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flows over fragile and brittle erodible beds
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Many granular surface flows occur as shear flows of finite thickness, over erodible beds
composed of the same granular material. Such beds may be fragile, and offer no more
resistance to erosion than to sustained shear. Or they may be brittle, and offer instead
an excess resistance to erosion. To take this contrast into account, new basal boundary
conditions are proposed. Their implications for parallel flows down infinite slopes are
then examined for three different cases: stationary flows; starting; and stopping transients.
For all three cases, flow behaviour is altered significantly when beds present an excess
resistance to erosion. For stationary flows, non-unique velocity profiles are obtained,
implying hysteresis or history-dependence. For starting transients, a power law growth
of the flow thickness is predicted, instead of the jump to finite or infinite depth that would
otherwise occur. For stopping transients, flows start to decelerate with a finite basal shear
rate, even over erodible substrates. Analytical solutions to the corresponding free and
moving boundary problems are obtained, and checked against numerical results. Model
predictions are then compared with experimental measurements. Overall, good agreement
is obtained. In particular, the model describes well the very different erosional responses
observed for fragile and brittle beds.

Key words: dry granular material, avalanches

1. Introduction

Over erodible deposits, intermittent granular avalanches may entrain grains from the
substrate, transport them downslope, and detrain them to form new deposits. Such
processes occur down natural inclines such as scree slopes and dune faces, and in
laboratory configurations such as slowly rotating drums and grain piles driven by low
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inflow (Evesque 1991; Arran & Vriend 2018). Challenges are then to determine how
rates of entrainment and detrainment are set, and how these affect flow acceleration and
deceleration (Iverson & Ouyang 2015; Lusso et al. 2021; Pudasaini & Krautblatter 2021).
In narrow channels, wall friction is known to be an effective mechanism to limit erosion
at the base of granular avalanches (Taberlet et al. 2003; Jop, Forterre & Pouliquen 2005).
A rigid floor at some depth is of course another possible constraint (Silbert et al. 2001;
Parez, Aharonov & Toussaint 2016). This cannot be the whole story, however, as limits to
downward erosion appear to exist even in the absence of rigid lateral or lower boundaries.
In this paper, the role of bed resistance to erosion is examined. Taking this role into
account, new basal boundary conditions are proposed, as needed by depth-averaged and
continuum models of granular avalanches over erodible beds.

Depth-integrated and continuum models were first applied to granular avalanches over
rigid boundaries (Savage & Hutter 1991; Silbert et al. 2001). For erodible beds, the position
of the basal interface becomes an additional degree of freedom (Capart, Hung & Stark
2015; Iverson & Ouyang 2015; Lusso et al. 2021). To model the resulting dynamics,
various approaches have been adopted. Phenomenological laws for the rate of erosion or
deposition have been proposed by Bouchaud et al. (1994), Tai & Kuo (2008) and Lê &
Pitman (2010). Such laws can also be derived from the balance of momentum assuming
jumps in velocity (Pudasaini & Krautblatter 2021) as well as shear stress (Fraccarollo
& Capart 2002; Iverson & Ouyang 2015) or particle pressure (Jenkins & Berzi 2016)
across the basal interface. Other authors have instead constrained the velocity profile
during the entrainment or detrainment process. Douady, Andreotti & Daerr (1999) and
Khakhar et al. (2001) assumed a constant shear rate, while Capart et al. (2015) and
Larcher, Prati & Fraccarollo (2018) let the unsteady velocity profile retain the same shape
as in steady equilibrium flows. Numerical simulations, on the other hand, have shown that
assumptions regarding granular stresses suffice to model the unsteady evolution of eroding
(Jop, Forterre & Pouliquen 2007) and detraining flows (Barker & Gray 2017). To model
these stresses, previous authors have used the μ(I) rheology (Jop et al. 2007; Ionescu et al.
2015; Sarno et al. 2022), regularized and non-local versions of this rheology (Barker &
Gray 2017; Lin & Yang 2020) and extended kinetic theory (Jenkins & Berzi 2016; Larcher
et al. 2018).

Model predictions match unsteady flow experiments reasonably well (Jop et al. 2007;
Capart et al. 2015; Larcher et al. 2018). To complicate matters, however, experiments
initiated from inclined granular beds at rest exhibit two distinct behaviours. In some
experiments (Jop et al. 2007; Capart et al. 2015), flows instantaneously mobilize a layer of
finite thickness, whereas in others (Larcher et al. 2018), the flow thickness grows gradually
from zero. Some models (Jop et al. 2007; Capart et al. 2015) describe well the abrupt start
observed in the first experiments, while others (Jenkins & Berzi 2016; Larcher et al. 2018)
predict a gradual growth as observed in the second experiments. To model these distinct
behaviours, it is proposed in this paper that bed resistance to erosion must be taken into
account. Depending on how granular beds are prepared, two situations are considered. In
the first, the bed offers the same resistance to erosion as grains do to sustained shear. This
is expected, for instance, for beds produced by gently arresting sustained granular shear
flows, as in the experiments of Capart et al. (2015). Berzi, Jenkins & Richard (2019) have
characterized such beds in detail using discrete element simulations, and refer to them as
fragile. In the second situation, the bed offers an excess resistance to erosion, and the basal
shear stress needed to produce erosion is greater than the shear stress needed to sustain
shear. This is expected when granular beds have been subjected to some compaction, say
due to lid pressure applied before release as in the experiments of Larcher et al. (2018), or
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Figure 1. Definition sketch: (a) typical shear test curve with peak and residual strengths; (b) idealized response
assumed at interface between granular flow and erodible bed when γ � γc; (c) assumed flow geometry
and kinematics.

due to prior burial as in rotating drum experiments (Evesque 1991). By analogy with the
terminology used for slopes (Bishop 1971), such beds will be referred to as brittle.

To model the contrasted responses of fragile and brittle beds, a distinction must be drawn
between resistance to erosion and resistance to flow. This relates to that observed, in shear
cell or shear box tests, between peak and residual shear strengths. In laboratory shear tests
conducted at very slow deformation rates, many granular materials exhibit the behaviour
illustrated in figure 1(a): as the shear deformation γ increases, the ratio of applied shear to
normal stress τ/σ rises first to a peak value, tan ϕp, before decreasing to an asymptotic
residual value, tan ϕc, where ϕc is called the critical angle. Although the peak value
depends on how grains interlock prior to deformation, the residual or critical value is a
material property that doesn’t depend on how the sample was prepared. This difference
between peak and residual shear strengths, and the shear weakening behaviour that occurs
after the peak strength has been reached, matter greatly to geotechnical engineers, as they
control the brittleness of slope failures (Bishop 1971; Soga et al. 2016; Yerro, Alonso
& Pinyola 2016). They have also been hypothesized to control intermittent granular
avalanching in slowly rotating drums (Evesque 1991; Marteau & Andrade 2018).

