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Abstract. Let a be an automorphism of a finite von Neumann algebra and let H (a)
be its Connes-Stgrmer’s entropy. We show that H(a)=0 if a is the induced
automorphism on the crossed product of a Lebesgue space by a pure point spectrum
transformation. We also show that H is not continuous in « and we compute H(a)
for some a.

0. Introduction

Let M be a finite von Neumann algebra with separable pre-dual and with faithful
normal normalized trace 7, and let # be an automorphism of M preserving the
trace 7. In [4] Connes & Stgrmer have defined a notion of entropy H(8) of 6. This
notion extends the classical entropy of Kolmogorov in the sense that, if (X, B, u)
is a probability space and T is an automorphism of this space with entropy A(T)
and if we also denote by T the automorphism induced on the abelian algebra
A=L"(X, u), then

H(T)=h(T).

However, the following important question is still open. Let M be the crossed
product of A by T and 6 be the inner automorphism of M induced by T. Is it true
that H(#) = h(T)? Our main result is a partial answer (see theorem 1.9):

THeEOREM. If T'is ergodic and has pure point spectrum, then H(8) =0, so H(0) = h(T).

One of the ingredients of our proof is the following result (see proposition 1.7):
endow the group Aut M of automorphisms of M with the topology of pointwise
convergence in M.

PROPOSITION. Let G be a compact subgroup of Aut M. Then, forallge G, H(g) =0.

The compactness of G is easily seen to be essential.
In the second part of this paper we prove the following, which is a generalization
of a result of Abramov (see theorem 2.1).
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PROPOSITION. Let R be the injective factor of type 11, and let o :R—>AutR be a
continuous homomorphism. Then

H(a,)=|t|H(a;) forallteR.

This proposition might lead one to believe that the entropy is continuous (as a map
from Aut M to R.). Indeed, Connes has asked whether this is true for the norm
topology on Aut M. The answer is that it is never continuous when M is of type
II, (see corollary 3.2).

PROPOSITION. The map H:Aut M >R, is not continuous for the norm topology on
Aut M.

This proposition and its proof remain true for the new notion of entropy introduced
in [5].

As in the classical case, the notion of entropy is an invariant which is far from
complete. At the end of this paper we give an example of an uncountable family
(6r)rer, of automorphisms of the factor R which have zero entropy, are all aperiodic
[3, p. 293] (and hence are all outer conjugate [3, theorem 2]) but are not pairwise
conjugate.

Throughout this paper we shall use the notation of [4] for entropy and relative
entropy. If N is a finite-dimensional subalgebra of M, we denote by Ex the unique
faithful normal conditional expectation of M on N which is 7-preserving.

1. Entropy and compact groups
Let M be a type II; von Neumann algebra with separable pre-dual and let 7 be a
faithful normal trace on M with 7(1) = 1.

LEMMA 1.1. Let G be a topological group and o : G > Aut M be an action continuous
for the topology of pointwise convergence in 2-norm on AutM and such that
T(ag(x))=7(x) for all x e M. Then, for all compact subsets K of M in the 2-norm
topology, we have

supllx —a (x).»0 ifg-e,
K

where e is the neutral element of G.
Proof. Let € >0 be given. For any x e X let
B(x,e)={yeM:|x—yl.<e}.
Since K is compact, there exist x1, . .., X, € K such that
Kc L:"Jl B(x;, €).

By hypothesis on a, there exists a neighbourhood W; of e in G such that, for
allge W,
lxi — ag(xill. <e.
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For all x € B(x;, €) we have:
Ix — gl =2llx —xifla +|lx; — @ (x:)p <3¢ if ge Wi
Let
W= W.
i=1

We obtain
flx — ag(x)l2<3e
forall xe K and all ge W. d

Remark 1.2. When M is a II; factor with separable pre-dual, the topology of
pointwise convergence in 2-norm is equivalent to the p-topology, so to the u-
topology {7, corollary 3.8] and to the pointwise strong convergence on Aut M
(2, p. 541].

