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We consider the evolution of a spatially periodic, perturbed vortex sheet for small times
after the formation of a curvature singularity at time t = tc as demonstrated by Moore
(Proc. R. Soc. Lond. A, vol. 365, issue 1720, 1979, pp. 105–119). The Moore analysis
is extended to provide the small-amplitude, full-sheet structure at t = tc for a general
single-mode initial condition in terms of polylogarithmic functions, from which its
asymptotic form near the singular point is determined. This defines an intermediate
evolution problem for which the leading-order, and most singular, approximation is solved
as a Taylor-series expansion in τ = t − tc, where coefficients are calculated by repeated
differentiation of the defining Birkhoff–Rott (BR) equation. The first few terms are in
good agreement with numerical calculation based on the full-sheet solution. The series
is summed, providing an analytic continuation which shows sheet rupture at circulation
Γ = 0+, τ > 0+, but with non-physical features owing to the absence of end-tip sheet
roll up. This is corrected by constructing an inner solution with Γ < τ , as a perturbed
similarity form with small parameter τ 1/2. Numerical solutions of both the inner, nonlinear
zeroth-order and first-order linear BR equations are obtained whose outer limits match the
intermediate solution. The composite solution shows sheet tearing at τ = 0+ into two
separate, rolled up algebraic spirals near the central singular point. Branch separation
distance scales as τ with a non-local, τ 3/2 correction. Properties of the intermediate and
inner solutions are discussed.

Key words: vortex dynamics

1. Introduction

The basic mechanism of the thin-layer, shear-flow instability, known as the
Kelvin–Helmholtz (KH) instability, refers to the fluid motion generated at a shear zone
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separating two uniform layers, of generally different density, moving in equal and opposite
directions. If the shear layer is taken to have zero thickness, the flow is termed a
‘vortex-sheet’ instability. Helmholtz (1868) first discussed the fluid dynamical prototype
while Lord Kelvin (Thompson 1871) later developed the linear theory for vortex-sheet KH
instability. The KH instability is important and often dominant in many atmospheric and
oceanic fluid phenomena that often involve the transition to and production of turbulence.

Vortex-sheet instability is known to exhibit ill posedness in general, in the sense
of unbounded growth of arbitrarily small-wavelength disturbances. Consequently, the
fluid dynamics beyond the linear growth stage has been widely studied. See; Moore
(1978), Krasny (1986b), Baker & Shelley (1990), Sohn (2016) and Caflisch, Lombardo
& Sammartino (2020). Rosenhead (1931) performed a numerical simulation using twelve
point vortices per wavelength, observing a tendency of the vortex sheet to roll up into
vortex cores. Calculations with up to twenty vortices were discussed by Birkhoff (1962),
who reported the onset of non-smooth, random-like motion, behaviour later associated
with loss of analyticity (Ely & Baker 1994) in the vortex-sheet evolution.

An advance in understanding was made by Moore (1979), who showed that a
small-amplitude initial disturbance to an initially flat vortex sheet whose evolution was
governed by the Birkhoff–Rott (BR) equation (Rott 1956; Birkhoff 1962) produced a
curvature singularity in a finite (critical) time tc proportional to the logarithm of the
inverse disturbance amplitude. Verification of this prediction has been the subject of
several high fidelity numerical simulations (Krasny 1986a; Shelley 1992; Nitsche 2001).
Meiron, Baker & Orszag (1982) solved the BR equation using a high-order Taylor series,
finding singularity formation in a finite time. Existence of solutions up to a near-singularity
formation time for a slightly perturbed, flat vortex sheet was demonstrated by Caflisch &
Orellana (1986). Exact solutions of the BR equation that show singularity formation have
been reported by Duchon & Robert (1988) and also Caflisch & Orellana (1989). Cowley,
Baker & Tanveer (1999) explored the dynamics of the singularity formation event, showing
that it can be interpreted as the convergence of a 3/2-power singularity in the extended
complex plane of the Lagrangian vortex sheet parameter, onto the real axis at t = tc. They
also estimated the vortex-sheet shape as t → t−c from below, giving a local form of the
curvature singularity formed by a perturbation from a locally flat sheet.

Vortex-sheet motion for t > tc has been studied using the vortex-blob formulation
(Krasny 1986a; Baker & Pham 2006; Sohn 2016), which removes singularity
formation, allowing long-time numerical simulation. Blob-based simulations show
fine-scale geometry near the singularity formation region for t > tc at scales below
the blob size. Whether the sub-blob evolution scales faithfully depict the immediate
post-singularity vortex-sheet evolution very near the point of singularity formation, or are
a blob-size-dependent artefact of the blob approximation, remains an open question. See
Caflisch et al. (2022) for discussion and Baker & Pham (2006) for detailed comparative
numerical simulations.

Alternative approaches study the limit when a small parameter approaches zero, of
initial-value solutions of either the Euler or Navier–Stokes equations. Baker & Shelley
(1990) solve the Euler equations describing the motion of a thin, uniform vorticity layer
whose thickness is small compared with the local layer-centreline curvature, observing
the formation of a central bulge in the region where singularity formation is expected
for the vortex-sheet limit. Within the bulge exists a double-branched spiral curve whose
material initial condition corresponds to the initial centreline of the perturbed layer. Using
numerical Navier–Stokes simulations, Caflisch et al. (2022) report the formation of an
inner core with internal properties scaling on the Reynolds number. Their intermediate
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Reynolds number simulations reveal the formation of dual, separated vorticity cores that
later merge.

Both the blob and physical-parameter simulations indicate that, prior to the singularity
formation event, there is convergence to the vortex-sheet limit when the regularization
parameter approaches zero; see Baker & Pham (2006) for blob calculations. Finite-time
analyticity of the BR vortex-sheet problem with analytic initial data has been established;
see Sulem et al. (1981), Majda & Bertozzi (1992) and Wu (2006). Owing to the
singular nature of the initial condition generated by singularity formation, the problem
of continuing the solution of the BR equation for t > tc may not be unique, resulting in the
existence of several, many and possibly infinitely many admissible classical continuation
solutions. Hence, convergence of regularized solutions to one or more classical BR
solutions in the immediate vicinity of the singularity formation region remains uncertain,
and may be regularization dependent.

Presently, we describe the construction of a solution of the BR equation as a viable
continuation of the Moore solution, valid for arbitrarily small time beyond tc. The
arguments and analysis comprise Taylor-series expansion, series summation, analytic
continuation of summed expressions and numerical solution of both nonlinear and linear
forms of the BR equation in several different but overlapping solution regimes. A summary
of the role played by these elements is as follows.

(i) The full solution domain consists of a single spatial period of an infinite, flat
vortex sheet in an incompressible, inviscid fluid of uniform density, that is subject
to a generalized, single mode, periodic disturbance of small amplitude ε at t = 0.
Defining τ = t − tc, then for τ > 0 this is partitioned into three sub domains:
(a) An outer domain denoted region I comprising the single-period sheet.
(b) An intermediate domain denoted region II. This is defined as the region of

validity of a solution comprising the most singular term in the time-wise
Taylor-series expansion of the BR equation, using the inner expansion of the
Moore solution at t = tc as initial condition.

(c) An inner domain, denoted region III, that is close to, and includes the singular
point generated at t = tc.

Region III exists only for t > tc. A proper description of region II requires a
prior derivation of an appropriate solution. Quantitative definitions of the three
sub-domains will be given at the end of § 2.

(ii) In § 2 we extend the series approach of Moore (1979) using a generalized,
single-mode initial condition. The series can be summed to provide a small-ε
solution for the full-sheet structure near t = tc in terms of polylogarithm functions.
This enables determination of the leading-order (in the cumulative circulation
variable Γ ) sheet shape near the point of curvature singularity formation at t = tc.
This is termed an intermediate initial condition for a region-II solution, comprising a
flat sheet with an added Γ 3/2 term that contains the singular behaviour. The polylog
solution can be analytically continued for t > tc outside the range of convergence of
the generating Fourier series. This shows sheet-branch separation or tearing at the
sheet symmetry point at t = t+c .

(iii) Next, in § 3, the first two terms of a Taylor series in time are found based on
repeated time-wise differentiation of the BR equation for t > tc. These give the
sheet velocity and acceleration at t = tc that are compared in § 4 with numerical
evaluation of the Biot–Savart induced velocity from the Moore solution. In § 5, this
analysis is extended to give the full Taylor-series solution for the most singular term
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of the BR equation. This series is shown to have a finite radius of convergence in a
similarity parameter η ∼ Γ/(t − tc), but can be summed to provide a closed-form
expression defined as a region-II solution. The radius of convergence is taken as the
inner bound of region II. This solution can also be analytically continued inside the
series radius of convergence towards η → 0, which is equivalent to Γ → 0 for t >

tc. Sheet tearing is also found, which is shown in an appendix to be in quantitative
agreement with the analytic continuation of the extended Moore solution in region
I.

(iv) An inner solution in region III is developed in § 6. It is noted that the analytically
continued region-I and region-II solutions display free vortex-sheet endpoints or
tips that, without endpoint vortex-sheet roll up, are considered non-physical. The
tearing feature, together with the perturbed similarity form of the region-II solution,
nonetheless suggest an inner similarity expansion of the BR equation, leading to a
nonlinear equation that describes a dominant or zeroth-order inner solution, together
with a first-order correction in the small parameter (t − tc)1/2, defined by a linearized
BR equation. It is argued that a solution of the zeroth-order equation based on
double-spiral, vortex-sheet roll up about the singular point does not exist. The only
available alternative is a sheet geometry comprising a pair of spatially separated,
antisymmetric algebraic spirals. This structure is interpreted as consistent with
the sheet tearing suggested by the analytically continued region-II solution, while
restoring the physically expected, end-sheet roll up.

(v) Numerical solutions to both the nonlinear zeroth- and linear first-order equations in
region III are obtained that effectively match the corresponding region-II solution
components for large η. When the similarity plane is transformed back to the
physical plane using a compression factor proportional to τ , the zeroth-order,
spiral vortices show roll-up centres that mutually recede as t − tc, together with
a (t − tc)3/2 correction provided by the outer flow. Near the sheet endpoints, the
order-(t − tc)3/2 solution component agrees qualitatively but not quantitatively with
the analytically continued region-II solution.

(vi) The composite region-II–region-III solutions are discussed in § 6.4 while
conclusions are summarized in § 7.