Bed resistance to erosion, however, should not simply be equated to the peak shear
resistance observed in shear box or shear cell tests. This is because, in such tests, the
failure surface cuts through an assembly of interlocking grains. At the interface between
granular flow and erodible bed, by contrast, the interface features interlocking grains to
one side only. Resistance to erosion, therefore, will be described by a shear strength τe
intermediate between the critical and peak strengths. As described below, this is needed
also to ensure the stability of the underlying bed. As illustrated by figure 1(a), geotechnical
shear tests typically measure some finite shear deformation, γp, before granular materials
develop their peak resistance, then some further deformation, γc, before they degrade to
their residual resistance. In the context of flows that rapidly attain very large deformations,
resistance to erosion will be further idealized as illustrated in figure 1(b): to initiate erosion,
the excess resistance τe = tan ϕe σ must be overcome, but the resistance to sustained shear
drops immediately to the critical shear strength τc = tan ϕc σ .

In the present work, this idealized behaviour will be incorporated into new basal
boundary conditions for granular surface flows. To make the approach work, it is necessary
to specify exactly how the different variables behave at the base, not just when entrainment
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occurs, but also when the flow thickness stays the same, or when the flow layer thins by
detraining grains back to the substrate. The rate of entrainment or detrainment, moreover,
must also be determined by the theory. The unsteady velocity profile, finally, must be
allowed to evolve freely. The principal objective of this work is to propose new basal
boundary conditions that meet these requirements. After formulating these basal boundary
conditions, their consequences will be examined in what may be the simplest possible
configuration: the surface flow of grains in a long channel of adjustable inclination
(figure 1c). In this configuration, flows can be idealized as uniform in both longitudinal
and transverse directions, and the longitudinal flow velocity u becomes a function of only
two variables: the depth y and the elapsed time t. With these simplifications, our goal
will be to determine the flow thickness h(t) and velocity profile u( y, t) for three cases:
stationary flows; starting; and stopping transients. Although such conditions have been
considered earlier (Jop et al. 2007; Capart et al. 2015; Parez et al. 2016; Barker & Gray
2017), new to this work will be the distinctive flow behaviours that result when beds offer
an excess resistance to erosion.

2. Governing equations and constitutive assumptions

As illustrated by figure 1(c), consider a channel of constant width W and possibly
time-evolving inclination angle θ(t), filled with a uniform, dry, static layer of granular
material. The depth coordinate y is taken normal to the free surface, setting y = 0 at the
free surface and y positive going down. By inclining the channel, a shear flow of finite
thickness can be produced, below which the granular substrate remains static. This flow
may or may not reach a stationary state, before the channel inclination is reduced and the
flow brought back to a stop. The flow may also be constrained by a rough, rigid floor at
depth y = H. For simplicity, variations across the width and along the length of the channel
are neglected. Our objective is then to determine the time-dependent flow thickness h(t)
and velocity profile u( y, t).

Under these assumptions, momentum balance equations in the longitudinal and normal
directions can be written as

ρ
∂u
∂t

= ρg⊥ tan θ − 2
τw

W
− ∂τ

∂y
and

∂σ

∂y
= ρg⊥, (2.1a,b)

where ρ is the bulk density, g⊥ = g cos θ is the normal component of the gravitational
acceleration, τw is the shear stress along the walls, τ is the internal shear stress and σ

is the normal stress. In the flowing layer (0 ≤ y ≤ h(t)), where grains slide along the
walls and undergo sustained shear, constitutive relations are provided as follows. For the
wall shear stress, the Coulomb friction law τw = μwσ is adopted, where μw is a constant
grain–wall friction coefficient (Jop et al. 2005). For the internal shear stress, the linearized
μ(I) rheology is assumed (da Cruz et al. 2005; Jop et al. 2005), whereby

τ = tan ϕc σ + χD(ρσ )1/2γ̇ . (2.2)

Here γ̇ = −∂u/∂y is the shear rate, tan ϕc is the residual or critical value of the coefficient
of internal friction, D is the grain diameter and χ is a dimensionless coefficient that sets
the strength of the pressure-dependent viscosity χD(ρσ )1/2. This relationship is taken to
hold throughout the flowing layer, including immediately above the basal interface. The
excess resistance to erosion τe = tan ϕe σ applies below this interface, to the top of the
static bed. The corresponding basal boundary condition is described in the next section.

To close the description, boundary conditions must be provided along the free surface,
ỹ = 0, and along the basal interface˜y = h(t). Here tildes over and below variables will
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Boundary conditions for granular flows over erodible beds

be used to denote variables sampled at the free surface and basal interface, respectively.
Along the free surface, stress-free boundary conditions can be written τ̃ = σ̃ = 0, so that
integrating down from the free surface yields the lithostatic normal stress profile σ( y, t) =
ρg⊥y, and the basal normal stress˜σ = ρg⊥h.

Up to this point, it is largely agreed that the above equations closely approximate the
behaviour of many granular surface flows. Possibly with minor variations, this description
has been applied to a variety of parallel flows and found to closely match discrete element
simulations (da Cruz et al. 2005; Parez et al. 2016) and laboratory experiments (Berzi
& Jenkins 2008; Capart et al. 2015). Regarding basal boundary conditions for flows over
erodible substrates, however, there is less consensus (Iverson & Ouyang 2015; Lusso et al.
2021; Pudasaini & Krautblatter 2021). What is needed is to specify boundary conditions
for the flow velocity ˜u, shear rate ˜γ̇ and/or shear stress ˜τ at the base, so that the flow
thickness h or its evolution over time h(t) can also be determined. In the next section, a
new formulation is proposed, applicable also to granular substrates that offer an excess
resistance to erosion.

