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Abstract. In this paper, we will consider derived equivalences for differential
graded endomorphism algebras by Keller’s approaches. First, we construct derived
equivalences of differential graded algebras which are endomorphism algebras of the
objects from a triangle in the homotopy category of differential graded algebras. We
also obtain derived equivalences of differential graded endomorphism algebras from
a standard derived equivalence of finite dimensional algebras. Moreover, under some
conditions, the cohomology rings of these differential graded endomorphism algebras
are also derived equivalent. Then we give an affirmative answer to a problem of Dugas
(A construction of derived equivalent pairs of symmetric algebras, Proc. Amer. Math.
Soc. 143 (2015), 2281–2300) in some special case.
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1. Introduction. Derived equivalences were introduced by Grothendieck and
Verdier, and play an important role nowadays in many branches of algebraic geometry,
in algebraic analysis, non-commutative algebraic geometry, representation theory and
mathematical physics. They capture much of the homological information of an abelian
category. For example, the Grothendieck group of an abelian group is preserved
under derived equivalences, and derived equivalent algebras have the same Hochschild
cohomology.

Important explicit derived equivalences were constructed by Happel [5] in tilting
theory and by Rickard [18] in tilting complexes. Keller’s ICM talk [12], for instance,
justifies derived equivalences by the unbounded derived category of differential graded
categories [11]. There are two natural directions of research: How to give systematic
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methods for constructing derived equivalences, and how to produce new derived
equivalences from given ones.

Recently, Hu and Xi constructed [9] the derived equivalence for �-Auslander–
Yoneda algebras. We want to mention that derived equivalence for �-Cohen–Macaulay
Auslander–Yoneda algebras were also constructed in [16]. Recall that the �-Auslander–
Yoneda algebras [9, Section 3], include, for instance, Auslander algebras, generalized
Yoneda algebras and certain trivial extensions. By the definition, �-Auslander–Yoneda
algebras can be characterized as the cohomology rings of some dg algebras. Hence, it
is important to consider derived equivalences for some dg algebras. It is due to Dugas
[3, Section 7], who proposed the following problem.
Problem. Let � and � be differential graded algebras. If the cohomology rings H∗(�)
and H∗(�) are derived equivalent, then whether the differential graded algebras � and
� are derived equivalent or not.

Motivated by the above problem, we look for in this paper a general way to get
derived equivalences of differential graded algebras in two directions.

By considering a triangle

X −→ Y −→ Z −→ X [1]

in the homotopy category K (A) of a differential graded algebra A, we show that there is
a derived equivalence between differential graded endomorphism algebras Hom(X ⊕
Y, X ⊕ Y ) and Hom(Y ⊕ Z, Y ⊕ Z). See Theorem 4.7 for more details. Moreover,
under some mild conditions, we get the cohomology rings of these differential graded
algebra are also derived equivalent. This gives an affirmative answer to the above
problem in some special case. Note that it is still an open question whether a derived
equivalence of the cohomology rings implies the differential graded algebras are derived
equivalent.

We also study a standard derived equivalence F : Db(mod-B) −→ Db(mod-C)
of two finite dimensional algebras B and C. By considering the additive functor F :
mod-B → mod-C introduced in [8, 7], we get a derived equivalence between differential
graded algebras RHomB(B ⊕ X, B ⊕ X) and RHomC(C ⊕ F(X), C ⊕ F(X)), where X
is a B-module (see Theorem 5.3). If X ∈ ⊥B, then the cohomology rings H�(A ⊕
X) and H�(B ⊕ F(X)) of RHomA(A ⊕ X, A ⊕ X) and RHomB(B ⊕ F(X), B ⊕ F(X)),
respectively, are derived equivalent by [16, Theorem 1.1]. This gives an affirmative
answer to a question of Pan [16, Section 4] which is in spirit to a question of Dugas [3].

This paper is organized as follows. In Section 2, we recall some basic definitions and
facts of derived categories and derived equivalences. Section 3 is devoted to collecting
differential graded modules, their derived categories and studying the differential
graded bimodules for later use. The construction of derived equivalences from the
triangles in the homotopy category of differential graded algebras will be given in
Section 4. Finally, in Section 5, we construct derived equivalences for differential
graded algebras from standard derived equivalences of finite dimensional algebras.