2. Moore solution in region I

2.1. Problem definition
First, we extend Moore’s solution for the evolution of a spatially periodic vortex sheet with
a family of initial perturbations. Evolution of the vortex sheet in two-dimensional potential
flow is described by a parameterized complex curve

z(Γ, t) = x(Γ, t) + iy(Γ, t), (2.1)
where t is time and Γ measures the circulation in the sheet between an arbitrary point with
coordinate z and a reference fluid particle chosen as Γ = 0. The sheet shape evolution in
time is governed by the BR equation

∂ z̄(Γ, t)
∂t

= 1
2πi

−
∫ ∞

−∞
dΓ̂

z(Γ, t) − z(Γ̂, t)
, (2.2)

where z̄ is the complex conjugate of z and the right-hand side is understood as a Cauchy
principal-value (CPV) integral. We will assume that z(Γ, t) satisfies two conditions

z(Γ + 2π, t) = 2π + z(Γ, t), z(−Γ, t) = −z(Γ, t). (2.3)
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Using the second condition, (2.2) can be written in the form

∂ z̄(Γ, t)
∂t

= 1
2πi

−
∫ ∞

0

(
1

z(Γ, t) − z(Γ̂, t)
+ 1

z(Γ, t) + z(Γ̂, t)

)
dΓ̂ . (2.4)

We consider an initial-value problem that uses a general initial sinusoidal perturbation
of the form

z(Γ, 0) = Γ + eiφε sin(Γ ), (2.5)

with initial amplitude 0 < ε � 1 and phase φ ∈ [0, 2π). The real component ε cos φ

stretches the circulation distribution while the imaginary component ε sin φ perturbs the
sheet shape. Moore (1979) studied the particular case where φ = π/2. See Krasny (1986b),
Cowley et al. (1999) and Shelley (1992) for discussion of and results for alternative initial
conditions. The unperturbed sheet with ε = 0 corresponds to the uniform shear flow with
velocity field given by

u(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

−1
2
, 0
)

, y > 0,(
1
2
, 0
)

, y < 0.

(2.6)

2.2. Fourier expansion
For t > 0, Moore (1979) expresses the sheet function in a Fourier series

z(Γ, t) = Γ +
∞∑

n=−∞
An(t)einΓ , (2.7)

here with initial conditions according to (2.5)

A±1(0) = ∓ i eiφε

2
, An(0) = 0, (n /=±1). (2.8)

It immediately follows from symmetry that

A0(t) = 0, A−n(t) = −An(t). (2.9)

Substituting (2.7) into (2.2) leads to a system of ordinary differential equations (ODEs)
for the Fourier coefficients An

dĀ−n

dt
= i

2π

⎡⎣AnI1 +
∑

r1+r2=n

Ar1Ar2I2 + · · · +
∑

r1+r2+···+rK=n

⎛⎝ K∏
p=1

ArpIK

⎞⎠ + · · ·
⎤⎦ ,

(2.10)
where IK is the principal-value integral with respect to ξ = Γ̂ − Γ

IK = −
∫ ∞

∞

K∏
p=1

(1 − eirpξ )ξ−K−1 dξ, (2.11)

where rp = 1, 2, 3, . . . are indices of A, and p = 1, 2, 3, . . . are sub-indices for r.
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To estimate An, the system of (2.10) can be further partitioned by the power series
expansion

An(t) =
∞∑

j=0

ε|n+2j|An,2j(t), (2.12)

giving subsystems of ODEs for each An,0, An,2, An,4,. . . . In particular, at leading order,
O(ε|n|), the corresponding integral defined in (2.11) can be calculated using residues as

IK = πiK+1(−1)K
K∏

p=1

rp, (rp ≥ 1), (2.13)

leading to the following evolution equations for An,0:

dĀn,0

dt
= 1

2

⎡⎢⎢⎣An,0(−i)n + · · · +

⎛⎜⎜⎝ ∑
r1+r2+···+rK=n

r1,r2,...,rK≥1

(−i)K
K∏

p=1

Arp,0 rp

⎞⎟⎟⎠ + · · · + An
1,0(−i)n

⎤⎥⎥⎦.

(2.14)

The first two equations read explicitly as

dĀ1,0

dt
= − i

2
A1,0,

dĀ2,0

dt
= −iA2,0 − 1

2
A2

1,0. (2.15a,b)

2.2.1. Asymptotic coefficients
The ODE system (2.14) and (2.8) can be solved recursively to give, for example, the
asymptotic A1,0 and A2,0 for large t as follows:

A1,0 = (1 + i)et/2

4
λ1,0 + O(e−t/2),

A2,0 = (1 + i)et

16
(λ2,0 t + λ2,1) + O(e−t),

⎫⎪⎪⎬⎪⎪⎭ (2.16)

where

λ1,0 ≡ λ1 = sin φ − cos φ,

λ2,0 = λ
2
1

2
= 1 − sin 2φ

2
, λ2,1 = 4 cos 2φ − sin 2φ − 1 + (1 − sin 2φ)i

4
.

⎫⎪⎬⎪⎭ (2.17)

Here, we require λ1 /= 0, i.e. φ /=π/4, 5π/4, to retain the leading-order behaviour. Special
cases with λ1 = 0 are not considered in this study.
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Moore (1979) showed by induction that the solution for the leading-order An,0 takes the
form

An,0 ∼ (1 + i)ent/2

4n [λn,0tn−1 + λn,1tn−2 + · · · ], (2.18)

where, by abbreviating λn ≡ λn,0, the leading-order coefficient λn for n ≥ 2 is given by
the following recursion:

λn = 1
2(n − 1)

[(n − 1)λ1λn−1 + 2(n − 2)λ2λn−2 + · · · + (n − 1)λn−1λ1]. (2.19)

To determine the large n behaviour of λn, Moore (1979) proposed a generating function
g(x) defined for x ∈ R as

g(x) =
∑
n≥1

λnxn, (2.20)

with

g′(0) = λ1, (2.21)

given by (2.17). The recursion (2.19) thus implies

g′(x) = 1 − √
1 − 2g(x)
x

. (2.22)

Equations (2.22) and (2.21) can be solved in closed form as

g(x) = −1
2 W0(−λ1x) [W0(−λ1x) + 2] , (2.23)

where W0 is the Lambert W function. Taylor expanding (2.23) around x = 0 yields

g(x) =
∑
n≥1

cnλ
n
1xn = λ1x + λ

2
1x2

2
+ λ

3
1x3

2
+ 2λ4

1x4

3
+ · · · . (2.24)

Therefore, comparing (2.20) and (2.24) shows

λn = cnλ
n
1. (2.25)

Here, cn > 0 given in (2.24) also corresponds to the special case λ1 = 1 (i.e. φ = π/2)
studied by Moore (1979), where it is shown that

cn ∼ en
√

2πn5/2
, (2.26)

as n → ∞. Finally, substituting (2.26), (2.25) and (2.18) into (2.12) completes the
following asymptotic Fourier coefficients An for t � 1, n � 1 and t � n:

An(t) ∼ (1 + i)[sign(λ1)]n
√

2πn5/2t
exp

{
n
[

1 + t
2

+ ln
( |λ1|εt

4

)]}
. (2.27)

Compared with the special case of λ1 = 1, it is seen that a general λ1 /= 0 simply rescales
the initial perturbation size ε to |λ1|ε for the coefficients |An(t)|.
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2.2.2. Critical time of singularity formation
Owing to correction terms contained in (2.18), the leading-order An,0 given by (2.27), as
an approximation of An, deteriorates in accuracy as n → ∞ for fixed t. Moore (1979)
resolved this non-uniformity by introducing a strained time s, and consequently obtained

An,0(t) = 1√
2π

n−(5/2)

(
λ1

4
ses/2+1

)n [1 + i
s

+ O
(

1
s2

)]
, s = t + α1

t
+ O(t−2),

(2.28)

where λ1 = 1 and α1 = 2. In Appendix A, we show that (2.28) also holds for the general
case of λ1 /= 1, where the constant α1 = α1(φ) as a function of φ is given by (A13).

Equations (2.12) and (2.28) imply that, in contrast to (2.27), the uniformly convergent
Fourier coefficients are expressed in terms of s as follows:

An(t(s)) ∼ (1 + i)[sign(λ1)]n
√

2πn5/2s
exp

{
n
[

1 + s
2

+ ln
( |λ1|εs

4

)]}
. (2.29)

Therefore, at a critical time tc(ε) defined by

1 + sc

2
+ ln sc = ln

(
4

|λ1|ε
)

, tc = sc + O(s−1
c ), (2.30)

the An values for the Fourier series (2.7) given by (2.29) lose their exponential decay for
t ≥ tc, and transition to algebraic decay as O(n−5/2). Consequently, the initially smooth
vortex sheet spontaneously loses analyticity of its shape function z at tc, when a singularity
develops. This singularity is of the same form as that exhibited in (2.27), but occurs at a
slightly different time. For small perturbation size ε, and consequently large critical time,
tc can be well approximated by solving (2.30) at leading order to give

tc = 2W0

(
2

e|λ1|ε
)

, (2.31)

where W0 is again the Lambert W function.

2.3. Sheet structure at critical time
Using (2.7), (2.8) and (2.12), the series describing the vortex-sheet shape can be
asymptotically summed for small ε as

z(Γ, t) = Γ + 2i
∞∑

n=1

An(t) sin(nΓ ) 
 Γ + 2i
∞∑

n=1

An,0(t)εn sin(nΓ ). (2.32)

With An,0 given by (2.28), the Fourier series (2.32) converges uniformly to

z(Γ, t) 
 Γ −
(1 + i)

[
Li5/2

(
sign(λ1)t|λ1|ε

4 e−iΓ +1+(t/2)
)

− Li5/2

(
sign(λ1)t|λ1|ε

4 eiΓ +1+(t/2)
)]

√
2πt

,

(2.33)

for all t ≤ tc up to the critical time tc given by (2.31), where Lin(s) ≡ ∑∞
p=1 sp/pn is

the polylogarithm function. Evaluating (2.33) at t = tc yields the critical sheet shape,
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Figure 1. (a) Real (solid) and imaginary (dashed) parts of b(ε) vs ε. (b) Real (solid) and negative imaginary
(dashed) parts of A(ε) vs ε.

zc = z(Γ, tc), as follows:

zc(Γ ) 
 Γ − (1 + i)
[
Li5/2

(
sign(λ1)e−iΓ ) − Li5/2

(
sign(λ1)eiΓ )]

√
2πtc

. (2.34)

Equation (2.28) is valid for n large, and the addition of low-mode corrections would modify
(2.34). This is expected to be analytic and so will not change the nature of the singularity.

If λ1 > 0 then, near the origin, where 0 ≤ Γ � 1, (2.34) takes the asymptotic form

zc(Γ ) ∼ b(Γ + AΓ 3/2) + O(Γ 2), (2.35)

where

b(λ1ε) = 1 −
(1 − i) ζ

(
3
2

)
√

2π W0

(
2

e λ1ε

) , A(λ1ε) = 1

3
4 (1 + i) W0

(
2

e λ1ε

)
− 3ζ

(
3
2

)
2

√
2π

, (2.36a,b)

and ζ(3/2) ≈ 2.61238 is a constant following the Riemann zeta function ζ(·). Both (2.33)
and (2.34) satisfy z(−Γ, τ) = −z(Γ, τ ) as required but (2.35) does not because the
complex constants are tailored to Γ ≥ 0+. This will not affect the subsequent analysis.
An expression for the sheet shape at t = tc, Γ < 0 which satisfies the proper symmetry
can be obtained but is not needed. Equation (2.35) agrees with a similar result at t = tc
obtained by Cowley et al. (1999), although estimates of constants differ.