3. Basal boundary conditions

When granular shear flows reach down to a rough, rigid floor at depth˜y = H, the simplest
assumption is to prescribe no slip along the floor, ˜u = 0, and let the basal shear rate ˜γ̇adjust freely (Silbert et al. 2001; Parez et al. 2016). For loose boundary flows over static,
erodible granular substrates (h < H), previous investigators (Berzi & Jenkins 2008; Capart
et al. 2015) added the condition that

˜γ̇ (t) = γ̇ (h(t), t) = 0, (3.1)

i.e. the basal shear rate must also vanish. This is consistent with plastic yield at the base,
assuming no excess resistance to erosion. When there is such an excess resistance, the
proposal here is to write conditions that transition between rigid-like and loose cases,
dependent on whether the flow thickens, thins or maintains a constant thickness. To
distinguish between these cases, it is useful to express the rate of change of the flow
thickness in the form

dh
dt

= e − d, (3.2)

where e(t) ≥ 0 and d(t) ≥ 0 are, respectively, rates of entrainment (erosion) and
detrainment (deposition), assumed positive and subject to the complementarity condition
ed = 0 so that at most one process (entrainment or detrainment) is active at any given time.
Depending on the case, the following assumptions are proposed. For the flow to entrain
(e > 0, d = 0), the shear stress˜τ exerted by the flowing layer on the granular substrate
must attain the erosion resistance of this substrate, τe = tan ϕeσ , hence

˜τ = tan ϕc˜σ + χD(ρ˜σ)1/2˜γ̇ = tan ϕe˜σ. (3.3)

The value˜γ̇ that satisfies this condition,

˜γ̇ =˜γ̇max = tan ϕe − tan ϕc

χD

(˜σ
ρ

)1/2

= tan ϕe − tan ϕc

χD
(g⊥h)1/2, (3.4)

represents a maximum value for the basal shear rate. When this value is reached, the
flow evolves by eroding substrate grains instead of further increasing its basal shear rate.
Conversely, for the flow to detrain (e = 0, d > 0), the shear rate at the base must first drop
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to zero,˜γ̇ =˜γ̇min = 0, which represents a minimum value for the basal shear rate. When
this value is reached, the flow evolves by depositing static grains back to the substrate, for
otherwise a negative shear rate combined with the no slip basal boundary condition would
imply unphysical negative velocities. Across the basal interface, note that the shear rate
can be discontinuous, but the velocity and stress profiles are assumed continuous.

Finally between these two values, 0 <˜γ̇ <˜γ̇max, the flow can neither entrain nor
detrain, hence e = d = 0, a state that can be called bypass by analogy with gravity currents
that neither entrain nor deposit sediment at their base (Sequeiros et al. 2009). When
the bed is fragile and tan ϕe = tan ϕc, then˜γ̇min =˜γ̇max = 0 and the boundary condition

˜γ̇ = 0 assumed in previous work is recovered. When the bed is brittle and tan ϕe > tan ϕc,
however, a gap opens between the two bounds, over which the flow experiences its
base as rigid-like. Only when ˜γ̇ attains the bounds of this interval can the transfer of
grains between the flow and its substrate occur. The above physical assumptions can be
summarized in compact mathematical form by the following complementary inequalities:
for entrainment,

e ≥ 0, ˜γ̇ ≤˜γ̇max, (˜γ̇max −˜γ̇ )e = 0; (3.5)

for detrainment,
d ≥ 0, 0 ≤˜γ̇ , ˜γ̇ d = 0. (3.6)

In both equations, a pair of inequalities is complemented by the condition that, when one
term of the product is non-zero, the other term has to be zero. Together, (3.5) and (3.6)
allow granular flows over erodible substrates to transition between entrainment and bypass,
and between bypass and detrainment. Complementarity formulations of this kind have
been derived for many free and moving boundary problems (Elliott & Ockendon 1982;
Baumgarten & Kamrin 2019). Together with the no slip condition, (3.5) and (3.6) form
a complete set of basal boundary conditions, and represent the key novel feature of this
work. Despite their simplicity, they will be shown below to produce a variety of distinctive
flow behaviours.

4. Stationary solutions

To examine how flow behaviour is affected by basal boundary conditions, consider first
steady flow at a constant channel inclination tan θ . In that case, ∂u/∂t = 0 and dh/dt = 0,
hence e = d = 0. Equation (2.1a,b) is then satisfied by the two-parameter family of profile
shapes,

u(η) = 2
5

(
2
3 − 5

3η3/2 + η5/2
)

hΓ + 2
3(1 − η3/2)h˜γ̇ , (4.1)

where η = y/h is a dimensionless depth coordinate, and the two components are scaled by
characteristic shear rates Γ and˜γ̇ . The first component, scaled by parameter Γ , coincides
with Takahashi’s equilibrium shape for debris flows over erodible substrates, between
frictional walls (Takahashi 1991; Berzi & Jenkins 2008). The second, scaled by the basal
shear rate ˜γ̇ , coincides with the equilibrium Bagnold profile for flows over a rigid floor,
without wall friction (Silbert et al. 2001). Equilibrium at channel inclination tan θ further
requires that

Γ = μwg1/2
⊥ h3/2

WχD
and ˜γ̇ = (g⊥h)1/2

χD

(
tan θ − tan ϕc − μwh

W

)
. (4.2a,b)

Since there are two constraints but three unknowns h, Γ and ˜γ̇ , for a given inclination
tan θ the stationary solution is not unique. Nevertheless, the range of solutions is restricted
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Boundary conditions for granular flows over erodible beds

by the condition 0 ≤˜γ̇ ≤˜γ̇max. Unique solutions are obtained at both ends of this interval,
associated with flows that have reached equilibrium by entraining (dh/dt > 0) or by
detraining (dh/dt < 0). If ˜γ̇ =˜γ̇max (entrainment locus), then h = he(tan θ) = (tan θ −
tan ϕe)W/μw. If on the other hand ˜γ̇ = 0 (detrainment locus), then h = hc(tan θ) =
(tan θ − tan ϕc)W/μw. The only difference between the two loci is whether they involve
the friction angle associated with erosion resistance, ϕe, or the critical friction angle ϕc.
Between the two limits, any flow thickness in the range he ≤ h ≤ hc produces a valid
stationary velocity profile, obtained by substituting h into (4.2a,b) to get Γ and˜γ̇ .

An implication is that stationary profiles may become dependent on the history of the
flow. To see this, consider a diagram of flow thickness versus channel inclination. Assume
that the inclination tan θ is varied slowly, so the flow has time to adjust to steady state.
Starting from rest with h = 0, first gradually increase tan θ until reaching and exceeding
tan ϕe, so that flow starts and grows in thickness and velocity along the entrainment locus
h = he(tan θ). If at some point the channel inclination is decreased, the flow will switch to
bypass: its basal shear rate will gradually decrease along a leftward path of constant h, until
reaching the detrainment locus h = hc(tan θ). Further decreasing the inclination will cause
the flow to detrain and slow down along this locus. Hysteretic paths can thus be produced
by altering the channel inclination slowly in this way. Over long times, it is also possible
that the resistance of the bed may gradually degrade, from its initial erosion resistance
τe to the residual resistance τc. In that case, only the critical depth hc would represent a
true equilibrium thickness of the flow. Transient evolutions resulting from rapid changes
in channel inclination are examined in the next section.