2. Preliminaries. In this section, we recall some basic definitions and collect some
basic facts of derived categories and derived equivalences.

In this paper, we fix a commutative ring k with identity. All algebras are k-algebras,
and functors are k-functors. The composite of two morphisms f : X → Y and g : Y →
Z in a category C will be denoted by g f . If f : X → Y is a map between two sets, then
the image of an element x ∈ X will be denoted by f (x). The composite of two functors
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DIFFERENTIAL GRADED ENDOMORPHISM ALGEBRAS

F : C → D and G : D → E will be denoted by GF . For each object X in C, we write
F(X) for the corresponding object in D, and for each morphism f : X → Y in C, we
write F(f ) for the corresponding morphism in D from F(X) to F(Y ).

For an object M in a k-category C, we use add(M) to denote the full subcategory
of C consisting of direct summands of finite direct sums of copies of M. If C admits
infinite coproducts, then Add(M) means the full subcategory of C consisting of direct
summands of all coproducts of copies of M.

For generality, we shall consider arbitrary k-algebras. All modules will be unitary
right modules. Let A be a k-algebra. The category of all right A-modules will be denoted
by Mod-A. We use mod-A to denote the full subcategory of Mod-A consisting of
finitely presented A-modules, that is, A-modules X admitting a projective presentation
P1 → P0 −→ X → 0 with Pi finitely generated projective for i = 0, 1. The category of
all projective A-modules is denoted by Proj-A, and the category of all finitely generated
projective A-modules is denoted by proj-A.

Let A be a k-algebra, a complex X• over A is a sequences di
X between A-modules

Xi:

· · · −→ Xi−1 di−1
X−→ Xi di

X−→ Xi+1 di+1
X−→ · · ·

such that di
X di+1

X = 0 for all i ∈ �. The category of complexes of A-modules, in
which morphisms are chain maps, is denoted by C (Mod-A), and the corresponding
homotopy category is denoted by K (Mod-A). We write D(Mod-A) for the derived
category of Mod-A. We also write K b(Mod-A), K −(Mod-A) and K +(Mod-A) for
the full subcategories of K (Mod-A) consisting of bounded complexes, complexes
bounded above and complexes bounded below, respectively. Denote by Db(Mod-A),
D−(Mod-A) and D+(Mod-A) the full subcategories of D(Mod-A) consisting of
bounded complexes, complexes bounded above and complexes bounded below,
respectively.

Note that there is a fully faithful functor Mod-A −→ D(Mod-A) by viewing an
A-module as a complex in D(Mod-A) concentrated in degree zero.

The homotopy category of an additive category, and the derived category of
an abelian category are both triangulated categories. For basic facts on triangulated
categories, we refer to Neeman’s book [13]. The shift functor of a triangulated category
will be denoted by [1] in this paper. In the homotopy category or the derived category
of an abelian category, the shift functor acts on a complex by moving the complex to
the left by one degree, and changing the sign of the differentials.

Two algebras A and B are said to be derived equivalent if one of the following
equivalent conditions holds:

(1) D(Mod-A) and D(Mod-B) are equivalent as triangulated categories.
(2) D−(Mod-A) and D−(Mod-B) are equivalent as triangulated categories.
(3) Db(Mod-A) and Db(Mod-B) are equivalent as triangulated categories.
(4) K b(Proj-A) and K b(Proj-B) are equivalent as triangulated categories.
(5) K b(proj-A) and K b(proj-B) are equivalent as triangulated categories.
(6) There is a complex T• in K b(proj-A) satisfying the following conditions:

(a) HomK b(proj-A)(T•, T•[n]) = 0 for all n �= 0.
(b) add(T•) generates K b(proj-A) as a triangulated category,

such that the endomorphism algebra of T• in K b(proj-A) is isomorphic
to B.
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For the proof that the above conditions are indeed equivalent, we refer
to [18, 11]. If the algebras A and B are left coherent rings, then the above
equivalent conditions are further equivalent to the following condition.

(7) Db(mod-A) and Db(mod-B) are equivalent as triangulated categories.

Note that in this case the category mod-A of finitely presented A-modules is an abelian
category. A complex T• satisfying the conditions (6.a) and (6.b) above is called a tilting
complex.