Similarly, if λ1 < 0, (2.34) can be expanded around Γ = π to show the same power
series as (2.35). Since the role of λ1 /= 1 in both cases is to rescale ε while preserving
the same sheet shape near the singularity, we subsequently commit to the Moore (1979)
initial value with λ1 = 1, i.e. φ = π/2, without loss of generality. The variation of both
the real and imaginary parts of b(ε) and A(ε) (λ1 = 1) are displayed in figure 1. For
ε ≤ 0.0439064, the argument of A lies in the fourth quadrant, crossing to the third quadrant
for larger values. Later the special case Re[A] = Im[A] or arg[A] = 5π/4 will arise. This
occurs with ε = 0.248985, A = −0.639680 − 0.639680i, b = i which is nominally out
of range of the present discussion. Calculations will generally use ε = 10−3 for which
b = 0.791266 + 0.208734i, A = 0.116149 − 0.199386i. Asymptotic results with ε → 0
will also be presented.

Figure 2 shows the sheet shape in 0 ≤ x ≤ π for ε = 10−3 given by both (2.34) and
the leading-order approximation (2.35). With ε = 10−3, the sheet angle at the origin
at t = tc is arg[b(10−3)] = 0.257922 radians or 14.7779◦. The vortex-sheet strength,
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x
π/4 π/2 3π/4 π

Figure 2. Vortex-sheet geometry at t = tc. Here, ε = 10−3. Solid black: (2.34). Dashed: first two terms on
the right-hand side of (2.35).

γ ≡ |∂z/∂Γ |−1, which measures the jump in tangential velocity across the sheet, can be
calculated from (2.34) at t = tc as

γc =
∣∣∣∣∣ (1 + i)

√
πtc

(1 + i)
√

πtc − √
2[Li3/2(e−iΓ ) + Li3/2(eiΓ )]

∣∣∣∣∣ , (2.37)

which is continuous for all Γ ∈ [0, 2π]. From (2.37) or using (2.35)–(2.36a,b) it can be
shown that, with t = tc, as ε increases and A crosses the imaginary axis at ε = 0.0439064,
then γc changes from a local maximum, with negative singular gradient at Γ → 0+, to a
local minimum while the sheet angle at the singular point passes through arg[b] = 45◦.
Since ε << 1 for the Moore solution we will generally consider Re[A] > 0.

Using (2.35), the sheet curvature κ for small Γ follows as

κ ∼ t2c(
2α2 − 2αtc + t2c

)
3/2

√
Γ

= O
(

1√
Γ

)
, (2.38)

with α = √
2/πζ(3/2) ≈ 2.084, which is singular when Γ → 0+.

2.4. Continued solution beyond critical time
We now address the motion of the sheet near Γ → 0 for small times after tc, t > tc
where τ ≡ t − tc � 1. This is first explored by analytically continuing the Fourier series
solution for the sheet shape z obtained in (2.32) and (2.33) outside its domain of uniform
convergence. Indeed, for t < tc, the polylogarithm function Li5/2(w) contained in the
summed form (2.33) with varying Γ ∈ [0, 2π] is evaluated inside the complex unit disk
{w ∈ C, |w| < 1}, where Li5/2(·) remains a holomorphic function of Γ . When t = tc,
Li5/2(·) is accessed along the unit circle, and its branch point w = 1 is approached from
both sides as Γ → 0 in (2.33). As a result, the critical sheet shape zc loses analyticity at
Γ = 0, but remains continuous. For t > tc, i.e. τ > 0, the asymptotic Fourier coefficients
An,0 given in (2.28) diverge as n → ∞, and therefore the series solution breaks down.
The summed form (2.33), originally obtained for t < tc can nonetheless be evaluated
when t > tc as an analytic continuation because Li5/2(w) is in fact holomorphic for all
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–0.0010 –0.0005 0.00050
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0.0005

0.0010

y

x

τ = 0.02

zAC(
Γ  → 0+,τ) ~ O (τ

3/2) τ = 0.01

τ = 0

Figure 3. Vortex-sheet geometry near endpoints given by the analytic continuation (2.39), with
τ = 0, 0.01, 0.02 and ε = 0.01. Endpoint positions with Γ → 0+ shown as large dots for the right-hand sheet
branch as given by (2.42).

w ∈ C\(1, ∞). With λ = 1 and t = tc + τ , this gives

zAC(Γ, τ ) = z(Γ, tc + τ) 
 Γ − (1 + i) [Li5/2(Je−iΓ ) − Li5/2(JeiΓ )]
√

2π
[
2W0

(
2
eε

)
+ τ

] , (2.39)

where (2.31) is used, and

J = J(τ ) = eτ/2

⎛⎝ τ

2W0

(
2
eε

) + 1

⎞⎠ . (2.40)

At the origin zAC(Γ → 0+, 0) = 0 but since J > 1 when τ > 0 the branch cut
discontinuity along w ∈ (1, ∞) of Li5/2(w) is crossed as Γ → 0+ in (2.39), leading to a
discontinuous jump of the vortex-sheet profile at the origin. Specifically, this discontinuity
at τ = 0+ is given by zAC(0+, 0) = 0 when τ = 0 and

zAC(0+, τ ) = lim
Γ →0+

[zAC(Γ, τ )] =
√

2(1 − i)Im[Li5/2(J(τ ))]
√

π
[
2W0

(
2
eε

)
+ τ

] , (2.41)

when τ > 0. Immediately after the critical time tc, (2.41) is expanded for τ � 1 as

zAC(0+, τ ) ∼
(−1 + i)

(
1

W0

(
2
eε

) + 1

)3/2

τ 3/2

3W0

(
2
eε

) + O(τ 2), (2.42)

suggesting that, when τ > 0, the vortex sheet, which passes through the coordinate origin
at τ = 0, separates into two distinct branches (sheet tearing) whose ends or tips separate
as τ 3/2. This is shown in figure 3, where the analytically continued sheet shape is shown
near the origin for two values of τ .

In the following we put b = |b| exp(i θ), A = |A| exp(i χ), where |b|, |A|, θ and χ are
known functions of ε. We will refer interchangeably to variable sets (Γ, τ ) and (η, τ )

where

τ = t − tc, τ � 1, η = Γ |b|2
τ

. (2.43)
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For clarity, we will refer to three regions defined for now by

(i) I Outer: η � 1, 2π > Γ > 0, Γ � τ ;
(ii) II Intermediate: η = O(1), Γ = O(τ );

(iii) III Inner: 0 ≤ η < 1, 0 ≤ Γ < τ .

Region I may be considered as one full spatial period of the infinite vortex sheet. The
Moore approximation outlined above gives the region-I solution at τ = 0−. Region II can
be taken here as described by the initial condition (2.35) but more accurately as the region
of validity of the region-II solution to be developed in § 5. There, it will be shown that
analytic continuation of the region-II solution also exhibits sheet tearing. In Appendix B
it is shown that sheet tearing noted above for the Moore solution and that for the region-II
solution are somewhat different but agree in the limit ε → 0. Region III is to be discussed
in § 6.

3. Intermediate problem: region II

A small-time solution in region II is sought as an expansion in a Taylor series about
τ = 0. This will be expressed by successive differentiation with respect to τ of the BR
equation, leading to a formal expression for ∂zn(Γ, τ → 0)/∂τ n in terms of the partial
Bell polynomials Bn,k. Evidence for the equivalence of the leading-order solution for
the intermediate problem in region II and the small-time motion of the full initial-value
vortex-sheet evolution in region I will be established by demonstrating close numerical
agreement, when Γ → 0, of the first two time derivatives for regions I and II for several ε.
These correspond to the initial angular velocity and angular acceleration, respectively, of
the sheet motion near Γ = 0. These terms will be seen to be singular as Γ −1/2 and Γ −3/2

respectively.

3.1. Expansion as a Taylor series
Since the integration domain is fixed and the integral is well defined in the Cauchy sense,
the time derivative and the integral commute. We can then form the nth time derivative of
(2.4) evaluated at τ = 0 as

∂nz̄(Γ, τ )

∂τ n = 1
2πi

−
∫ ∞

0

∂n

∂τ n

(
1

z(Γ, τ ) − z(Γ̂, τ )
+ 1

z(Γ, τ ) + z(Γ̂, τ )

)
|τ=0 dΓ̂ . (3.1)

The time derivative inside the integral can be expressed by making use of the Faà di Bruno
(Johnson 2002) formula for the time derivative of the composite function f (Z(t))

dm

dτm f (Z(t)) =
m∑

k=0

f (k)(Z(τ ))Bm,k(Z(1)(τ ), Z(2)(τ ), . . . , Z(m−k+1)(τ )), (3.2)

where f , Z are functions for which all derivatives are defined, the superscript written as
(k) denotes the kth time derivative and

Bm,k (x1, x2, . . . . . . xm−k+1) = 1
k!

∑
j1+······+jk=m;ji≥1

(
m

j1, . . . , jk

)
xj1 . . . xjk, (3.3)

are the partial Bell polynomials (Bell 1927).
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We apply (3.3) to evaluate the nth time derivative inside the integral in (3.1) by
identifying f = 1/Z(t), where Z(τ ) → z(Γ, τ ) ± z(Γ̂, τ ) separately for each of the two
terms, followed by summation. Use of (3.2) in (3.1) then gives an explicit expression

∂nz̄(Γ, τ )

∂τ n

∣∣∣∣
τ=0

= 1
2πi

−
∫ ∞

0

m∑
k=1

(−1)k k!

(z(Γ, 0) − z(Γ̂, 0))k

× Bm,k(z(1)(Γ, 0) − z(1)(Γ̂, 0), . . . . . . z(m−k+1)(Γ, 0)

− z(m−k+1)(Γ̂, 0)) dΓ̂ + (· · · · · · + · · · ), (3.4)

where (· · · · · · + · · · ) denotes a second term with z(Γ, 0) − z(Γ̂, 0) and associated time
derivatives replaced by z(Γ, 0) + z(Γ̂, 0), as per the second term in (2.4).

The first four time derivatives can be written as
∂ z̄(Γ, 0)

∂τ
= 1

2πi
−
∫ ∞

0

(
1

z − ẑ
+ [· · · + · · · ]

)
dΓ̂, (3.5)

∂2z̄(Γ, 0)

∂τ 2 = 1
2πi

−
∫ ∞

0

(
z(1) − ẑ(1)

(z − ẑ)2 + [· · · + · · · ]

)
dΓ̂, (3.6)

∂3z̄(Γ, 0)

∂τ 3 = 1
2πi

−
∫ ∞

0

(
2 (z(1) − ẑ(1))2

(z − ẑ)3 + [· · · + · · · ] − z(2) − ẑ(2)

(z − ẑ)2 − [· · · + · · · ]

)
dΓ̂,

(3.7)

∂4z̄(Γ, 0)

∂τ 4 = 1
2πi

−
∫ ∞

0

(
6 (z(1) − ẑ(1))3

(z − ẑ)4 + [· · · + · · · ] − 6 (z(1) − ẑ(1))(z(2) − ẑ(2))

(z − ẑ)3

+[· · · + · · · ] − z(3) − ẑ(3)

(z − ẑ)2 − [· · · + · · · ]

)
dΓ̂, (3.8)

where all are understood to be evaluated at τ = 0 with z → z(Γ, 0), ẑ → z(Γ̂, 0) and
where the notation [· · · + · · · ] indicates an addition of the preceding term with the minus
sign replaced by plus. In principle, all derivatives can be evaluated sequentially. The first
two terms of (2.35) are used in the kernel on the right-hand side of (3.5) and the integral
evaluated to give z(1)(Γ, 0). This can then be used in (3.6) to evaluate z(2)(Γ, 0) and the
process repeated. Each successive stage leads to increased complexity and, additionally,
we cannot prove that all integrals converge.