Let F be the set of all finite dimensional von Neumann subalgebras of M.
LEMMA 1.3. Let N and P be in F, then H(N|P)=0 if and only if N < P.
Proof. Let S, be the set

Si={x=(x)ien: x; € M., Y x; =1 and x; = 0 for almost all i}.
By definition,
H(N|P)= f:lé) ZI: ™Ep(x;) —™EN(x:),

where 7 is the function x €[0, o0 [»> —x log x e R (see [4]).

Assume that H(N|P)=0 and let x = (x;) € S, x; € N. By Jensen’s inequality, we
have

™mEp(x;)=m(x;) foralli

[4, p. 293], so

¥ ™Ep(x;)—(x;) = 0.

As H(N|P) =0, we obtain
Y ™Ep(xi)—m(x;) =0,

hence
™Ep(x;)=m(x;) foralli.
Let B; be the abelian von Neumann subalgebra of P generated by Ep(x;) and 1.

We have
EB;EP(xi) = Ep(x;).
So
Ep,(x;) = Ep(x:),
hence

™Ej, (x:)=7n(x).
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By [10, inequality 9.5, p. 84], we obtain x; € B;, s0 x; € P for all i and Nc P,
The converse implication is clear. g
PROPOSITION 1.4. The map d . F X F >R,
d(N, P)=H(N|P)+H(P|N)
is a distance on F.
Proof. 1t is clear that d is positive and symmetric; the triangular inequality follows
from [4, property G]; and, if d(N, P)=0, then N = P by lemma 1.3. O

ProprOSITION 1.5. Let K be a compact set in F. Then, for any sequence (N;)jens
N; e K, we have

1
lim —H(Ny,...,N,)=0.

n>oo n

Proof. Let € >0 be given. There exists an integer m >0 such that, for all n =m,
there exists i <m with d(N,, N;)<e¢; so

H(Nl, ceey Nn)—H(Nl, ceey Nn_l)SH(anNi)<£
[4, property F). Hence

1 1 n-1
;H(Nl, . ..,N,,)=;['_Z (H(N1,...,Nit)—H(Ny,...,N))+H(Ny, .. .,N,,.)]

S%[(.‘l —m)e+H(N;y,...,Nu)).

As ¢ is arbitrary, we obtain the conclusion. O

Let G be a subgroup of Aut M, compact for the topology of pointwise convergence
in 2-norm on Aut M and such that 7(g(x))=7(x) forallxe M and all ge G.
LEMMA 1.6. For all N € F, the closure in F of the set {g"(N): n e N} is compact.

Proof. Let (ni)ien be a sequence of positive integers. There exists a subsequence
of (ny), still to be denoted by (n;), such that (g"<) converges for the topology of
uniform convergence in 2-norm on compact sets of M (lemma 1.1). Hence the
sequence (g"<(N)) converges in F by [4, theorem 1]. O
The following proposition is an immediate consequence of proposition 1.5 and
lemma 1.6.

ProvrosITION 1.7. With the above assumptions we have H(g) =0 for all g€ G.

Let (X, %, u) be a standard Borel space with u(X)=1 and let T be an ergodic
automorphism of X preserving u. Let

R=L"(X,pu)*xrZ
be the hyperfinite II, factor, the crossed product of X by T. Let A be the canonical
image of L™(X, 1) in R, E be the conditional expectation of R on A, and U be
the unitary of R corresponding to the translation by 1 in Z. Set

R0={yeR: y=1Y a,U" a,.eA,JCZ,Jﬁnite}.

neJ
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For any fe L'(X, u) and any y € R,, the map ¢, defined by
}y.5(x) =J E(y*xy)f du
X

is a o-weakly continuous linear functional on R.