A triangle equivalence functor F : D(Mod-A) → D(Mod-B) is called a derived
equivalence. It is well-known that the image F(A) is isomorphic in Db(Mod-B) to a
tilting complex, and there is a tilting complex T• over A such that F(T•) is isomorphic
to B in D(Mod-B). The complex T• is called an associated tilting complex of F . The
following is an easy lemma for the associated tilting complexes. Its proof can be found,
for example, in [8, Lemma 2.1].

LEMMA 2.1. Consider a derived equivalence F : D(Mod-A) −→ D(Mod-B) of two
k-algebras A and B. Suppose that F(A) is isomorphic in D(Mod-B) to a complex T̄• ∈
K b(proj-B) of the form

0 −→ T̄0 −→ T̄1 −→ · · · −→ T̄n −→ 0

for some n ≥ 0. Then, F−1(B) is isomorphic in D(Mod-A) to a complex T• ∈ K b(proj-A)
of the form

0 −→ T−n −→ · · · −→ T−1 −→ T0 −→ 0.

3. Differential graded algebras and their derived categories. In this section, we
collect some background on differential graded algebras, their derived categories of
differential graded modules and differential graded bimodules, which will be used all
throughout this paper. Interpreting differential graded algebras as differential graded
categories with just one object, the material is a particular case of the development in
[11, 12, 15, 2].

3.1. Differential graded algebras and differential graded modules.. Recall that a
differential graded k-algebra (=dg algebra) is a �-graded associative k-algebra A =
⊕i∈�Ai with a differential d : Ai → Ai+1 satisfying the graded Leibniz rule

d(ab) = d(a)b + (−1)pad(b),∀a ∈ Ap, b ∈ A.

A dg right A-module is a �-graded right A-module M = ⊕i∈�Mi with a graded k-linear
differential d : Mi → Mi+1 such that

d(ma) = d(m)a + (−1)nmd(a),∀m ∈ Mn, a ∈ A.

It is useful to look at each dg A-module as a complex

· · · → Mi−1 di−1→ Mi di→ Mi+1 → · · ·
of k-modules with some extra properties.
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DIFFERENTIAL GRADED ENDOMORPHISM ALGEBRAS

A morphism between right dg A-modules f : M → N is a morphism of the
underlying graded A-modules which is homogeneous of degree zero and commutes
with the differential. Denote by Gr-A the category of graded right A-modules
with graded A-module homomorphisms. Let M and N be right dg A-modules. Set
HomA(M, N)n = HomGr-A(M, N < n >) for each n ∈ �, it consists of k-linear maps
f : M −→ N which are homogeneous of degree n and satisfy f (ma) = f (m)a for all
homogeneous elements a ∈ A. The graded vector space

HomA(M, N) = ⊕i∈�HomA(M, N)i = ⊕i∈�HomGr-A(M, N < i >)

has a natural differential d such that d(f ) = dN ◦ f + (−1)|f |+1f ◦ dM . Furthermore,
HomA(M, M) becomes a dg algebra with this differential and the usual composition
as multiplication. Denote by CdgA the category of differential graded right A-modules
with morphism space CdgA(M, N) = HomA(M, N).

3.2. Derived category of dg module categories. Let A be a dg k-algebra. Let C (A)
be the category of dg A-modules. A morphism f : X −→ Y in C (A) is a morphism in
Gr-A which is a chain map of complexes of k-modules. We have

HomC (A)(X, Y ) = Z0(HomA(X, Y )) = {f ∈ HomA(M, N)0|d(f ) = 0}.
Note that C (A) is an abelian category and comes with a canonical shifting [1] :
C (A) −→ C (A) which comes from the canonical shifting of Gr-A, by defining
dn

M[1] = dn+1
M for each n ∈ �. Then we have an obvious faithful forgetful functor

F : C (A) −→ Gr-A,

which is also dense on objects since we can interpret each graded A-module as an
object of C (A) with zero differential. Viewing the objects of C (A) as complexes of
k-modules, we clearly have, for each p ∈ �, the pth homology functor

Hp : C (A) −→ Mod-k.

A morphism f : X −→ Y in C (A) is called a quasi-isomorphism if Hp(f ) is an
isomorphism, for all p ∈ �. A dg A-module X is called acyclic if Hp(X) = 0, for
all p ∈ �.