3.2. Sheet velocity at τ = 0
Substituting (2.35) into the right-hand side of (3.5) and using the change of variables
Γ̂ = xΓ and ζ = A

√
Γ gives the complex velocity u − i v at τ = 0 as

u − i v = ∂ z̄
∂τ

∣∣∣∣
τ=0

= 1
2πib

−
∫ ∞

0

(
1

1 − x + ζ
(
1 − x3/2

) + 1
1 + x + ζ

(
1 + x3/2

)) d x.

(3.9)

Expanding the integrand for small |ζ | gives

∂ z̄
∂τ

∣∣∣∣
τ=0

= 1
2πib

−
∫ ∞

0

(
2

1 − x2 + ζ

(
−1 − x3/2

(1 − x)2 − 1 + x3/2

(1 + x)2

))
d x + O

(
ζ 2
)

. (3.10)
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Using

−
∫ ∞

0

dx
1 − x2 = 0, −

∫ ∞

0

(
1 − x3/2

(1 − x)2 + 1 + x3/2

(1 + x)2

)
d x = −3π

2
, (3.11)

then gives

z̄(1)(Γ, 0) = ∂ z̄
∂τ

∣∣∣∣
τ=0

= −3iA
4b

√
Γ + O(Γ ). (3.12)

The sheet velocity vanishes at the origin as Γ → 0 at the critical time, but its angular
velocity of order z(1)/Γ diverges as O(1/

√
Γ ). So, for sufficiently small 0 < Γ � 1 and

τ , the vortex sheet admits the form

z(Γ, τ ) = b(Γ + AΓ 3/2 + A1Γ
1/2τ), A1 = 3 iĀ

4|b|2 . (3.13)

3.3. Sheet acceleration at τ = 0
Equation (3.6) can be written in full as

∂2z̄
∂τ 2

∣∣∣∣
τ=0

= − 1
2πi

−
∫ ∞

0

(
z(1)(Γ, 0) − z(1)(Γ̂, 0)

(z(Γ, 0) − z(Γ̂, 0))2
+ z(1)(Γ, 0) + z(1)(Γ̂, 0)

(z(Γ, 0) + z(Γ̂, t))2

)
dΓ̂ . (3.14)

Using (3.13) at τ = 0 in (3.14) gives

∂2z̄
∂τ 2

∣∣∣∣
τ=0

= − AA1

2πibζ
−
∫ ∞

0

(
1 − x1/2

(1 − x − ζ(1 − x3/2))2 + 1 + x1/2

(1 + x + ζ(1 + x3/2))2

)
d x.

(3.15)

Again expanding the integrand for |ζ | � 1 and evaluating the CPV integrals gives, after
some algebra,

∂2z̄
∂τ 2

∣∣∣∣
τ=0

= iA

4b
√

Γ
− iAA1

2b
+ O(ζ ). (3.16)

Retaining only the leading-order term in (3.16), we can then extend (3.13) as

z(Γ, t) = b
(

Γ + AΓ 3/2 + 3 iĀ
4 |b|2 Γ 1/2τ − 3A

32|b|4 Γ 1/2 τ 2 + · · ·
)

. (3.17)

When the ordered expansions in τ � 1, Γ � 1 are taken in (2.39), and then the ε → 0
asymptotes of both the resulting expression and (3.17) obtained, then asymptotic matching
at least up to O(τ 2) is found. A numerical example is discussed in Appendix B.

4. Numerical comparison at τ = 0

4.1. Periodic parametrization
The accuracy of (3.12) and (3.16) is tested by high-precision numerical evaluation of the
BR integral (2.2). We periodically parameterize the interface shape z(a) = x(a) + iy(a)

and circulation Γ (a) using ‘Lagrangian markers’, a ∈ [0, 2π], such that x(a + 2π) =
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x(a) + 2π, y(a + 2π) = y(a) and Γ (a + 2π) = Γ (a) + 2π. The integral (2.2) can then
be reduced to the finite domain

∂ z̄
∂τ

∣∣∣∣
τ=0

= 1
4πi

−
∫ 2π

0
σ(â) cot

(
z(a, t) − z(â, t)

2

)
dâ, (4.1)

where σ(a) = dΓ/da. Similarly, the acceleration integral becomes

∂2z̄
∂τ 2

∣∣∣∣
τ=0

= − 1
8πi

−
∫ 2π

0

σ̂ (â)(z(1) − ẑ(1))

sin2[(z − ẑ)/2]
dâ, (4.2)

where z = z(a, t), ẑ = z(â, t), z(1) = ∂z/∂τ , ẑ(1) = ∂ ẑ/∂τ and σ̂ = σ(â). For numerical
purposes, the introduction of interface markers a allows discretized Γ values to be
distributed using a nonlinear monotonic stretching function of a, such as

Γ (a) = a − β sin(a), β ∈ [0, 1]. (4.3)

4.2. Complex velocity near Γ = 0
To evaluate the vortex-sheet velocity at the critical time t = tc(τ = 0), z = zc given by
(2.34) is substituted into (4.1). With the choice of β = 0, the principal-value integral can
be evaluated directly for all 0 ≤ Γ ≤ 2π to arbitrary precision in a symbolic environment
powered by MATHEMATICA®. A comparison between numerical evaluation of (4.1),
denoted by z(1)

num and the intermediate-problem asymptotic approximation given by (3.12),
and denoted presently by z(1)

asy, is shown in figure 4(a), using ε = 0.001, 0.01, 0.1, where
the O(

√
Γ ) convergence of z(1) is clearly seen. Accuracy of the analytical estimate can be

established for small Γ in figure 4(b,c), where the relative error against z(1)
num decreases for

both velocity components as Γ → 0. For a given Γ , z(1)
asy associated with smaller initial

perturbation ε has lower relative error dominated by the imaginary part.

4.3. Acceleration
The acceleration requires more care. An efficient numerical scheme to compute (4.2) was
developed by first removing the singularity at a = â using the identity

−
∫ 2π

0
cot

(
a − â

2

)
dâ = 0. (4.4)

Equation (4.2) can then be written as

∂2z̄
∂τ 2

∣∣∣∣
τ=0

= i
8π

∫ 2π

0

{
σ̂ (z(1) − ẑ(1))

sin2[(z − ẑ)/2]
− 2(∂z(1)/∂a)

σ (∂z/∂a)2 cot
(

a − â
2

)}
dâ, (4.5)

where the integrand is continuous at â = a and takes the limit

−
[

4
dσ

da
∂z
∂a

∂z(1)

∂a
+ 2σ

(
∂z
∂a

∂2z(1)

∂a2 − 2
∂z(1)

∂a
∂2z
∂a2

)](
∂z
∂a

)−3

. (4.6)

Next, a uniform grid {ak = 2kπ/N | k = 0, 1, . . . , N − 1} is formed, over which z and
z(1) at the critical time can be calculated with high precision using (2.34) and (4.1),
respectively, as discussed in §4.2. This leads to the discrete sets {zk} and {z(1)

k }, from which
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Figure 4. Vortex-sheet velocity (in a–c) and acceleration (in d–f ) at the critical time for small Γ , obtained
using ε = 0.1, 0.01, 0.001. Comparison is made between the asymptotic approximations found in (3.12), (3.16)
and numerical integration of (4.1), (4.5) for velocity and acceleration, respectively. Relative error for both real
and imaginary components of the asymptotic estimates is assessed against the numerical results.

the a-derivatives of z and z(1) are obtained using a Fourier method. Finally, (4.5) is summed
with spectral convergence using the trapezoidal rule.

The difficulty with integrating (4.5) for small Γ is that the desingularized kernel still
exhibits sharp boundary layers near â = a and â = 2π − a when a � 1, which increase
the truncation error. This is not surprising since z(2) is expected to be asymptotically
divergent when Γ → 0. The desingularized kernel, however, shows increasingly smooth
behaviour for points ak further away from the origin. Therefore, the truncation error is
mollified by choosing aggressive stretching β = 1 in (4.3) and a large grid size N = 105.
The minimum Γ obtained at a = a1 is found at order O(10−14), ensuring convergence of
results obtained for the range of interest, e.g. σ � O(10−9). The comparison made between
the analytic acceleration given by (3.16) and its numerical counterpart in figure 4(d–f )
shows satisfactory agreement between the two for small Γ . Relative errors comparable to
those seen for the asymptotic velocities are also observed here, where the accuracy of the
analytic estimate suffers significantly when ε and Γ are increased.

5. Further Taylor-series expansion in region II

We now extend the analysis of § 3.1 by considering a series solution of the form

zII(Γ, τ ) = b

(
Γ + AΓ 3/2 + D1,1Γ

1/2τ +
∞∑

n=2

∞∑
m=1

Dn,mτ nΓ 1−n+m/2

)
. (5.1)

Use of (5.1) in (3.4) gives a triple series resulting in, at order n, a combinatorial explosion
which is presently intractable. In order to make progress, simplifications are implemented.
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On vortex-sheet evolution beyond singularity formation

The first is truncation of the inner series in (5.1) at m = 1 to give a series that can be
rearranged and expressed as

zII(Γ, τ ) = b

(
Γ + Γ 3/2

∞∑
n=0

Cn

( τ

Γ

)n
)

, (5.2)

with C0, C1, C2 known and Cn, n > 2 to be determined. The first four terms of (5.2) agree
with (3.17), the first two of which are the region-II initial condition, while the second two
were shown in § 4 to give good agreement with numerical calculations. We now proceed
to extend the preliminary solution (3.17) using (5.2). This will later be shown to provide a
good approximate solution of an appropriate linearized BR equation in region II.

When (5.2) is used in (3.4), at each order τ n, the Bell-polynomial expansion produces
a series in Γ in a sum over negative powers for n ≥ 2: Γ 3/2−n, Γ 2−n, Γ 5/2−n, . . . At
order n we consider only the most singular term of order Γ 3/2−n, Γ → 0, which is
expected to be dominant in the subsequent analysis. Further, an induction-based analysis
of the Bell-polynomial expansion (3.4) indicates that, at the order of the nth τ -derivative,
the most singular term of order Γ 3/2−n is contained in the k = 2 term displayed as the
right-most term with denominator (z(γ, 0) − z(Γ̂ ))2 in the four τ -derivatives given in
(3.5)–(3.8). For general n ≥ 2, this can be expressed as

∂nz̄
∂τ n

∣∣∣∣
τ=0

= − 1
2πi

−
∫ ∞

0

⎛⎝ ∂n−1z
∂τ n−1 |τ=0 − ∂n−1 ẑ

∂τ n−1 |τ=0

(z(Γ, 0) − z(Γ̂, 0))2
+

∂n−1z
∂τ n−1 |τ=0 + ∂n−1 ẑ

∂τ n−1 |τ=0

(z(Γ, 0) + z(Γ̂, 0))2

⎞⎠ dΓ̂, (5.3)

where, for clarity and until otherwise needed, the ‘II’ subscript has been suppressed.
Equation (5.3) is the basis of further analysis.

