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Abstract. I present axisymmetric numerical simulations of the solar interior, with differential
rotation imposed in the convection zone and tachocline and a dipolar poloidal field confined
to the radiative interior. In these simulations toroidal field reversals which are equator-ward
propagating are driven in the absence of a dynamo. These reversals are driven in the tachocline
and are seen at the top of the convection zone. While not solar-like in many ways, these reversals
do show some solar-like properties not previously seen in full MHD simulations.

Keywords. Sun: interior, magnetic fields

1. Introduction
One of the main constraints on models and simulations of the solar dynamo process

is the sunspot cycle, marked by equator-ward propagation of sunspot pairs. The basic
picture of the sunspot cycle is that magnetic field is pumped into the tachocline by
overshooting convection, where it is stretched and amplified by the strong radial and
latitudinal differential rotation there. The toroidal field, thus amplified and strong enough
to traverse the convection zone without being destroyed, becomes magnetically buoyant
and rises through the convection zone, manifesting itself at the surface of the Sun as
sunspot pairs. In flux-transport dynamo models the toroidal field is advected equator-
ward by the meridional circulation at the base of the convection zone. Of course, there
are many uncertainties in this picture of the solar dynamo, including how well the field
is pumped, organized, amplified in the tachocline, as well as how it becomes buoyant,
remains in tact in its traverse through the convection zone, etc. Dynamo models usually
focus on addressing the gross features of the sunspot cycle, such as the equator-ward
propagation of toroidal field which reverses in time. Such solutions are easy to achieve in
mean-field models, but have proven more difficult in more physical, less-tunable, magneto-
hydrodynamic (MHD) simulations of the solar convection zone. Simulations of dynamos
in the solar convection zone from two decades ago (Glatzmaier (1985)) and more recent
simulations (Brown (2010), Ghizaru et. al. (2010)) have produced reversing toroidal field
but with generally pole-ward or no latitudinal propagation.

It was speculated early on (Glatzmaier (1985)) that equator-ward propagation could
be achieved in the adjacent stable region, if the reversals and propagation were due to a
dynamo wave (Parker (1955)) and obeyed the Parker-Yoshimura sign rule. Unfortunately,
three dimensional calculations including an adjacent stable region are not abundant. The
most recent of such simulations (Browning et. al. (2006)) showed that magnetic field
was easily stored and amplified in an imposed tachocline, but saw no reversals. Here I
show here that toroidal field reversals can be instigated by the Tayler instability and
that equator-ward propagation occurs by advection of the toroidal field by meridional
circulation, similar to flux-transport models.
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Figure 1. Schematic of model setup.

2. Model Setup
I emphasize that the simulations presented here are axisymmetric and therefore, not

dynamo simulations. The original purpose of the simulations was to study the uniform
rotation of the solar radiative interior†. For that reason the models simulate a large
fraction of the solar radius extending from 0.10 R� to 0.90 R� and accurately represents
the stable stratification of the radiation zone (in order to better represent internal gravity
waves). Because the model is axisymmetric I am not able to accurately simulate the
differential rotation of the convection zone. Therefore, I artificially impose the observed
differential rotation profile of the convection zone. After running a purely hydrodynamic
model for some time I add a dipolar poloidal field to the radiative interior. The initial field
configuration is such that the field lines close within the radiative interior but overlap
the tachocline. A schematic of the model setup is shown in Figure 1.‡

I solve the full MHD equations in the anelastic approximation:

∇ · B = 0 (2.1)
∇ · (ρu) = 0 (2.2)

∂u
∂t

+ (u · ∇)u = −∇P − Cgr̂ + 2(u × Ω) +
1
ρ
(J × B)

+ ν(∇2u +
1
3
∇ (∇ · u)) (2.3)

∂T

∂t
+ (v · ∇)T = −vr

(
dT

dr
− (γ − 1)Thρ

)

+ (γ − 1)Thρvr + γκ[∇2T + (hρ + hκ)
∂T

∂r
] (2.4)

† Which I did discuss at the meeting but is not included in this proceeding
‡ Since the time of the meeting this work has been submitted to The Astrophysical Journal,

figures in this conference proceeding are the same as some of those depicted in that paper.
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∂B
∂t

= ∇× (u × B) + η∇2B (2.5)

where equations 1 and 2 ensure magnetic flux and mass conservation. Equation 3 is the
momentum equation, 4 is the energy equation and 5 is the magnetic induction equation.
The numerical method is similar to that in Glatzmaier (1984), except here we use a
finite difference scheme in the radial direction as opposed a Chebyshev expansion. This
allows us more flexibility in allocation of radial resolution. The resolution of the model
presented is 1500 radial zones by 512 latitudinal zones. In radius, 500 zones are devoted
to the radiative interior and 1000 are devoted to the tachocline and convection zone.