ProrosITION 1.8. The linear space generated by ¢,z y € Ro, f€ LY(X, u) is dense
in R,.
Proof. See (1, §1.2]. |
THEOREM 1.9. Suppose that T has pure point spectrum. Then H(Ad U)=0, so
H(Ad U)=h(T).
Proof. By [11, theorem 3.4, p. 68] we can suppose that X is a compact abelian
group and T is a rotation on X; i.e. there exists g € X with T = T,, where
T,(h)=g-h forallhelX.
As X is abelian, we have
T.T, =TT, forallkeX.

Hence T, extends to an automorphism 6; of R with

0(a)=Te(a) forallacA
and
0. (U)=U.

We shall show that the action of X on R given by k € X - 6, € Aut R is continuous
for the p-topology.

Let
y= é bU"eR,
and
x= _Eooa,,U"eR’ 4, cA.
Then
y¥xy = Z U™"b¥a,U"bU"
ifn
= ,.IZ" T.™ (b¥a,) T2 (b)U" "™,
Thus -
E(y*xy) =‘_Zi T ) T3 () T3 (@nn)
and )

E(y*6c(x)y) =% T (6F) T (b)) T " (Ti(@n,—n)).

https://doi.org/10.1017/50143385700001358 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700001358

424 O. Besson

For fe L'(X, ) we obtain
Busle =600 = [ [S T O T )T @ = Talan o) |f s
XLij
Hence

|d’y,f(x - 0k(x))| SZ ”b,” “b]” '[X |Tg"i (a ni~n; Tk (a n.-—ni))”f] dl"'

and
|y r(x — 6c(x))}]>0 whenk e,

where ¢ is the neutral element of X.

Clearly, the same result remains true for all finite linear combinations of ¢, .
So, by proposition 1.8, the action k - 6y is continuous for the p-topology.

Hence, from remark 1.2 and proposition 1.7, we have that

H(6,)=0 forallkeX

and, as 6, = Ad U, we obtain the conclusion. |

2. Entropy of a flow
In this section we prove the following theorem:

THEOREM 2.1. Let (a.);cr be a one-parameter group of automorphisms of the
hyperfinite 11, factor, continuous for the u-topology. Then
H(a,)=|t|H(a;) forallteR.

Proof. As H(6)= H(@™), for all #c Aut R, we can suppose that r>0. As in
[8, p. 127], we shall prove that, for 0 <s <1,

H(a,)=(t/s)H (as).

Let m be a positive integer and let N be a finite-dimensional von Neumann
subalgebra of R. We denote by k(n) a positive integer such that

nt=kn)s<(n+1)
and by r(p) the integer such that
r(p) - s/m=pt<(r(p)+1)s/m.
For k = k(n) we see that
H(N,a,(N),...,an(N)=H(N, ¢m(N), ..., Ckm+m—1)s/m(N))

+ 3 H(@nVlaripn(N).

But

H (et (N)|@ (pysm(N)) = H(ax (N)|N),
where

A=pt—r(p)s/m and O0=A<s/m.

By remark 1.2 and lemma 1.1, we can suppose that («,) is continuous for the
topology of uniform convergence on compact sets of R in the 2-norm topology.
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So, for any € >0, there exists m sufficiently large such that
H(a,(N)IN)<e
[4, theorem 1]. Hence
km+m-—1 1
n km+m-—1
XH(N, ..., &@m+m-1)sym(N))+ €.
Moreover, if n >0, k(n)—> o0 and k(n)/n > t/s. Hence

%H(N, aN), ..., en(N)=

t
H(N, a;) =7 mH(N, aym)+e.
Let N be such that

H(a,)<=H(N, a;)+¢.
Then

t
H(at)SH(N, ar)+8 S;mH(N, as/m)+25

t
s;— mH () +2¢

=ffnag+2&

because R is hyperfinite [4, remark 6]. Since ¢ is arbitrary, we obtain
t
H(a,)S;H(as).
Let g be an integer such that 0 <t/q <s. By the above statement we have

H(as)s‘—:qH(a,/q) =§ H ().

Hence
t
H(a,)=;H(as). O
3. Non-continuity of the entropy
Here we prove that the map
6ecAutM->H(0)eR,

is not norm continuous.