5.1. Recurrence relations
From (5.2) we can write

∂nz̄
∂τ n

∣∣∣∣
τ=0

= n!b̄C̄nΓ
3/2−n. (5.4)

In the following, we make the further approximation that, in the denominator of (5.3),
we can write z(Γ, 0) − z(Γ̂, 0) ≈ b(Γ − Γ̂ ). This can be justified by observing that the
additional Γ 3/2 term in the initial condition (2.35) will, for small Γ , produce a first
correction consisting of an additional power Γ 1/2, as was seen in the earlier calculation
of the initial velocity and acceleration terms. At the time derivative of o(n), this will not
affect the most singular contribution proportional to Γ 3/2−n, but will contribute to less
singular powers of Γ .

Using (5.4) on the left-hand side of (5.3) and its complex conjugate with n → n − 1 in
the integrand on the right-hand side, leads to cancellation on both sides of factors Γ 3/2−n

and, after some algebra, to the recurrence relation

C̄n = − 1
2πi|b|2

I(n)

n
Cn−1, I(n) = −

∫ ∞

0

(
1 − x5/2−n

(1 − x)2 + 1 + x5/2−n

(1 + x)2

)
d x. (5.5)
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The integral exists as an CPV integral for 1
2 < n < 9

2 . Presently, we consider only the finite
part, taken as its analytic continuation for n > 9

2 . For real integer n this is

I(n) = (−1)n π

(
5
2

− n
)

. (5.6)

Now make the change of variables

Cn = Kn

|b|2n , K0 = A, K1 = 3i
4

Ā, (5.7)

so that (5.2) can be written as

z(Γ, τ ) = b

(
Γ + Γ 3/2

∞∑
n=0

Knη
−n

)
, η = |b|2Γ

τ
. (5.8)

The similarity variable η will be used throughout the sequel. Using (5.5) and n → n + 1,
the recurrence relation for Kn is

K̄n+2 = i(−1)n (n − 3/2)

2(n + 1)
Kn+1, (5.9)

which, with iteration, can be written as

Kn+2 = −
(

n − 1
2

) (
n − 3

2

)
4(n + 1)(n + 2)

Kn, n = 2, 3, . . . . . . , (5.10)

where we note that the recursion coefficient is real.
The above suggests splitting (5.8) into two series as

z(Γ, τ ) = b(Γ + Γ 3/2(AS1 + i ĀS2)), (5.11)

S1 =
∞∑

n=0

K̂2nη
−2n, S2 =

∞∑
n=0

K̂2n+1η
−(2n+1), (5.12a,b)

with K̂0 = 1, K̂1 = 3/4 and the K̂n satisfy the same recurrence relation as do the Kn,
namely (5.10). Solution of (5.10) gives for n even and odd, respectively,

K̂n =
3 in 2−(n+2)Γ̂

(
−3

2 + n
)

π1/2Γ̂ (1 + n)
, K̂n =

3 in+12−(n+2)Γ̂
(
−3

2 + n
)

π1/2Γ̂ (1 + n)
, (5.13a,b)

where Γ̂ here denotes the complete gamma function, to be distinguished from the
circulation variable Γ . Substitution of (5.13a,b) into (5.12a,b) shows that both series
converge for η > 1/2 or for Γ > τ/(2 |b|2). Hence, η = 1/2 is now defined as the inner
boundary of region II. For finite τ > 0 (5.11) cannot be extended to Γ → 0.
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On vortex-sheet evolution beyond singularity formation

5.2. Closed-form solution

The two series (5.12a,b) with K̂n given by (5.13a,b) can be summed analytically, and when
multiplied by η3/2 as suggested by (5.11), can be expressed as

Q1(η) ≡ η3/2 S1 = 1

2
√

2
(4η2 + 1)3/4 cos

[
3
2

ArcCot (2 η)

]
, (5.14)

Q2(η) ≡ η3/2 S2 = 1

2
√

2
(4η2 + 1)3/4 sin

[
3
2

ArcCot (2 η)

]
. (5.15)

The functions Q1(η), Q2(η) have fractional-power branch-point singularities in the
complex η-plane at η = ±i/2 and at η = 0, confirming the radius of convergence of the
series (5.12a,b). When used in (5.11), this gives

zII(Γ, τ ) = bΓ + b
τ 3/2

|b|3
[

AQ1

( |b|2Γ
τ

)
+ iĀ Q2

( |b|2 Γ

τ

)]
. (5.16)

In the complex Γ plane, with τ considered a real, positive parameter, the right-hand side
of (5.16) has fractional-power branch points at Γ = ±iτ/(2 |b|2) and at Γ → ∞. When
τ increases from τ = 0+, the branch point at Γ = 0 at τ = 0 splits into two points, each
moving away from Γ = 0 along the positive and negative imaginary axes, respectively,
and z(Γ, τ ) given by (5.16) is analytic at Γ = 0.

5.3. Analytic continuation

We take (5.16) as the region-II solution for η ≥ 1
2 , which corresponds to Γ ≥ τ/(2 |b|2).

This equation can nonetheless can be evaluated inside the circle |η| < 1
2 in the

complex η-plane or |Γ | < τ/(2|b|2), and therefore gives the analytic continuation of
(5.12a,b)–(5.13a,b) in this region. This function is finite valued and analytic on the real line
in 0 ≤ Γ < ∞. Its properties and relation to (2.39) when Γ → 0 at fixed τ are discussed
Appendix B where it is shown that this solution gives sheet rupture and separation into
two branches at Γ = 0+ for τ > 0.

In (η, τ ) variables we write (5.16) as

zII(η, τ ) = τ

|b|ΩII(η, τ ) ΩII(η, τ ) = eiθ
(

w0(η) + τ 1/2

|b| w1(η)

)
, (5.17a,b)

w0(η) = η, w1(η) = A Q1(η) + i ĀQ2(η), (5.18a,b)

where, for convenience, the exp(i θ) term is included in the definition of ΩII to denote
rotation to the sheet tangent at z = 0, allowing for clarity in the discussion of the w0(η)

and w1(η) functions. Expressing the first few terms of the series ((5.12a,b)–(5.13a,b)) gives
in (Γ − τ) variables

zII(Γ, t) = bΓ + bΓ 3/2
(

A + 3 iĀ
4

(
τ

|b|2Γ
)

− 3A
32

(
τ

|b|2Γ
)2

+ iĀ
128

(
τ

|b|2Γ
)3

+ 3A
2048

(
τ

|b|2Γ
)4

− 3 iĀ
8192

(
τ

|b|2 Γ

)5

− 7A
65 536

(
τ

|b|2 Γ

)6

· · · · · ·
)

,

(5.19)
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the first four terms of which agree with (3.17). In terms of (η − τ) variables, the first few
terms of w1(η) are

w1(η) = η3/2
(

A + 3 iĀ
4

η−1 − 3A
32

η−2 + iĀ
128

η−3 + 3A
2048

η−4 − 3 iĀ
8192

η−5 + . . .

)
.

(5.20)

6. Inner solution: region III

6.1. Separated algebraic-spiral structure
Here, we discuss an inner region III defined presently by 0 ≤ Γ < O(τ/(2 |b|2)), which
exists only for τ > 0. The analytic behaviour of (5.16) when η → 0 at fixed τ , equivalent
to Γ → 0, is discussed in Appendix B, where it is shown that, provided Ar /= Ai (recall
A = Ar + i Ai), this shows sheet end separation at τ = 0+ into two distinct branches whose
endpoints move away from the origin as τ 3/2. This is non-physical because a vortex sheet
with a free-end point is expected to roll up. Further, in Appendix C, it is shown that
(5.18a,b) is an accurate approximate solution of a linearized BR equation for η > 1/2
but generally fails when η < 1/2. An exceptional case is an initial condition (2.35) with
Ar = Ai, where (5.16) then joins the origin smoothly. An alternative structure is required
for the general case Ar /= Ai, which is now discussed.

Equation (5.17a,b) suggests a general ansatz for an inner solution of the form

zIII(η, t) = τ

|b| ΩIII(η, τ ), (6.1)

ΩIII(η, τ ) = ei θ
(

ω0(η) + τ 1/2

|b| ω1(η) + τ

|b|2 ω2(η) + · · ·
)

. (6.2)

Truncating (6.2) at τ 1/2 inside the outer brackets and substituting into (2.4) gives

ω̄0 − η
dω̄0

dη
+ τ 1/2

|b|
(

3
2

ω̄1 − η
dω̄1

dη

)

= 1
2πi

−
∫ ∞

0

⎛⎝ 1

ω0 − ω′
0 + τ 1/2

|b| (ω1 − ω′
1)

+ 1

ω0 + ω′
0 + τ 1/2

|b| (ω1 + ω′
1)

⎞⎠ dη′, (6.3)

where ω0 = ω0(η), ω1 = ω1(η), ω′
0 = ω0(η

′), ω′
1 = ω1(η

′). Equation (6.3) is a single
equation for two functions ω0(η), ω1(η). For τ � 1 (6.2) is considered as the leading
order in an expansion of an inner solution in the small parameter τ 1/2/|b|. Further terms
τ/|b|2 ω2(η), τ 3/2/|b|3ω3(η) . . . can be added but are not considered presently.

Expanding the integrand of the right-hand side of (6.3) and equating powers in τ 1/2/|b|
gives, to order one and τ 1/2/|b|, respectively,

ω̄0 − η
dω̄0

dη
= 1

2πi
−
∫ ∞

0

(
1

ω0 − ω′
0

+ 1
ω0 + ω′

0

)
dη′, (6.4)

3
2
ω̄1 − η

dω̄1

dη
= − 1

2πi
−
∫ ∞

0

(
ω1 − ω′

1
(ω0 − ω′

0)
2 + ω1 + ω′

1
(ω0 + ω′

0)
2

)
dη′. (6.5)

Equations (6.4) and (6.5) are nonlinear and linear singular integral-differential equations
for ω0(η), ω1(η), respectively. Equation (6.4) is a special case with p = 1 of a more
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On vortex-sheet evolution beyond singularity formation

general similarity integro-differential equation with dimensionless parameter p such that
ω0(η) ∼ η1/p, η → ∞ (Pullin & Phillips 1981; Pullin 1989). Boundary conditions with
p = 1 for η → ∞ are given by matching to the intermediate solution in region II giving
ω0 ∼ η (first of (5.18a,b)), ω1 ∼ Aη3/2 (5.20). Equation (6.4) has the exact solution
ω0 = η matching (5.18a,b). This corresponds to a uniform, flat vortex sheet. The status
of (5.18a,b) as an approximate solution to (6.5) in region II but with (ω0, ω1) replaced
by (w0, w1), respectively, is discussed in Appendix C. It is concluded that, with ω0 = η,
smooth solutions of (6.5) that match the region-II solution and that are bounded when
η → 0, do not exist. Hence, ω0 = η cannot provide a basis for an admissible region-III
solution.