3. Results
The model is initiated with a purely poloidal magnetic field. Toroidal field is quickly

generated by stretching of that field by the differential rotation in the tachocline. The in-
duction of toroidal field is described by the toroidal component of the induction equation,
given by:

∂Bφ

∂t
= rBr

∂

∂r

(uφ

r

)
−rur

∂

∂r

(
Bφ

r

)
+
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∂
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sin θ

)
− sin θuθ

r

∂

∂θ

(
Bφ

sin θ

)
+η∇2Bφ

(3.1)

Initially, toroidal field induction is dominated by the first term on the right hand side of
equation 3.1 and as such the toroidal field is oppositely signed at high and low latitudes,

Figure 2. Toroidal field as a function of time and latitude. Blue (black) represents negative
toroidal field, while white represents positive. The top panel shows the field at the top of the
convection zone, while the bottom panel shows the field in the tachocline.
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Figure 3. Tayler instability criterion, as described by equation 3.2, in the tachocline, as a
function of time and latitude. Blue represents times and regions where the model is stable,
Red represents times and positions of instability. Instability clearly corresponds to times of
”reversals” as seen in figure 2.

anti-symmetric about the equator. This configuration quickly becomes unstable, leaving
one dominant sign in the northern hemisphere and the opposite sign in the southern
hemisphere (the sign dictated by the third term on the rhs of 3.1 and the initial poloidal
field configuration). Throughout most of the simulation we find that the dominant in-
duction term is the advection of toroidal field by latitudinal velocity (the fourth term on
the rhs of 3.1). The dominant sign in each hemisphere remains fixed in time in the radia-
tive interior. However, the sign of the toroidal field in the tachocline and convection zone
changes in time, as can be seen in Figure 2. Clearly, there is a dominant toroidal field sign
in each hemisphere (which I will refer to as the dominant sign) and a weaker field sign
in each hemisphere (which I refer to as the minority sign). In the northern hemisphere,
positive toroidal field is the dominant sign; in the southern hemisphere negative toroidal
field is the dominant sign. Occasionally, the dominant sign toroidal field decays rapidly
and the minority sign becomes dominant, leading to the appearance of a reversal. The
cause of rapid toroidal field decay can be traced to the axisymmetric Tayler instability
(Tayler (1975), Spruit (1999)). The basic criterion for the this instability (Spruit (1999)),
is given by:

cos θ
∂

∂θ

(
ln

(
B2

sin2 θ

))
> 0 (3.2)

In Figure 3 we show the lhs of equation 3.2 as a function of time and latitude at a
height within the tachocline, with red (white) representing values larger than zero and
blue (black) representing values less than zero. One can clearly see that reversals seen in
Figure 2 are associated with times when the axisymmetric Tayler instability criterion is
satisfied. In Figure 3 one can see that the criterion is satisfied much of the time at high
latitudes, but reversals coincide with those times when the criterion is satisfied at low
latitudes as well.
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Figure 4. Ratio of toroidal to poloidal field strength, in the tachocline, as a function if time
and latitude (top) and at high latitudes (bottom). Note that this ratio is larger at low latitudes
due to the fact that the poloidal field is much larger at high latitudes than at low latitudes.

The condition in 3.2 is for a purely toroidal field and as shown by Wright (1973) and
Braithwaite & Spruit (2004), the addition of a poloidal field can have a stabilizing effect.
Both showed that with mixed field components the instability criterion then also depends
on the relative strengths and geometries of the toroidal and poloidal field components. I
similarly find that the toroidal field must satisfy the gradient condition expressed in 3.2,
but in addition, its strength must also overcome the stabilizing effect of the poloidal field,
which occurs when the local ratio B2