5. Transient solutions

5.1. Seesaw flows and series solution
To examine transient behaviour, seesaw flows produced by abruptly changing the channel
inclination are considered (Capart et al. 2015; Parez et al. 2016). The rest or flow state
just before the change can then be adopted as initial condition u( y, 0) = u0( y) and the
evolution calculated taking tan θ constant and equal to the new inclination. Solutions for
such flows can be obtained analytically or numerically. Analytical solutions will be used
as much as possible, as they provide greater insight. It is also possible to solve (2.1a,b) by
finite differences on a staggered grid, and such numerical solutions will be used to check
the analytical results.

Provided that the flow thickness h after the abrupt change remains constant (rigid floor
or bypass), a linear equation for u(η, t) is obtained, and flow evolution from arbitrary initial
conditions can be described analytically by a series solution (Parez et al. 2016). For this
purpose, it is convenient to choose dimensionless variables

t̂ = χDg1/2
⊥

h3/2 t, û = χD

|tan θ − tan ϕc|g1/2
⊥ h3/2 u. (5.1a,b)

Equation (2.1a,b) with the μ(I) rheology (2.2) can then be written in the dimensionless
form

∂ û
∂ t̂

= ±1 − 2μ̂wη + ∂

∂η

(
η1/2 ∂ û

∂η

)
, (5.2)

where the plus sign applies if tan θ > tan ϕc, the minus sign if tan θ < tan ϕc, and μ̂w =
μwh/(|tan θ − tan ϕc|W) is a dimensionless wall friction coefficient. Its solution û(η, t̂) =
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v̂(η) + ŵ(η, t̂) is the sum of particular and homogeneous solutions. The particular solution
is

v̂(η) = ±2
3(1 − η3/2) − 2

5 μ̂w(1 − η5/2), (5.3)

in agreement with the stationary solutions of the previous section. The homogeneous
solution, on the other hand, can be written as the infinite series

ŵ(η, t̂) =
∞∑

n=1

w̃nfn(η) exp
(
− 9

16κ2
n t̂

)
. (5.4)

Normalized so their surface velocity is equal to unity, the eigenfunctions fn(η) are given
by

fn(η) = Γ (2
3 )(1

2κn)
1/3η1/4J−1/3(κnη

3/4), (5.5)

where Jν(z) is the Bessel function of the first kind of order ν, and Γ (·) is the Gamma
function with Γ (2

3 ) ≈ 1.3541. As needed to satisfy the no slip boundary condition, the
eigenvalues κn are the multiple roots of J−1/3(z) = 0, sorted in increasing order. Finally
because ∫1

0 fm(η)fn(η) dη = 0 when m /= n (orthogonality property), the coefficients w̃n
can be calculated from the initial profile using

w̃n =
∫ 1

0

(
û0(η) − v̂(η)

)
fn(η) dη∫ 1

0 f 2
n (η) dη

. (5.6)

For the case μ̂w = 0, an equivalent series solution was derived earlier by Parez et al.
(2016). They did not see, however, that this solution does not apply when the flow thickness
varies with time.

5.2. Starting transients
To illustrate flow behaviour when tan ϕe = tan ϕc, a transient flow initiated from rest
by abruptly increasing the channel inclination is shown in figure 2(a,b). To facilitate
comparison, the conditions are those considered by Parez et al. (2016): H = 9.6 m;
D = H/96; θ = 17◦; μw = 0; tan ϕc = 0.26; χ = 1.51. Without wall friction or excess
bed resistance, the flow thickness h(t) jumps abruptly to the floor-bounded thickness H.
With wall friction, it would first jump to h(0+) = 1

2 hc, then gradually evolve towards
hc = (tan θ − tan ϕc)W/μw (Capart et al. 2015), unless the rigid floor is first reached
at depth H. When the flow starts from rest and its thickness immediately jumps to
h(0+) = H, the predicted evolution is simply a gradual acceleration towards the steady
profile associated with the particular solution (5.3). For comparison, figure 2(a) shows the
velocity profiles obtained by Parez et al. (2016) using the discrete element method (DEM).
The evolution of velocity with time at selected depths is also shown in figure 2(b). The
analytical series solution obtained for this case is identical to that of Parez et al., and in
good agreement with their discrete particle simulations. In figure 2(a,b), the numerical
results obtained by discretizing (2.1a,b) on a staggered grid are also shown, and checked
to agree closely with the analytical results.

The very different response obtained when tan ϕe > tan ϕc can now be examined. In
this case, the thickness h(t) no longer jumps discontinuously upon starting the flow from
rest. The problem becomes a moving boundary problem (dh/dt = e > 0), for which the
series solution approach no longer works. The continuous flow thickness evolution h(t),
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Figure 2. Influence of basal boundary conditions on transient flows: (a,b) starting transient, tan ϕe = tan ϕc;
(c,d) starting transient, tan ϕe > tan ϕc; (e, f ) stopping transient; (a,c,e) velocity profiles at selected times;
(b,d, f ) velocity evolution at the selected depths indicated on panel ( f ) (lines, analytical solutions; dots,
numerical solutions; circles, DEM results (Parez et al. 2016)).

moreover, must be determined as part of the solution. Because h(t) is not known in
advance, a different choice of dimensionless variables must be made,

t′ = g1/2
⊥

(χD)1/2 t, y′ = y
χD

, h′ = h
χD

, u′ = u

(tan ϕe − tan ϕc)g
1/2
⊥ (χD)1/2

,

(5.7a–d)
yielding instead of (5.2) the alternative dimensionless form,

∂u′

∂t′
= S′ − 2μ′

wy′ + ∂

∂y′

(
y′1/2 ∂u′

∂y′

)
, (5.8)

where μ′
w = μwχD/((tan ϕe − tan ϕc)W), and S′ = (tan θ − tan ϕc)/(tan ϕe − tan ϕc) is a

dimensionless excess inclination. Because flows started from rest must entrain grains from
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the substrate, the applicable basal boundary conditions are, in dimensionless form,

u′(h′(t′), t′) = 0, and
∂u′

∂y′ (h
′(t′), t′) = −h′ (t′)1/2. (5.9a,b)