6.2. Numerical solution: zeroth order
Pullin (1989) reported numerical evidence that an alternative solution to (6.4) exists,
satisfying ω0 ∼ η, and taking the form of two distinct and separated vortex cores, each
with centres of counter-clockwise roll-up removed from the origin. We denote these
roll-up points in the η plane as ω0,c = ω0(η = 0) and −ω0(η = 0) for the right-hand
(Re(ω0,c) > 0) and left-hand (Re(ω0,c) < 0) sheet sections, respectively, consistent with
the required symmetry of the overall solution. Evidence was also provided (Pullin &
Phillips 1981; Pullin 1989) that solutions with ω0,c = 0, and satisfying the same far-field
boundary condition, which corresponds to spiral roll up about the origin, do not exist.

Non-existence was inferred in the sense that, with fixed ω0,c = 0, while double-spiral
solutions were found for p < 1, in the limit p → 1− from below their spatial scale in the ω

plane shrunk to zero. In contrast, numerical solutions on a different branch showed smooth
variation as p passed through unity from above (p → 1+), giving a particular solution
with p = 1 consisting of separated algebraic spirals of finite scale and with ω0,c /= 0. This
vortex structure is consistent with end-sheet separation of the η → 0 continuation of the
region-II solution, while exhibiting free-end roll up expected on physical grounds. The
above does not rule out that a double-spiral solution to (6.4) may exist either in isolation or
on an undiscovered solution branch, but, despite searching, none has been found. We will
interpret the separated-sheet solution as the only available and admissible zeroth-order,
region-III solution that allows matching to the region-II solution.

6.2.1. Numerical method
The calculations of Pullin (1989) have been reproduced to give a solution for ω0. The
original code and specific results are no longer available, and so independent coding
was implemented using the same method. This is now summarized briefly. The real line
η ≥ 0, (0, ∞) is divided into three contiguous sections (0, ηN), (ηN, η0) and (η0, ∞).
The vortex sheet in these sub-domains is represented by three parts: (i) an inner section
in 0 ≤ η ≤ ηN modelled by a point vortex of strength ηN located at ω0,c = ω0,N+1, (ii)
an intermediate, continuous section in ηN ≤ η ≤ η0 represented by N straight segments,
(ω0,j − ω0,j−1), j = 1, . . . , N and (iii) an outer section η0 ≤ η ≤ ∞ modelled by ω0(η) =
η. In part (i), ω0,N is joined to ω0,N+1 by a cut in the ω-plane in order to define a
single-valued complex velocity potential. The unknowns are the 2N + 2 quantities given
by the real and imaginary parts of ω0,j, j = 1 . . . N + 1.

In (ii), a finite-difference form of (6.4) is satisfied at the midpoint of each segment
using a two-point rule for derivatives on the left-hand side, a trapezoidal rule for the
Cauchy principal-value integral contributed from (ii), and a point-vortex contribution
from (i). The contribution from (iii) can be evaluated analytically. This gives 2N
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N No. turns ηN Re(ω0,N+1) Im(ω0,N+1)

1016 3 0.0851206 0.225054 −0.075918
1322 8 0.0445700 0.224920 −0.075930
1618 12 0.0314715 0.225057 −0.075944
1916 17 0.0227527 0.224754 −0.075978
2216 22 0.0182444 0.224729 −0.075954
2816 33 0.0130135 0.224741 −0.075926

Table 1. Calculated numerical values of parameters in numerical solutions of (6.4). Here, N, number of points
on the sheet; η = ηN on the last, inner point on the sheet; ω0,N+1, position of the roll-up centre of the right-hand
vortex. All solutions obtained with η0 = 12.5.

nonlinear equations. The trapezoidal rule incurs error owing to neglected logarithmic
corrections arising from proximity of a point on the sheet to nearby segments on adjacent
spiral turns. This is somewhat relieved by cancellation since, as will be seen, most points
lie inside a tightly wound spiral with many individual turns on either side. In (i), pointwise
representation of (6.4) is replaced by an integrated approximation over 0 ≤ η ≤ ηN ,
giving two additional equations. The 2(N + 1) equations are solved by a Newton–Raphson
method with analytical calculation of the Jacobian.

Numerical solutions produce a tightly wound, algebraic spiral with many turns. Related
BR solutions driven by singularity formation have been reported by Pullin & Phillips
(1981), Pullin (1989) and Pullin & Sader (2021), using a similar numerical method.
Convergence with respect to N and the number of spiral turns captured was documented by
Pullin & Sader (2021). Present solutions use N = 1016 to N = 2816 with η0 = 12.5 chosen
to be remote from where the solution shows significant deviation from ω0 = η. Testing
with different values of η0 showed negligible difference provided η0 ≥ 2. With η0 = 12.5
numerical solutions near this value agree with the asymptotic form ω0 = η to order 10−6

for Re[ω0] and order 10−4 for Im[ω0]. Some parameters for numerical solutions are listed
in table 1. The portrait of the parametric solution in the ω0 plane is shown in figure 5 for
N = 2816. Solutions with N = 1916 − 2216 are indistinguishable to plotting accuracy. The
shape closely resembles the same flow as in Pullin (1989), who used N = 170 with a few
turns. In the present scaling his solutions show ω0,N+1 ≈ (0.22 + 0.075 i) compared with
the more accurate values listed in table 1. The non-zero value ω0,N+1 for the right-hand
sheet branch can be interpreted as a balance between the Biot–Savart induction of the
far-field circulation distribution and that of the compact, left-hand vortex core.

6.2.2. Inner structure of zeroth-order solution
An image of the inner portion of the sheet geometry of the right-hand core is shown by
the solid line in figure 6, which indicates a tightly wound, almost circular spiral with
structure strongly dominated by the Biot–Savart induction at a point ω0(η), provided by
the cumulative sheet circulation (η) that lies inside a circle that passes through ω0(η) and
is centred on ω0,c = ω0,N+1. This model approximation goes back to Kaden (1931). It does
not include the induction effects of the remainder of the spatial circulation distribution that
lies outside this circle and that includes the left-hand rolled-up vortex. The inner portion
can then be analysed by replacing (6.4) by the model equation

ω̃0 − η
d ¯̃ω0

dη
= 1

2πi
η

ω̃0
, (6.6)
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Figure 5. Portrait of geometrical shape of ω0(η). Here, N = 2816.

where ω̃0 = ω0 − ω0,N+1, with exact solution for ω̃0(η) and corresponding zeroth-order
z̃III(Γ, τ ) given by

ω̃0(η) = αη exp
(

i
(

1
2πα2η

+ φ0

))
, (6.7)

z̃III(Γ, τ ) = αbΓ exp
(

i
(

τ

2πα2|b|2Γ + φ0

))
, (6.8)

where α, φ0 are arbitrary, real parameters. Sohn (2016) shows that (6.7) satisfies (6.4) to
a good approximation. Here, we patch (6.7) to an arbitrary point on the inner part of our
numerical solution for ω0. We use η = 0.02389, ω0 = 0.2197 − 0.07855i, which is well
inside the rolled-up sheet. Other choices show numerically similar results. This gives two
equations for α, φ0 with numerical solution α = 0.2397 , φ0 = 0.7886. In figure 6, the
patch point is marked by a black dot. The numerical solution with N = 2816 contains 15
sheet turns inside the black dot. Equation (6.7) is plotted as a dashed line in the range
0.008 ≤ η ≤ 0.023886. The agreement with the numerical solution is satisfactory with
systematic differences attributable to a slight ellipticity in the numerical solution produced
by the combined straining effect of the vorticity structure that lies outside the inner portion,
and that includes the other vortex core.

The inner structure of the vortex core in the ω plane can be estimated using (6.7) where
the radius of the spiral decreases as |ω0| ∼ αη while its angle relative to an arbitrary
datum increases as θs ∼ 1/(2 πα2η). Hence, the ratio of local spiral turn spacing to
local radius decreases as δ|ω̃0|/|ω̃0| ∼ θ−1

s , which decreases rapidly as θs increases. This
variation, a result of the essential-singularity (in a complex η plane) character of the η → 0
limit solution, suggests potential difficulties in time-domain numerical solutions of the
BR initial-value problem from τ = 0− → τ = 0+. In the z-plane, (6.8) shows that the
smoothed azimuthal velocity distribution is uθ = 1/(2 πα|b|) (with jumps across each
sheet turn) and is independent of radius and τ while the smoothed vorticity distribution
is singular as uθ /r, where r is the radius to the roll-up centre. If one considers a finite
portion of the right side (x > 0), almost flat vortex sheet bounded at τ = 0 by the
origin (singular point) and an arclength x = S along the sheet, then this will contain
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Figure 6. Inner portion of sheet shape ω0(η) with N = 2816. Solid line: numerical solution. Dashed line:
equation (6.7) patched to the numerical solution at the point shown by the black dot. Dashed line solution
plotted in 0.008 ≤ η ≤ 0.023886.

circulation Γ (S) ≈ S/|b|. This portion will roll up to constant radius r(S) = α S. The
quantity β = 1/(2α) is known as the Betz constant (see Moore & Saffman 1973) with
value β ≈ 2.08.

6.3. Numerical solution: linearized first-order equation
The numerical solution for ω0(η) can now be substituted into (6.5) to give an equation for
ω1(η). This was solved presently with essentially the same numerical method described
above for ω0, except that Newton iteration is not required owing to linearity. At η = η0, the
boundary condition is ω1(η) = w1(η) given by the second of (5.18a,b), allowing effective
matching of the region-III solution with that in region II. The η → 0 limit for each solution
is represented by the isolated point ω1,N+1 which is determined as part of the solution.
Because the constant A is a function of λ1ε, then solutions to the linearized equation will
be a one-parameter family. An asymptotic limit solution will be discussed subsequently.
Testing of the numerical method for the solution of (6.5) is described in Appendix C where
it is shown that only first-order convergence is achieved. With N large, this is considered
satisfactory.

Solution portraits in the ω1 plane are shown in figure 7(a–c). These panels show
self-intersection, which would be unacceptable for the full-sheet shape but not for the
linearized solution in the form shown. Figure 8 gives the variation of both Re[ω1(η)] and
Im[ω1(η)] for several values of ε in the range 10−2 − 10−10, with λ1 = 1. Dashed lines
are the region-II solutions given by the second of (5.18a,b). Numerical solutions show
oscillation about ω1,N+1. In fact the plots in figure 8 suggest that, as ε is reduced, ω1,N+1
appears to approach close to the limit of the region-II solution for w1(η → 0). In turn this
suggests the existence of an ε → 0, asymptotic solution.
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Figure 7. Shape portrait of numerical solutions to (6.5) in the ω1 plane; (a) ε = 10−2, (b) ε = 10−3,
(c) ε = 10−6. (d) Limit solution in ω̂1 plane.
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Figure 8. (a) Value of Re[ω1(η)] obtained with decreasing ε = 10−3, 10−6, 10−10; (b) Im[ω1(η)] with
ε = 10−3, 10−6, 10−10. Solid lines: numerical solutions. Dashed lines: region-II linear solution, second of

(5.18a,b).