φ/B2
p is ≈10-20. Once these criterion are satisfied the

toroidal field rapidly decays, as seen in Figure 4. In Figure 4 I show the ratio of the toroidal
field energy to the poloidal field energy as a function of time and latitude (top panel),
while the bottom panel just shows this ratio at a chosen (high) latitude. Two things are
immediately obvious in this figure. First, it is clear in the top panel of figure 4 that the
ratio of field energy, B2

φ/B2
p , is significantly higher at low latitudes than at high latitudes,

which is predominantly due to the poloidal field in the tachocline being substantially
larger at high latitudes than at low latitudes.† Second, the ratio of toroidal to poloidal
magnetic energy is rather oscillatory at high latitudes, and occasionally after reaching a
strong peak, there is rapid destruction of toroidal field energy. During these times, the
Tayler instability criterion as described in 3.2, is satisfied and the minority signed toroidal
field is advected equator-ward by meridional circulation. Looking at Figure 2 one can
estimate the timescale for the minority field to be swept to the equator. Comparing this
to the advection time calculated using the mean latitudinal velocity at the base of the
convection zone (≈ 3×103 cm/s) one finds that the advection time is similar, confirming
the dominance of the advection of toroidal field by latitudinal flow. Initially

† This implies that the field is not as well confined at high latitudes than at low latitudes,
which has some implications for the ability of field to enforce uniform rotation in the solar
interior. This matter will be discussed in a forthcoming paper.

https://doi.org/10.1017/S1743921311017455 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921311017455


Tayler Instability in Solar Interior Simulations 67

4. Implications
These simulations are clearly not good solar analogues. The short comings of this

model are many: axisymmetry (lack of dynamo), artificially imposed differential rotation
and large diffusion coefficients are the first to come to mind (there are others). Never-
theless, there are some interesting features. First, this model is the first MHD simulation
which gets equator-ward propagating and reversing toroidal field, and does so without a
dynamo. Second, this model demonstrates that the equator-ward propagation can eas-
ily be obtained by meridional circulation which is driven by the differential rotation in
the solar convection zone, a key component of flux-transport mean field models. Finally,
these simulations give another measure of stability for mixed field configurations.
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Discussion

Brandenberg: How do you model the radiation conductivity? Did you use a rescaled
Kramers opacity?

Rogers: The thermal diffusivity is modeled as the solar radiative conductivity, divided
by ρcp , multiplied by some factor for numerical stability.

κ(r) = f
16σT 3

3ρ2χcp
(4.1)

where σ is the Stefan-Boltzmann constant, and χ is the opacity.

Brandenberg: How realistic is the overshoot you get?

Rogers: I don’t know if we know what ”realistic” overshoot is, given we don’t have
a direct measurement. I think these are some of the best simulations of overshoot in
the Sun since they have the stable stratification right and the gradient of the thermal
diffusivity is right. The overshoot I get is very small, maybe 10% of a pressure scale
height, depending on how it is defined.

Brandenberg: Do the g-modes restrict the timestep, i.e. how useful is it to use the
anelastic approximation?

Rogers: Yes, the gravity waves restrict the timestep, or probably more accurately the
timestep can be limited by the angular velocity generated by the dissipation of gravity
waves. This is particularly true at the center of the simulations where a small amount
of angular momentum deposition could lead to somewhat large angular velocities com-
pounded by the fact that the horizontal grid spacing there is very fine.
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Brun: What is the main angular momentum transport process at the base of the con-
vection zone in your simulation?

Rogers: Note to reader: this question refers to the part of the talk where I discussed
angular momentum transport in the radiative interior. This part of the talk is not included
in this conference proceeding. I don’t really know the answer to this question. Just below
the convection zone the angular momentum transport is dominated by overshoot and
waves, although referring to them as waves in this region is probably not accurate. In
the models I have run the magnetic field has little influence in that region

Brun: How does the presence of magnetic field change the balance of angular momentum
and the properties of the internal waves (propagation, group velocity...)?

Rogers: In the axisymmetric models presented here the answer is I don’t know. How-
ever, in models and simulations of IGW interacting with a purely toroidal field the answer
is that magnetic fields can reflect the waves creating a duct and enhanced angular mo-
mentum deposition in the region between the field and the base of the convection zone.
The magnetic field then filters some waves, preventing them from reaching the deep in-
terior, but also acts as an amplification mechanism on other waves. The net is that the
field causes the wave transport in the deep radiative interior to be highly dependent in
time and space, because the reflection/amplification depends on the local field strength
(which varies in time).
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