No general solution can be found to this moving boundary problem. When there is no
wall friction, however, a similarity solution of the form

u′( y′, t′) = F(η) t′α, h′(t′) = λ t′β, (5.10a,b)

can be sought. Here η( y′, t′) = y′/h′(t′) is the similarity variable, α, β unknown
exponents, F(η) an unknown function and λ an unknown parameter. Using the chain rule,
it follows that

∂u′

∂t′
= αt′α−1F(η) − βt′α−1η

dF
dη

, (5.11)

∂

∂y′

(
y′1/2 ∂u′

∂y′

)
= t′α−3β/2

λ3/2
d

dη

(
η1/2 dF

dη

)
. (5.12)

Substituting into (5.8) and taking μ′
w = 0, the time variable t′ can be eliminated from the

equation by choosing for the similarity exponents the values α = 1 and β = 2
3 . The partial

differential equation (5.8) then reduces to the second-order linear ordinary differential
equation

F(η) − 2
3
η

dF
dη

− 1
λ3/2

d
dη

(
η1/2 dF

dη

)
= S′. (5.13)

A particular solution is obviously the constant function f (η) = S′. For the homogenous
equation, a solution of the form g(η) = 1 + aηb can be tried, with a, b yet to be
determined. Substitution into (5.13) yields the algebraic equation

1 + aηb − 2
3

abηb − 1
λ3/2 ab

(
b − 1

2

)
ηb−3/2 = 0, (5.14)

which requires b = 3
2 and a = 2

3λ
3/2. The combination F(η) = f (η) + cg(η) that satisfies

the no slip boundary condition F(1) = 0 at the base is then given by

F(η) = λ3/2

3
2 + λ3/2

S′(1 − η3/2). (5.15)

Finally, the boundary condition for the basal shear rate becomes (dF/dη)(1) = −λ3/2,
which requires λ = (3

2 (S′ − 1))2/3. The solution that satisfies all boundary conditions is
therefore

u′( y′, t′) = (1 − η3/2)(S′ − 1)t′, h′(t′) = (3
2 (S′ − 1)t′)2/3. (5.16)

Reverting to dimensional variables, the solution can be written

u( y, t) = (1 − η3/2)(tan θ − tan ϕe)g⊥ t, (5.17)

h(t) =
(

3
2

tan θ − tan ϕe

tan ϕe − tan ϕc
g1/2

⊥ χDt
)2/3

. (5.18)

Together, (5.17) and (5.18) represent an exact similarity solution for entrainment from rest
with initial conditions u( y, 0) = h(0) = 0. Remarkably, the shape of its velocity profile
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coincides with that of the Bagnold profile, met earlier as the first component of the
stationary solution (4.1). An approximate solution similar to (5.17) and (5.18) was earlier
derived by Larcher et al. (2018) using extended kinetic theory and the assumption that
the transient velocity profile is the same as the steady profile for the same flow thickness.
As derived here, the solution is exact in the absence of wall friction, but applies only to
brittle beds. For flow to start, the inclination tan θ must first exceed the coefficient tan ϕe
governing bed resistance to erosion. As the difference tan ϕe − tan ϕc also appears in the
denominator, the continuous response of h(t) described by (5.18) hinges crucially on the
bed offering a resistance to erosion in excess of the residual or critical resistance. Because
wall friction exerts little influence before h has had a chance to grow, the solution also
describes the short-time asymptotic behaviour of flows started from rest in the presence of
wall friction. When tan ϕe > tan ϕc, therefore, the flow thickness h(t) always starts to grow
according to the power law h(t) ∝ t2/3. This contrasts greatly with the case tan ϕe = tan ϕc,
for which the flow thickness jumps discontinuously to a finite value, h(0+) = 1

2 hc or
h(0+) = H, whichever is smaller, or to infinity if there is no wall friction or rigid floor
(H → ∞).

In figure 2(c,d), the corresponding behaviour is illustrated for the same conditions as
before, except now tan ϕe = 0.28 > tan ϕc. Instead of jumping to h(0+) = H, the flow at
first entrains material gradually according to the exact similarity solution given by (5.17)
and (5.18). Upon reaching the rigid floor at depth H, the thickness can no longer grow and
the series solution applies again. Excellent agreement is obtained between the analytical
and numerical results, providing confidence in both methods. Since wall friction is set to
zero, erosion in this case would proceed indefinitely if it were not limited by the rigid floor.
Because the bed offers some excess resistance, however, erosion proceeds gradually. This
provides time for other mechanisms to eventually curtail erosion, for instance the effect
of finite slope length. Without wall friction or a rigid floor, previous models that do not
consider excess resistance to erosion (Jop et al. 2007; Capart et al. 2015) would instead
have the flow jump instantaneously to an infinite thickness.

For avalanches to develop from the surface down, the underlying bed must remain stable
before it is reached by the eroding front. This requires certain conditions to be met. For
this purpose, let tan θ > tan ϕe, otherwise no erosion can occur. At some time t, let the
flowing layer have growing thickness h(t). For erosion to continue, we must have τ(h) =
˜τ = tan ϕeρg⊥h at the base of the flowing layer. Without sidewall friction, the stability of
the deposit is guaranteed if, at all depths H > h,

τ(H) =˜τ + ρg⊥(H − h) tan θ < tan ϕpρg⊥H, (5.19)

where tan ϕp = τp/σ and τp is the peak shear strength that can be resisted within the bed
deposit. Equivalently, this condition can be written

tan ϕeh + (H − h) tan θ < tan ϕpH. (5.20)

This is guaranteed to hold if

tan ϕe < tan θ < tan ϕp. (5.21)

If tan ϕe < tan ϕp, therefore, there will exist a range of inclinations for which avalanches
can develop from the surface down yet the underlying deposit remains stable, even without
the aid of wall friction. For the calculations shown in figure 2(c,d), the condition (5.21) is
assumed satisfied. If instead tan θ > tan ϕp, the underlying deposit would be unstable. If
wall friction is present, the stability of the underlying deposit can be achieved even when
tan θ > tan ϕe = tan ϕp.
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5.3. Stopping transients
Stopping transients can now be examined, assuming a flowing initial state and a sudden
drop of the channel inclination to tan θ < tan ϕc. Either because the initial flow reached
down to a rigid floor, or because it was produced by eroding a brittle bed, the flow starts
with a finite basal shear rate ˜γ̇ (0) > 0. The transient response to the abrupt inclination
drop must therefore go through two distinct stages. During the first, bypass stage, the flow
decelerates without changing its thickness, hence the series solution applies. This allows
the flow to gradually reduce its basal shear rate˜γ̇ (t) until it reaches zero at time td. At this
point, detrainment must start, during which the flow simultaneously decelerates and thins,
until reaching a complete stop at arrest time ta.