This can be explored by taking the limit ε → 0 of (b(ε), A(ε)) defined by (2.36a,b),
giving

b = 1 + O(ε̂), A = 2
3
(1 − i)ε̂ + O(ε̂)2, ε̂ = 1

W0

(
2

eλ1ε

) . (6.9a–c)
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Figure 9. Open squares: ratio Re[ω(1,N+1)]/Re[w1(0, ε)] vs ε. Dashed line: limit ratio R = 1.121. Filled
squares: ratio Im[ω(1,N+1)]/Im[w1(0, ε)] vs ε. Dash-dotted line: limit ratio R = 1.055. All solutions with
N = 2816.

The ε → 0 asymptotic form of (5.18a,b) then becomes

w1(η) = 2
3
ε̂ŵ1(η), ŵ1(η) = (1 − i)(Q1(η) − Q2(η)). (6.10a,b)

This gives the ε̂ → 0 limit solution ω1(η) = 2ε̂ω̂1(η)/3 which scales ε out of the linear
problem. Equation (6.5), (with ω0(η) given by the numerical zeroth-order solution)
was solved numerically for ω̂1(η) with boundary condition given by ω̂1(η0) = ŵ1(η =
η0). The portrait of the solution in the ω̂1 plane, obtained with N = 2816, η0 =
12.5, is shown in figure 7(d). The calculated value of the end or centre point is
ω̂(1,N+1) = −0.5607 + 0.5278i compared with ŵ1(η → 0) = −0.5 + 0.5i, giving limit
ratios Re[ω̂(1,N+1)]/Re[ŵ1(0)] = 1.121 and Im[ω̂(1,N+1)]/Im[ŵ1(0)] = 1.056. Figure 9
shows the ratios Re[ω(1,N+1)]/Re[w1(0, ε)] and Im[ω(1,N+1)]/Im[w1(0, ε)] obtained from
numerical solutions for finite ε. The latter shows rapid convergence towards the asymptotic
limit, while the convergence of the ratio of the real components is much slower.

6.4. Composite solutions
We illustrate the composite solutions for τ > 0 with ε = 10−3, λ1 = 1. These are
calculated using (6.1) with (6.2) truncated at order τ 1/2. It is noted that the basic solutions
ω0, ω1 described earlier were obtained, for convenience, in a reference frame where the
zeroth order is w0 = η. In order to properly match the region-II solution given in (5.18a,b),
(6.2) shows that these must be rotated anticlockwise by θ(ε) = arg(b(ε))

Figure 10 shows two images of the sheet evolution at in the Ω plane at τ = 0.001, 0.01.
The dashed line shows the zeroth-order sheet shape represented by ω0. The order τ 1/2

correction by the outer flow appears to shift the sheet profile, relative to its zeroth-order
position, towards the origin. Since this will be active for both sheet branches, the overall
effect is to convect the two sheets towards each other. Successively expanded views of the
double-sheet structure are shown in figures 11 and 12 at τ = 0.01, where the intermediate
sheet profile ΩII(η), defined in (5.18a,b), is also shown as dashed lines. Figure 11 displays
the scale of the separated spirals and also the matching of the inner region-III solution
onto the region-II solution. Figure 12 illustrates the spatial scale of the rolled-up spiral
in comparison with the large radius of curvature of the region-II solution. Time-domain
images can be obtained by multiplying the Ω solutions by τ/|b|. These are shown in
figure 13 for τ = 0.0005, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.0125. The effect of the
region-II correction is discernable but is small.
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Figure 10. Inner composite sheet shape in Ω-plane at (a) τ = 0.001 and (b) τ = 0.01 (see (6.2)). Here,
ε = 10−3. Solid line: sheet shape profile at given τ . Dashed line: zeroth-order solution ω0 rotated by angle
θ = arg(b(ε)).
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ΩII continued to η → 0. Note separated sheet end at η = 0.

–6 –4 –2 0 2 4 6

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

Im
(Ω

)

ε = 10–3, τ = 0.01

Re(Ω)

Figure 12. Two branches of sheet geometry for ε = 10−3, τ = 0.01. Solid: inner sheet shape ΩIII . Dashed:
ΩII continued to η → 0.

7. Conclusion

We have considered the evolution of a periodically disturbed vortex sheet during the
nonlinear stage of spatially periodic, KH instability for small times τ = t − tc subsequent
to the formation of a curvature singularity as analysed by Moore (1979), for an initial
sheet perturbation defined by the small parameter ε � 1. The time-continued solution is
itself singular, comprising three regions in the space of the variables η ∼ Γ/τ and τ .
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Figure 13. Time-domain evolution. Here, ε = 10−3. Centre to outer;
τ = 0.0005, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.0125.

The outer region I denotes the full extent of a single spatial period of the vortex sheet
whose shape and strength at τ = 0 are defined by an extension of Moore’s asymptotic
solution for a general initial condition, giving a closed expression for the sheet evolution
up to t = tc in terms of the polylogarithm function. Its analytic continuation beyond the
radius of convergence of Moore’s Fourier series solution corresponds to τ > 0. This shows
sheet rupture with end separation proportional to τ 3/2.

An intermediate domain (region II) is identified as a vortex-sheet evolution with initial
condition at τ = 0 given by the first two terms of the expansion of the region-I solution
near the singular point z = 0 in the Lagrangian circulation variable Γ . This contains the
essential elements of the singularity structure as a Γ 3/2 term added to the otherwise locally
flat sheet, including known quantitative dependence of coefficients on the small-amplitude
parameter ε contained in the region-I initial condition. This is done for a general initial
sheet-shape perturbation. For small τ > 0, this initial condition is evolved to τ > 0+
using a Taylor-series expansion based on the dominant term arising from time-wise
differentiation of the governing BR equation. The first two terms corresponding to the
velocity and acceleration show good agreement with Biot–Savart numerical calculations
using the full region-I solution. Both terms contain singular features.

The Taylor series has a finite inner radius of convergence in the complex η plane, but
can be summed to provide a closed-form expression which can be analytically continued
to η → 0, equivalent to continuation to zero circulation Γ at fixed τ > 0. This also shows
sheet tearing or jumping at τ = 0+, in qualitative agreement with the behaviour of the
Moore (1979) solution, analytically continued to τ > 0. The closed-form expression is
shown in Appendix C to be an accurate approximate solution of the linearized BR equation
in region II, but generally fails for η → 0. With one exceptional case, a solution of the
linearized BR equation that both matches the region-II solution, and also is bounded
near the point of original singularity formation, could not be found. This exceptional case
corresponds to arg(A) = π/4, 5π/4 where A(ε) is the strength of the singular part of the
sheet-shape function at the critical time. This case is not encountered within the class of
initial conditions with Re[A] > 0.

The tearing scenarios found from both the analytically continued region-I and region-II
solutions show flat sheet ends, without vortex-sheet roll up. While considered non-physical
in itself, this points to the existence of a distinct, inner region III with a local solution
structure that incorporates an analogue tearing event. An inner solution in a region III
is explored with analytical form suggested by the structure of the region-II solution.
In the z-plane, but expressed in terms of (η, τ ) variables, this is proportional to τ
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times the first two terms of a perturbation series in τ 1/2 with coefficients defined by
functions determined respectively and recursively by solutions to a nonlinear zeroth-order
(O(τ 0)) and a first-order (O(τ 1/2)) linearized BR equation, both in similarity form with
independent variable η. The region-III solution exists only for τ > 0.

Numerical solutions of both region-III similarity equations are obtained that effectively
match the corresponding region-II solutions at η → ∞. The zeroth-order solution is
independent of ε, showing an antisymmetric pair of separated, algebraic-spiral vortex
sheets of well-known form, each with its own roll-up centre. Tearing or rupture at
τ = 0+ is interpreted as the response of the vortex sheet, which is continuous at the
origin at τ = 0−, to the onset of singularity formation which prevents its smooth and
contiguous continuation for τ > 0. It is argued that an inner, zeroth-order solution based on
finite-sized self-similar, double spiral roll-up about a common centre at the origin does not
exist, although no proof is given. At first order τ 1/2, numerical solutions of the linearized
BR equation exhibit oscillatory behaviour forced by the spiral form of the zeroth-order
solution. These show dependence on ε. An asymptotic form is obtained with explicit
analytic dependence on ε.

In summary, at τ = 0− the vortex sheet is continuous but with singular curvature
(Moore 1979), angular velocity, acceleration and other higher-order derivatives at the
local centre of antisymmetry. At each point of infinite curvature at t = tc (τ = 0), this
singular behaviour generates local sheet rupture at τ = 0+ into two distinct branches at the
central singular point with separation distance of the branch endpoints, or roll-up centres,
scaling as τ together with a non-local, τ 3/2 correction. In the complex Γ plane this can
be interpreted as the spontaneous appearance of a pair of isolated, essential singularities.
In the extended complex z-plane, with a periodic initial perturbation, one singular point
exists in each spatial period. The vortex sheet, continuous and of infinite streamwise extent
for t ≤ tc, fractures at τ = 0+ into an infinite array of identical vortex sheets, each with
two algebraic-spiral, roll-up endpoints generated at neighbouring singular points. While
no attempt has been made presently to determine the character of the complex velocity for
t > tc, it is plausible, at least for sufficiently small τ , that this is analytic on a Riemann
surface defined on a strip of width 2π streamwise and of infinite extent in the ±Im[z]
direction. The vortex sheet connecting the two roll-up centres would define the locus of
a branch cut. Without further analysis it is not clear if the spiral centres themselves are
standard branch points or conform to a different singular form.

Finally, we remark that the present solution provides a classical vortex-sheet evolution
from a singular initial condition at t = tc. Its uniqueness has not been demonstrated.
A further interesting question is whether this solution is, in some properly defined sense,
the unique limit solution of either the Euler or Navier–Stokes equations at some fixed
t > tc when an appropriate regularizing parameter tends to zero. This remains open.
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Appendix A. Uniformly convergent Fourier series

In order to extend the Moore (1979) analysis to a general initial condition, we briefly derive
(2.28). Following Moore (1979), we first construct a generating function G(x, t) ∈ C, with
real x and t, as follows:

G(x, t) =
∑
n≥1

An,0(t)xn, (A1)

where An,0 are the leading-order Fourier coefficients defined in (2.12). As a result, the
ODE system (2.14) for An,0 is equivalent to

∂Ḡ
∂x

= −ix
2

∂G
∂x

(
1 + ix

∂G
∂x

)−1

, (A2)

where the overline denotes complex conjugate. To obtain the asymptotic form of G(x, t)
for large t, (2.18) is substituted into (A1), giving

G(x, t) = (1 + i)
∑
r≥0

ĥr(μ̂)

tr+1 , (A3)

where

μ̂ = tet/2x
4

, ĥr(μ̂) =
∑

j≥r+1

λjr μ̂
j, (A4a,b)

and λjr are the constants found in (2.18). However, as discussed in § 2.2.1, expansion (A3)
leads to non-uniformly valid coefficients An,0.