PROPOSITION 3.1. The set of periodic unitaries of M is dense in the group of all

unitaries of M in the norm topology.

Proof. If n is a positive integer, write
wn i =€xp 2ikmw/n)

and

Qi ={weC: w=exp (it) with teR and 2ikm/n <t <2i(k + 1)7/n}

(k=0,...,n-1).
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Define a Borel function F, on the unit circle S’ of C by
F.z2)=w. ifz€Q,.
Then
[Fo(2) = 2=, = |0n,1 — @nol
for each z € S'. Obviously,

im g, =0.

n-—»oco

Let u be a unitary in M. For each integer n, let
u, =F,(u).

Then u, is a periodic unitary of M and
a

lim flun —ull= .l.l-r}}o €, =0.

COROLLARY 3.2. If M is a type 11, von Neumann algebra, the map H : Aut M-R,,
6 > H(0) is not norm coniinuous.
Proof Since M is of type I, it contains the hyperfinite 11; factor R.Let T and U
be as defined just above proposition 1.8 and suppose that A(T)>0. Then
HAd U)=h(T)>0.
Hence there exists U unitary of M with H(Ad U)>0. By proposition 3.1, there
is a sequence (v, ) of periodic unitaries of M such that
lU~v,[>0 asn->o0,
sO
IAd U—-Adv,[|-0 asn-oo.
As H(Ad v,) =0 for all n, we obtain the conclusion. O

4. An uncountable family of automorphisms
In this section we give an uncountable family of aperiodic automorphisms with

zero entropy.
Let (X, %, u) be a standard Borel space with u(X)=1 and let T be an ergodic
automorphism of X preserving u. Let R =L*(X, u) X+ Z, U and A be as defined

just above proposition 1.8.
For t€[0, 1], let
x.=exp Rint)eS' =27
and let V, be the unitary operator on L*(Z, LA (X, u)) defined by
Vié(n)=x."é(n).
For any a € A we have
V,aV¥ =a

and
‘/tUn V;k — XrnUn
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for all n € Z, so the map

8.(x)= VxV¥
is an automorphism of R. The action 6 of §' on R so defined is called the dual
action (see [9]). We note that @, is not ergodic and that the system (R, 6, 7) is not

asymptotically abelian in mean for any ¢ [6, definition 1, p. 12], where 7 is the
canonical trace on R.

PROPOSITION 4.1. The dua: action is continuous for the topology of pointwise strong
convergence on Aut R.

Proof. See [9, p. 257]. O
From this proposition, remark 1.2 and proposition 1.7 we deduce:

CoROLLARY 4.2, For all te{0, 1[, H(6,)=0.

We shall denote by P(T) the point spectrum of T.

PROPOSITION 4.3. For t€[0, 1], 6, is an inner automorphism of R if and only if
x: =exp (2imt)e P(T).

Proof. Assume that 6, is inner, i.e. there is v unitary in R such that

6, =Adv.
As 6,(a)=a for all ac A, we have v A because A is maximal abelian in R.
Moreover,
oUv*=x7'U
S0
T(v)=xw,

hence x, € P(T).
Conversely, assume that x,€ P(¢f) and let f e L¥(X, u) be an eigenfunction
corresponding to the eigenvalue x,. We have

|f(Tw)] = x| f(@)| =] f(w)]

for almost all w € X. Since T is ergodic, |f| =k constant almost everywhere and
feL™(X, ). Let v be the canonical image of k~'f in A; v is unitary and is an
eigenfunction of 7. So

T(v)=xw=UvU*
and
oUv*=x;'U = 6,(U).
Since vav* = a for all a € A, we have
6, =Aduv. O

COROLLARY 4.4, If T is weak-mixing, then for any irrational number t € {0, 1], 6, is
aperiodic.
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Proof. f T is weak-mixing, then P(T) ={1}. If ¢ is an irrational number in [0, 1[, then
xi#1
for any integer n # 0. Hence 8; is an outer automorphism for all n # 0; that is,
0, is aperiodic. 0
Now let re[0, 1] be a fixed irrational number and let $ and T be ergodic
automorphisms of X preserving the measure u. Let
R=L"X, p)XrZ=L"(X, u) xs Z

and let U (resp. V) be the unitary operator in R corresponding to T (resp. S).
Let @ be the dual action for T and o be the dual action for S. Suppose that
there is ¢ € Aut R such that

o= d’oﬂ/’_l'
For all a € A we have

a=o,a)=yoa (a)

_1 . . .
so ¥~ (a)e A, because ¢ is irrational. Hence

Y(A)=A.