For the detrainment stage td < t < ta, a new moving boundary problem must be solved,
with non-zero initial conditions. Although an exact solution is out of reach, an approximate
solution can be found as follows, assuming no wall friction. First, because altered flow
conditions along the basal boundary take time to affect the flow near the surface, the
surface velocity ũ(t) can be approximated by the series analytical solution even for t > td,
and the arrest time ta determined from the condition ũ(ta) = 0. It is next assumed that,
during detrainment, the velocity profile maintains a self-similar shape, obtained from the
series solution at time t = td. Under these assumptions, a depth-integrated momentum
balance equation can be written d(hU)/dt = g⊥hS (see e.g. Capart et al. 2015), where the
excess slope S = tan θ − tan ϕc is now negative, and U(t) = ∫1

0 u(η, t)dη is the average
velocity. Assuming self-similarity, U is taken proportional to the surface velocity, U =
Λ̃u, with Λ constant. For given ũ(t), this yields a linear ordinary differential equation for
h(t) whose solution is

h(t) = h(0) exp
(∫ t

td

1
ũ(t)

(
g⊥S
Λ

− d̃u
dt

(t)
)

dt
)

. (5.22)

As t → ta, we can approximate ũ(t) ∝ ta − t. The solution for h(t) then approaches a
power law asymptote h(t) ∝ (ta − t)β , where β = g⊥S/(Λ(d̃u/dt)(ta)) − 1.

Figure 2(e, f ) shows results for the stopping transient produced by starting from steady
flow, then suddenly decreasing the channel inclination to zero. The specific conditions
chosen again coincide with the rigid floor case investigated earlier by Parez et al. (2016).
Between t = 0 and t = td, the flow decelerates without changing its thickness, gradually
reducing its basal shear rate˜γ̇ (t). Since there is no wall friction, the resulting sigmoidal
profile is due purely to deceleration. At t = td, ˜γ̇ = 0 and detrainment starts. During
this phase the flow simultaneously slows and thins, while keeping an approximately
self-similar velocity profile. Self-similarity in this case is not exact, hence the analytical
solution subject to this assumption does not perfectly match the numerical solution.
Nevertheless, deviations are small, and the approximation is quite close. The solutions
are also in reasonable agreement with the DEM results of Parez et al. (2016).

For this case, Parez et al. proposed an alternative analytical solution involving a
time-dependent particular solution, v̂(t̂) = −t̂, instead of the time-independent particular
solution v̂(η) = −2

3 (1 − η3/2) obtained from (5.3) when μ̂w = 0. The resulting solution,
however, does not satisfy the no slip boundary condition ˜u = 0 at the base, even in the
initial stage of the flow. Instead, negative basal velocities are produced as soon as t > 0,
which Parez et al. simply zeroed out, without providing an explicit additional boundary
condition like the condition ˜γ̇ = 0 adopted in the present work. Their solution provides
a reasonable first approximation of the behaviour of stopping flows, but does not match
the decrease in shear rate observed towards the base in their own particle simulations.
Although the DEM simulations exhibit deeper tails, our solution captures this decrease, in
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agreement also with the numerical results obtained by Barker & Gray (2017) assuming a
regularized μ(I) rheology.

6. Comparison with experiments

To test the proposed model, comparisons can now be made with experiments involving
fragile and brittle beds, conducted, respectively, at Columbia University and the University
of Trento. For these experiments, it is necessary to consider the effect of wall friction,
neglected in the previous section. Because the experiments were conducted between
smooth sidewalls in relatively narrow channels, however, it remains possible to neglect
flow variations over width, and consider flow measurements acquired through transparent
sidewalls as representative of the width-averaged flows (Jop et al. 2005, 2007).

The Columbia experiments (Capart et al. 2015) were conducted in a seesaw channel
of length L = 3 m and width W = 40 mm, having a smooth floor and glass sidewalls.
They were performed with spherical ceramic millstones of diameter D = 2.32 mm and
density ρS = 2610 kg m−3. The experiments include steady, accelerating and decelerating
flows. Steady flows were obtained by using an overhead silo to supply a constant granular
inflow upstream of the channel. Unsteady flows were obtained by rapidly tilting the channel
from one inclination to another. For flows started from rest, the initial bed deposit was
prepared by gradually reducing the inclination of a flowing channel until the flow was
gently arrested, producing a fragile bed. Flows were then started by rapidly tilting the
channel back up to the desired target inclination. Decelerating flows were produced by
setting up a steady flow, then rapidly tilting the channel back to a lower inclination.

The Trento experiments (Larcher et al. 2018) were conducted in a channel of adjustable
inclination having length L = 1.64 m and width W = 50 mm, with a rough floor and
transparent acrylic sidewalls. They were performed with polyvinylchloride (PVC) particles
of cylindrical shape, equivalent diameter (sphere diameter of the same volume) D =
3.50 mm and density ρS = 1510 kg m−3. The experiments include steady and unsteady
flows conducted at the same surface inclinations. The steady flows were obtained by
feeding a constant granular discharge upstream of the channel. The unsteady flows, on
the other hand, were started from rest. The initial bed was prepared by levelling a granular
layer of uniform depth, then pressing the layer from above using a rigid plate. The channel
was then tilted to the target inclination, and the plate quickly removed to release the flow.
Likely due to the initial compaction of the bed deposit, the resulting flows exhibit brittle
behaviour.

For both sets of experiments, flows were recorded from the side using a high-speed
camera, allowing granular motions near the wall to be captured using particle tracking
velocimetry (PTV). To extract more detailed information and make sure that observations
are not affected by differences in image processing, particle tracking and profile averaging
methods, selected runs from both sets of experiments were analysed anew for the purposes
of the present work. Particle capture and tracking was conducted using the methods
described in Capart, Young & Zech (2002). Profiles of mean granular velocity u(z, t) and
particle density per unit area ν(z, t) were then averaged from the PTV measurements,
distributed into non-overlapping bins of dimensions �z × �t = 2 mm × 30 ms.