To resolve this issue, a strained time s(t) is introduced

ds
dt

= 1 +
∑
n≥1

αn

sn+1 , (A5)

where constant coefficients αn are to be determined. Integrating (A5) leads to

t = s + α1

s
+ α2

2s2 + O
(

1
s3

)
. (A6)

Consequently, (A3) can be rearranged as

G(x, t) = (1 + i)
∑
r≥0

hr(μ)

sr+1 , (A7)

where

μ = ses/2x
4

, μ̂ = μ

(
1 + α1

2s
+ α1 + α2

1/8 + α2/4
s2 + · · ·

)
, (A8a,b)

and hr can be obtained by matching (A7) with (A3). As μ → 0, one has for example,

h0 = λ1,0 μ + O(μ2), h1 = α1λ1,0

2
μ + (

α1λ2,0 + λ2,1
)
μ2 + O(μ3), (A9a,b)

where λ1,0, λ2,0 and λ2,1 are given in (2.17).
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Alternatively, directly substituting (A7) into (A2) gives a recursive ODE system for hr,
where the first two equations read,

dh̄0

dμ
− dh0

dμ
= 0,

μ

2

(
dh̄1

dμ
− dh1

dμ

)
+ μ

dh̄0

dμ
− h̄0 − 1 − i

2

(
μ

dh0

dμ

)2

= 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A10)

Solutions of (A10) subject to initial values (A9a,b) are

h0(μ) = g(μ), (A11)

where g(μ) is given by (2.23), and

h1(μ) = 1
2

[
Re(λ21)

λ2
W2

0 (−λ1μ) − W0(−λ1μ)(α1 + W2
0 (−λ1μ))

]

+i

[
W2

0 (−λ1μ)

4
+ W3

0 (−λ1μ)

6

]
. (A12)

The constant α1 is determined by expanding (A12) around the branch point μ = −1/(λ1e)
and requiring that the most singular term in the expansion is no worse than that of (A11),
i.e. O(−1/e + λ1μ)3/2. This produces

α1 = α1(λ20, λ21) = −4 + 2 − 4 cos 2φ

1 − sin 2φ
, (A13)

which is non-zero in general. For the Moore case of φ = π/2, we recover α1 = 2. Finally,
substituting (A11) and (A12) into (A1) leads to the desired result (2.28).

Appendix B. Analytic continuation of region-II solution within region III

B.1. Inner expansion of analytically continued region-II solution
The right-hand side of w1(η) given by the second equation in (5.18a,b) can be expanded
about η = 0 to give

w1,Inner(η) = −A
(

−1
4

+ 3
4
η + 3

8
η2 + · · ·

)
+ iĀ

(
1
4

+ 3
4
η − 3

8
η2 + · · ·

)
, (B1)

which then gives, for the inner expansion of zII(Γ, τ )

zII(Γ, τ ) = bΓ + b
(

τ

|b|2
)3/2

[
A

(
−1

4
+ 3

4

(
Γ |b|2

τ

)
+ 3

8

(
Γ |b|2

τ

)2

+ · · ·
)

+iĀ

(
1
4

+ 3
4

(
Γ |b|2

τ

)
− 3

8

(
Γ |b|2

τ

)2

+ · · ·
)]

. (B2)

When Γ → 0+ we find that

zII(Γ → 0+, τ ) = −b
4

(
τ

|b|2
)3/2

(Ar − Ai)(1 − i)). (B3)

This result states that, when τ > 0+, the vortex sheet, which passes through the coordinate
origin at τ = 0−, separates into two distinct branches whose ends or tips separate
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Figure 14. Coefficient of τ 3/2 for position labelled zJ of sheet end, Γ → 0+ for τ > 0. (a) Real part
−Re(zJ). (b) Imaginary part Im(zJ). In both panels, solid (B3) and dashed (2.42).

as τ 3/2. An exceptional case is Ar = Ai. A similar result was also obtained as (2.42) from
the analytic continuation of the Moore solution. The real and imaginary parts of both
expressions are plotted vs ε in figure 14. When ε → 0 both expressions can be shown to
be asymptotic to

zII(Γ → 0+, τ ) ∼ − 1 − i

3W0

(
2

e|λ1|ε
)τ 3/2. (B4)

Agreement between the two expressions is better for the imaginary part. The sheet
separation at τ = 0+ appears to be an inescapable consequence of the analytic
continuation of Moore’s solution (2.33) which we expect to be asymptotically accurate
when ε → 0.

In fact the correspondence of two solutions can be taken further. If from (2.39) we
form zAC(Γ, τ ) − zAC(Γ, 0), then this will give the change in sheet shape from its initial
condition at time τ . We can do the same by subtracting (2.35) from (5.16). Real and
imaginary parts of these difference expressions are plotted in figure 15 for τ = 10−4, ε =
10−3, where it can be seen that relative differences are generally O(1). In figure 16 using
ε = 10−20, differences are smaller especially for the imaginary part. The reasons for this
are not clear but are perhaps that first, that the assumption ε � 1 is built into the Moore
solution but not explicitly assumed in the Taylor-series expansion leading to (B2). Second,
the main results of the Moore solution, surprisingly, follow from linear equations given
by (2.14) while (5.16) is expected to be valid only for small τ . We note that the series
form of (5.16) is convergent only for Γ > τ/(2|b(ε)|2). With ε = 10−3, 10−20 this gives
Γ > 7.46 × 10−5, Γ > 5.25 × 10−5 respectively. These values both lie within the range
of Γ plotted in figures 15 and 16.

B.2. Sheet strength, Γ → 0, τ > 0
From (B2) we find that to O(η)

∂zII

∂Γ
= b + b

(
τ

bb̄

)1/2 (
A
(

3
4

+ 3
4
η + · · ·

)
+ iĀ

(
3
4

− 3
4
η + · · ·

))
. (B5)
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Figure 15. Real (a) and imaginary (b) parts of the change in the sheet position as functions of Γ , from τ = 0
to τ = 10−4 with ε = 10−3. Dashed: analytically continued solution from Moore (1979). Solid: using (5.16).
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Figure 16. Real (a) and imaginary (b) parts of the change in the sheet position as functions of Γ , from τ = 0
to τ = 10−4 with ε = 10−20. Key: see figure 15.

The vortex-sheet strength γ (Γ, τ) = |∂zII/∂Γ |−1 for small η can be estimated. At the
right-hand sheet tip when η → 0

γ (0, τ ) = 1∣∣∣∣b(1 + 3
4 (A + iĀ)

(
τ

bb̄

)1/2
)∣∣∣∣ . (B6)

This is finite for τ = 0+ with an order τ 1/2 correction for τ > 0+.

Appendix C. Linearized BR equation in region II

We investigate w1(η) given by the second of (5.18a,b) as a solution of (6.5), written here
with w0 = η as

3
2

w̄1 − η
dw̄1

dη
= − 1

2πi
−
∫ ∞

0

(
w1 − w′

1
(η − η′)2 + w1 + w′

1
(η + η′)2

)
dη′. (C1)

Using that

=
∫ ∞

0

(
1

(η − η′)2 + 1
(η + η′)2

)
dη′ ≡ 0, (C2)
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we obtain
3
2

w̄1 − η
dw̄1

dη
= 1

2πi
=
∫ ∞

0
w1(η

′)
(

1
(η′ − η)2 − 1

(η′ + η)2

)
. (C3)

The double bar indicates a generalized Cauchy principal-value integral interpreted as the
average of values obtained when approaching η on the real line from above and below, in
the complex η plane.

To proceed, we employ an approach utilized by Cowley et al. (1999, § 5). First write
w1 = wr + i wi and introduce the splitting

g+ = wr + wi, g− = wr − wi, (C4a,b)

wr = 1
2 (g+ + g−), wi = 1

2(g+ − g−), (C5a,b)

which, when used in (C3), gives real and imaginary parts respectively as

3
2

g+ − η
dg+

dη
= 1

2π
=
∫ ∞

0
g+(η′)

(
1

(η′ − η)2 − 1
(η′ + η)2

)
dη′, (C6)

3
2

g− − η
dg−

dη
= − 1

2π
=
∫ ∞

0
g−(η′)

(
1

(η′ − η)2 − 1
(η′ + η)2

)
dη′. (C7)

With the constant A = Ar + i Ai, (5.18a,b) and (C4a,b) gives test solutions as

g+
s = (Ar + Ai) (Q1(η) + Q2(η)) , (C8)

g−
s = (Ar − Ai) (Q1(η) − Q2(η)) , (C9)

which can be expressed as

g+
s = (Ar + Ai) F1(η), F1(η) = 1

2 (4η2 + 1)3/4 sin
[

3
2 arctan (2 η)

]
, (C10a,b)

g−
s = (Ar − Ai)F2(η), F2(η) = −1

2 (4η2 + 1)3/4 cos
[

3
2 arctan (2 η)

]
. (C11a,b)

With these expressions the integrals on the right-hand sides of both (C6) and (C7)
converge at both η′ = 0, ∞. Cowley et al. (1999) used a Fourier-transform method to show
that F1(η) is an exact solution of (C6). This has been verified presently both using the sine
transform on 0 ≤ η < ∞ and also numerically. The function F2(η) is not an exact solution
of (C7). However, a series solution of (C7) in inverse powers of η can be constructed for
large η. This is straightforward and details are omitted. The series is convergent for η > 1

2
and sums to F2(η), which is then presently interpreted as an accurate approximate solution
to (C7) for η > 1

2 (this is verified numerically below) and therefore an asymptotic solution
when η → ∞. We conclude that w1(η) given by the second of (5.18a,b) is generally a very
good approximate solution of the linearized BR equation (C3) for η > 1

2 in region II, an
asymptotic solution when η → ∞ but fails for η → 0. The exceptional case is Ar = Ai
when g−

s = 0 and g+
s gives an exact solution for all η.

The solution F1(η) for (C6) can be used as a test for the numerical method used for
the solution of the linearized BR equation described in § 6.3. This was implemented as
a numerical solution of (C6) in real variables on the real line 0 ≤ η ≤ 2 (η0 = 2) with
boundary condition F1(η = 2). The solution value at η = 0 was computed as part of the
overall solution. In figure 17(a) the square root of the L2 error norm (with respect to F1(η))
is shown, where it is seen it is seen that the convergence is first order. Also shown in
figure 17(b) is the result of an attempted solution of (C7). There is good agreement with
F2(η) given by (C11a,b) for η > 0.5 but oscillatory behaviour with large amplitude for
smaller values. This behaviour was found for all N and for different η0.
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Figure 17. (a) Value of
√

L2 vs η for numerical solution of (C6). Dashed line proportional to N−1.
(b) Attempted solution of (C7). Dashed line F2(η) given by (C11a,b).
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