Moreover,

o(V)=x7' V=¢84~ (V).
Hence

xo v (V)=047H(V)

SO

0. (U*y (V)= U*y™ (V)
and

U*y ' (V)=acA
because ¢ is irrational. Hence
S(b) = vbV*=y(U)(a)by(a)* Y(U)* = y(U)by(U)*
SO
S=yTy .

Consequently, if o, and 8, are conjugate in R, then S and T are conjugate in A.
Conversely, assume that there is ¢ € Aut A such that §= Ty~ We shall still
denote by ¢ its canonical extension to R (¢ (U) = V). We then have

WO (V) =xi' V=0y(V)
and
Yo ' (a)=a
for all a € A. Hence

O = ‘/’01(0_1-
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We have proved the theorem:

THEOREM 4.5. With the above notation, S and T are conjugate if and only if o, and
0, are conjugate for some irrational number t €[0, 1[.

COROLLARY 4.6. There is an uncountable family of aperiodic automorphisms in the

hyperfinite 11, factor with zero entropy.

Proof. For A eR* let S, be the Bernoulli shift with entropy A on a Lebesgue space

(X, B, ). Let 6" be the dual action for $* in R = L*(X, ) Xs, Z and let [0, 1[

be an irrational number. For all A e R¥, the action a, of Z on R given by
ax(n)=(6:)"

is outer by corollary 4.4, and

H(ax(1))=0
by corollary 4.2. Moreover, if A #A’, then S, and S, are not conjugate because
their entropies differ. Hence, by theorem 4.5, a, and «,- are not conjugate. a

I am grateful to R. Bader for his constant encouragement and stimulating conversa-
tions, to P. L. Aubert, T. Giordano, P. de la Harpe, V. Jones and C. Series for
helpful conversations, and to the Fond National Suisse de la Recherche Scientifique
which has partially supported this work.

REFERENCES

[1] P.L. Aubert. Théorie de Galois pour une W*-algebre. Comment. Math. Helvet. 51 (1976),411-433.
[2] A. Connes. A factor non anti-isomorphic to itself. Ann. of Marh. 101 (1975), 536-554.
[3] A. Connes. Outer conjugacy classes of automorphisms of factors. Ann. Sc. Ec. Norm. Sup. 8
(1975), 383-420.
[4] A. Connes & E. Stgrmer. Entropy for automorphisms of II, von Neumann algebras. Acta Math.
134 (1975), 289-306.
[5] A.Connes & E. Stgrmer. A connection between the classical and the quantum mechanical entropies.
Preprint.
{6] M. C. David. Sur quelques problémes de théorie ergodique non commutative. Publ. Math. Univ.
P. & M. Curie. Preprint no. 19 (1978).
[7] U. Haagerup. The standard form of von Neumann algebras. Math. Scan. 37 (1975), 271-283.
[8] Ya. G. Sinai. Introduction to Ergodic Theory. Princeton University Press: New Jersey, 1976.
[9] M. Takesaki. Duality for crossed products and the structure of von Neumann algebras of type III.
Acta Math. 131 (1973), 249-310.
[10] H. Umegaki. Conditional expectation in an operator algebra IV (Entropy and information). Kodai
Mat. Sem. Rep. 14 (1962), 59-85.
[11] P. Walters. Ergodic Theory. Springer Lecture Notes in Math. 458 (1975).

https://doi.org/10.1017/50143385700001358 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700001358