Common assumptions were also used to estimate some key characteristics of the flowing
layers. As in Capart et al. (2015), the time-evolving free surface elevation z̃(t) was
identified as the elevation z (measured normal to the channel floor) where the number
density of imaged particles per unit wall area ν drops to half the value in the static
bed. The surface velocity was determined by interpolation as ũ(t) = u(̃z, t), and the depth
coordinate evaluated as y = z̃(t) − z, taking into account the slight surface displacement
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due to dilation observed in the initial stages of the unsteady runs. The granular discharge
per unit width was obtained by integration using q(t) = ∫̃z(t)

0 u(z, t) dz. Similar to Capart
& Fraccarollo (2011) and Larcher et al. (2018), the basal elevation ˜z(t) was identified
as the elevation z where the mean granular velocity u(z, t) drops to 2 % of the surface
velocity ũ(t). The thickness of the flowing layer was then taken as h(t) = z̃(t) −˜z(t).Finally an estimate of the maximum shear rate γ̇max(t) experienced over the flowing layer
was obtained as the top decile of the discrete shear rates γ̇ = �u/�z calculated between

˜z and z̃ at time t. The results depend to some extent on how these characteristic values
are defined, but the same definitions were applied uniformly to the different experiments,
steady and unsteady, performed at Columbia and Trento.

Velocity profile results for selected experiments are presented in figure 3(a–c).
Figure 3(a) shows an accelerating flow started from rest in one of the Columbia
experiments (coloured lines), and the velocity profile from a steady flow experiment
corresponding to the same inclination (black line). The observed behaviour matches that
expected for a fragile bed: the flow accelerates gradually towards the steady state, but
jumps to a finite thickness right from the start. The length and depth of the Columbia
channel were sufficient to observe convergence of the flow to steady state. Figure 3(b)
shows an accelerating flow started from rest in one of the Trento experiments (coloured
lines), and the velocity profile from a steady flow experiment corresponding to the same
inclination (black line). The unsteady flow behaviour matches that expected for a brittle
bed: the thickness grows gradually, but the velocity gradient or shear rate is steeper from
the beginning. The steady flow profile (black line) was obtained by feeding the channel
from upstream at a constant rate until convergence to steady state.

Unfortunately, the length and depth of the Trento channel did not let the unsteady flows
started from rest converge to steady state before they were perturbed by end and floor
effects (not shown). Nevertheless, the behaviour up to that point suggests convergence
of the flow to a shallower steady state than the one produced by feeding the channel
from upstream. Figure 3(c), finally, shows a decelerating flow from one of the Columbia
experiments (coloured lines). It was started from a steeper steady state by reducing the
channel slope to a milder inclination. The velocity profile from a steady flow experiment
corresponding to the same milder inclination is also shown (black line). For this run, the
unsteady flow gradually reduces its velocity, velocity gradient and thickness to converge
to the new steady state associated with the milder inclination.

Model results for the same conditions are presented in figure 3(d–f ). To compare with
the Columbia experiments (figure 3d, f ), the following values are adopted for the model
coefficients. For the particle–wall friction coefficient, the value μw = 0.212 is used, as
obtained by Capart et al. (2015) from tilting table tests with millstones glued under
sliding blocks. Parameters tan ϕc and χ were calibrated by Capart et al. (2015) from
steady flow tests performed at inclinations 24◦ < θ < 28◦. Here the value they obtained
for the internal friction coefficient, tan ϕc = 0.330, must be corrected to tan ϕc = 0.352,
because Capart et al. (2015) approximated the excess inclination S = tan θ − tan ϕc by
S = tan(θ − ϕc), whereas this approximation is not made here. For the coefficient χ , the
value χ = 0.517 calibrated by Capart et al. (2015) is adopted without change. Since the
Columbia experiments were started from fragile beds, it is assumed that tan ϕe = tan ϕc.

For the conditions of the Columbia experiments (figure 3d, f ), the unsteady (coloured
lines) and steady (black line) velocity profiles calculated from the model agree well
overall with the measured experimental profiles (figure 3a,c). The experimental profiles,
however, feature steeper velocity gradients towards the surface, and deeper tails towards
the base, associated with slow exponential creep. Such exponential tails, first recognized
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Figure 3. Velocity profiles for unsteady flows over fragile (Capart et al. 2015) and brittle beds (Larcher et al.
2018) at intervals �t = 120 ms (coloured lines), and steady flows at the same inclinations (black lines):
(a–c) experimental measurements; (d–f ) model results. (a,d) Accelerating flow (θ = 27.4◦) started from rest
from a fragile bed; (b,e) accelerating flow (θ = 41.4◦) started from rest from a brittle bed; (c, f ) decelerating
flow (θ = 25.8◦) started from steady flow at a steeper inclination. Dots and circles, surface and basal levels;
error bars in (a–c), root-mean-squared errors on elevation and mean velocity estimated from the steady flow
runs; colour scale from red to blue, ratio t/tc from 0 to 1.5.

in steady flow experiments by Komatsu et al. (2001), were also observed in other unsteady
experiments (Jop et al. 2007). Although they are not captured by the μ(I) rheology, they
can be modelled using discrete element simulations and extended kinetic theory (Berzi,
Jenkins & Richard 2020).

To compare with the Trento experiments (figure 3e), the model coefficients are set
as follows. For the particle–wall friction coefficient, the value μw = 0.30 is adopted, as
estimated by Larcher et al. (2018) from the flow depth measured at steady state. For the
residual internal friction angle, the value tan ϕc = 0.55 given by Larcher et al. (2018) is
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also adopted. For the rheological coefficient, the value χ = 0.34 was estimated from the
surface velocity measured at steady state. To model the brittle behaviour observed in the
Trento experiments, finally, the erosion resistance coefficient is set to tan ϕe = 0.70.

For the conditions of the Trento experiments, the unsteady (coloured lines) and steady
velocity profiles (black lines) calculated from the model are plotted in figure 3(e). As
described in § 4, the stationary solutions in this case are not unique. The steady solution
of depth hc, calculated assuming a critical resistance ˜τ = τc = tan ϕc˜σ at the base, is
shown as a solid black line. The corresponding velocity profile matches well the steady
state profile obtained experimentally by supplying grains from upstream (black line in
figure 3b). The steady solution of depth he, calculated assuming an excess resistance

˜τ = τe = tan ϕe˜σ at the base, is shown as a dashed black line. This is the stationary
solution expected for eroding flows over brittle beds. The calculated velocity profiles
(coloured lines) converge towards this shallower steady state. Unlike the calculated profiles
of figure 3(d, f ), for which the basal shear rate vanishes,˜γ̇ = 0, for these profiles the shear
rate is finite at the base, and equal to the value˜γ̇max needed to overcome the excess erosion
resistance of the bed. Like the measured profiles of figure 3(b), the calculated profiles
gradually increase in thickness over time, and feature steep velocity gradients from the
beginning. At the base, however, the measured profiles exhibit a gradual decrease of the
shear rate with depth, instead of the sharp drop predicted by the model.

