ẑ · ∇ζ = −(∂xω
1 + ∂y(ω

2 + γ ζ )), (A3)

so the pumping boundary condition (3.16b) can be formulated as a Dirichlet condition on
ω1, ω2 and ζ .

Appendix B. Numerics

B.1. Linear problems
For the linear stability problem, we assume solutions of the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1

ω2

ζ

u
v

w
p
θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω̂1

ω̂2

ζ̂

û
v̂

ŵ
p̂
θ̂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
exp(st + ikxx + ikyy). (B1)

We expand the fluid variables in a recombined Chebyshev basis which makes applying
boundary conditions sparse. For almost all variables, we use the expansion

N−1∑
n=0

c(n)ϕn(r), (B2)

where r = 2Ω − 1 ∈ [−1, 1], and ϕn is a Dirichlet bases (Burns et al. 2020), i.e. a
Chebyshev Galerkin polynomials given by

ϕ0(r) = T0(r) = 1, ϕ1(r) = T1(r) = r, ϕn(r) = Tn(r)− Tn−2(r) for n ≥ 2,
(B3a–c)

where Tn(r) = cos(n arccos(r)) are the standard Chebyshev polynomials. Then ϕn(±1) =
0 for n ≥ 2, so all that is required to enforce a Dirichlet boundary condition at the top and
bottom are the equations

c(0) ± c(1) = 0, (B4)

independent of N. For the stress-free pumping boundary conditions we require a mixed
derivative ẑ · ∇, so we use the basis

ψm = Tm, m = 0, 1, 2, 3, (B5a)

ψm = Tm−4 − 2(m − 2)
m − 1

Tm−2 + m − 3
m − 1

Tm, m = 4, 5, . . . ,N − 1, (B5b)

(Julien & Watson 2009). In this basis, ψm(±1) = ψ ′
m(±1) = 0 for m ≥ 4, so

(ẑ · ∇)
N−1∑
m=0

c(m)ψm

∣∣∣∣∣
r=±1

=
N−1∑
m=0

c(m)(2ε∂r − ikyγ )ψm

∣∣∣∣∣
r=±1

= 2ε(c(0) ± c(1) + c(2) ± c(3))− ikyγ (c(1) ± 4c(2) + 9c(3)), (B6)

so enforcing this boundary condition is also independent of N. We also employ a
quasi-inverse technique to treat the vertical derivatives.
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B.2. Nonlinear problems
We solve the nonlinear single-mode problem using MATLAB’s bvp5c. This requires a
first-order formulation. In order to ensure real-valued variables, we write the roll ansatz as
sines and cosines,

w0 = wc cos(kxx + kyy)+ ws sin(kxx + kyy), (B7a)

θ1 = θc cos(kxx + kyy)+ θs sin(kxx + kyy), (B7b)

ψ0 = ψc cos(kxx + kyy)+ ψs sin(kxx + kyy)+ γ

k2
x + k2

y
∂xw0, (B7c)

substituted into the CQG-RBC (3.22) yields the real-valued system

∂Ωws = −k2
p(k

2
x + k2

y)ψs, (B8a)

∂Ωwc = −k2
p(k

2
x + k2

y)ψc, (B8b)

∂Ωψs = R̃a
σ
θs − k4

p

k2
x + k2

y
ws, (B8c)

∂Ωψc = R̃a
σ
θc − k4

p

k2
x + k2

y
wc, (B8d)

ε2

σ
∂2
Ωθs = σws(wcθc + wsθs)− Nuws + k2

p

σ
θs − 2εγ ky

σ
∂Ωθc, (B8e)

ε2

σ
∂2
Ωθc = σwc(wcθc + wsθs)− Nuwc + k2

p

σ
θc + 2εγ ky

σ
∂Ωθs. (B8f )
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