Results for the time evolution of four unsteady flow quantities are presented in
figure 4. These quantities are the surface velocity ũ(t) (figure 4a), granular discharge q(t)
(figure 4b), flow thickness h(t) (figure 4c) and maximum shear rate γ̇max(t) (figure 4d).
For all plots, the experimental quantities are normalized by their steady state values,
as measured in steady flow experiments supplied from upstream. The model quantities,
on the other hand, are normalized by their steady state values calculated assuming a
critical resistance˜τ = τc = tan ϕc˜σ at the base. The elapsed time t is normalized by the
characteristic time

tc = h3/2
c

g1/2
⊥ χD

, (6.1)

known to govern the unsteady response of flows described by the linearized μ(I) rheology
(Capart et al. 2015; Parez et al. 2016). On each panel, results for accelerating flows started
from fragile beds are plotted in blue, those for accelerating flow started from brittle beds in
red and those for decelerating flows in green. For each case, the model predictions (lines)
are compared with measurements acquired in two different unsteady flow experiments
(symbols). For these comparisons, model solutions (solid lines) are calculated numerically,
to consider the effects of wall friction. For completeness, the analytical similarity solution
derived for brittle beds in the absence of wall friction is also shown (dashed red lines). For
these analytical curves, ũ(t) and h(t) are calculated using (5.17) and (5.18), respectively,
while q(t) = 3

5 h(t)̃u(t) and γ̇max = 3
2 ũ(t)/h(t). This yields for the short-time evolution of

the different quantities the power laws ũ(t) ∝ t, q(t) ∝ t5/3, h(t) ∝ t2/3 and γ̇max(t) ∝ t1/3.
Results for the time-evolving surface velocity ũ(t) are shown in figure 4(a). Good

agreement is obtained for all three cases. For flows started from fragile beds at rest (blue),
however, the measured surface velocity converges to steady state at a slightly slower rate
than that calculated by the model. The results for the depth-integrated discharge q(t),
plotted in figure 4(b), show greater discrepancies. For the decelerating flows (green),
in particular, the measured discharge is smaller than predicted. This is possibly due to
non-uniform velocity variations across the channel width, which slow down near-wall
velocities more strongly towards the base of the flows (Jop et al. 2007).
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Figure 4. Comparison of model and experiment for the time evolution of unsteady flow quantities, normalized
by their steady flow values: (a) surface velocity ũ(t); (b) discharge q(t); (c) flow layer thickness h(t);
(d) maximum shear rate γ̇max(t). Blue, accelerating flows – started from rest from a fragile bed; red, accelerating
flows – started from rest from a brittle bed; green, decelerating flows – started from steady flow at a steeper
inclination; solid lines, model predictions; dashed lines, short-time similarity solution; symbols, experimental
measurements (two different experiments for each case).

Results for the evolving flow thickness h(t) are plotted in figure 4(c). For accelerating
flows initiated from fragile beds at rest (blue), the flow layer immediately jumps to a
finite thickness, equal to approximately half the steady state value, then evolves gradually
towards this asymptote. For decelerating flows over fragile beds (green), the thickness
decreases gradually towards the steady state asymptote. As shown earlier by Capart et al.
(2015), these evolutions can be modelled accurately by assuming no excess resistance
to erosion. For accelerating flows started from brittle beds (red), the experiments of
Larcher et al. (2018) show a gradual growth of the flow layer thickness, which then
tapers off at a shallower depth. This behaviour is correctly reproduced by the model, but
the thickness at which the flow tapers off is underestimated. On the other hand, good
agreement is obtained for the initial rate of growth of the flow layer thickness. In the
short-time limit, the evolution calculated taking wall friction into account (solid line)
becomes indistinguishable from the similarity solution (5.18) derived assuming no wall
friction (dashed line).

Results for the time evolution of the maximum shear rate γ̇max(t), finally, are plotted
in figure 4(d). For flows over fragile beds, the maximum shear rate grows or decreases
gradually, depending on whether the flow accelerates from rest (blue) or decelerates
(green). For flows accelerating from rest over brittle beds, by contrast, the maximum shear
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rate grows more rapidly (red), as needed to overcome the excess erosion resistance of
the bed. Qualitatively, model results match well the measured experimental responses.
Quantitatively, agreement is fair, but the model overestimates the maximum shear rates for
accelerating flows over fragile beds (blue).

Although discrepancies remain, the model captures well the distinct initial responses
observed for eroding flows over fragile versus brittle beds. Over fragile beds, the flow
thickness jumps abruptly, but the maximum shear rate increases gradually. Over brittle
beds, by contrast, the flow thickness grows gradually, but the maximum shear rate
increases rapidly at the beginning. The results demonstrate that these very different
responses can be explained and modelled by considering the erosion resistance of the
bed.

7. Conclusion

In this paper, new basal boundary conditions have been proposed for granular flows over
erodible beds, taking resistance to erosion into account. Applied to stationary, accelerating
and decelerating flows, the proposed boundary conditions lead to well-posed free and
moving boundary problems. Contrasted responses are predicted for flows over fragile and
brittle beds. Over fragile beds, flows initiated from rest jump abruptly to a finite thickness.
Over brittle beds, they thicken gradually according to the short-time power law h(t) ∝ t2/3.
Over fragile beds, the basal shear rate vanishes regardless of whether flows entrain or
detrain. Over brittle beds, by contrast, a finite basal shear rate is needed to produce erosion,
but the basal shear rate must drop back to zero for detrainment to occur.

The resulting analytical and numerical solutions agree well with discrete element
simulations and laboratory experiments. For decelerating flows started with a finite basal
shear rate, the solutions produce better agreement with discrete element simulations
than achieved in previous work. For accelerating flows started from rest, the solutions
match well the very different experimental responses observed for fragile and brittle beds.
In particular, good agreement between model and experiment is obtained for the time
evolution of the flow thickness and maximum shear rate.

Although the different comparisons cover a wider range of conditions than considered
previously, they do not cover all situations. Entrainment from a brittle bed followed by
detrainment, for instance, is not among the cases covered by the available experiments.
Further work is also needed to clarify how excess erosion resistance can be produced, its
dependence on bed preparation, and its relation to the peak strength measured in shear
box or shear cell tests. For applications and further comparisons with experiments, the
proposed basal boundary conditions will need to be combined with evolution equations in
two dimensions or three dimensions, possibly integrated over depth to reduce complexity
and computational cost.
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