For any dg A-module X = ⊕Xi, we define a functor Fρ : Gr-A −→ C (A) given by

Fρ(X) = X ⊕ X < 1 >

as graded A-modules. For a map f ∈ HomGr-A(X, Y ), Fρ(f ) : Fρ(X) −→ Fρ(Y ) given
by

Fρ(
[ x

y
]
) =

[
f (x)
f (y)

]
.

Then, we get a dg A-module Fρ(X) = X ⊕ X < 1 > given by
[ x

y
]

a = [ xa
ya+(−1)|x|xd(a)

]

with the differential d = [
0 1
0 0

]
. It is well-known that (F, Fρ) is an adjoint pair. Note

that FρF(X) is a projective–injective object in C (A), and we have a canonical exact
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sequence 0 −→ X −→ FρF(X) −→ X [1] −→ 0 which splits in Gr-A but not in C (A).
The exact structure on C (A) is the exact sequence

0 −→ X −→ Y −→ Z −→ 0

in C (A) which is split in Gr-A. With this exact structure, C (A) is a Frobenius exact
category. Then, the stable category C (A) with respect to the given exact structure is
denoted by K (A), and is called the homotopy category of A. It is a triangulated
category, and each triangle in K (A) is isomorphic to

X
f−→ Y

[ −1
0

]

−→ X [1] ⊕ Y
[ 0 1 ]−→ X [1]

for some f : X −→ Y . Let f : M → N be a morphism of dg A-modules. We say that f
is a null-homotopic if we get

f = dr + rd,

where r : M → N is a morphism of the underlying graded A-modules which is
homogeneous of degree −1. Denote by � the class of all homotopy class of quasi-
isomorphisms. Then, � is a multiplicative system in K (A) compatible with the
triangulation and the localization

D(A) := K (A)[�−1]

is called the derived category of A. It is also a triangulated category with translation
functor [1] induced from C (A).

For two dg A-modules X and Y , there is an isomorphism

HomK (A)(X, Y [n]) � Hn(HomA(X, Y ))

for each n ∈ �. We observe an isomorphism HomA(A, X) � X of complexes sending
f to f (1). Then, the above isomorphism induces the following isomorphism:

HomK (A)(A, X [n]) � Hn(X).

It is well-known that D(A) can be realized as the Verdier quotient category of
K (A) by its full subcategory of acyclic dg A-modules. A dg A-module P is called
homotopically projective if HomA(P, M) = 0, for every acyclic dg A-module M, which
is equivalent to the condition that the canonical functor K (A) −→ D(A) induces an
isomorphism

HomK (A)(P, X) � HomD(A)(P, X)

for any dg A-module X .
For a triangulated category T and a class S of objects, we denote by thickT S

the smallest thick subcategory of T containing S. Denote by TriaT S is the smallest
subcategory of T containing S and closed under coproducts. Recall that a thick
subcategory is a triangulated subcategory which is closed under direct summands.
We say an object M in T is compact if the functor HomT (M,−) commutes with
arbitrary coproducts.
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The following easy lemma is useful in the later, for the proof we refer to [14,
Corollary 3.19].

LEMMA 3.1. Let F : T −→ T ′ be a triangle functor of triangulated categories and
T ∈ T an object. Then,

F(thickT (T)) ⊆ thickT ′ (F(T)).

The following is a very well-known fact [11, Theorem 5.3].

PROPOSITION 3.2. Let A be a dg algebra. The compact objects of D(A) are precisely
the objects of thickD(A)(A) := per A.

The triangulated subcategory per A is called the perfect derived category of A.

3.3. Differential graded bimodules. We give in this subsection some useful lemmas
for later use.

Let A and B be two dg algebras. A dg A-B-bimodule X is a left dg A-module as
well as right dg B-module such that

d(amb) = (da)mb + (−1)pa(dm)b + (−1)p+qam(db),

for all a ∈ Ap, m ∈ M and b ∈ Bq. And the canonical map A −→ HomB(X, X),
sending a to la with la(x) = ax is a homomorphism of dg algebras. Similarly, the
canonical map B −→ HomAop (X, X)op, sending b to rb with rb(x) = (−1)|b||x|xb is a
homomorphism of dg algebras.

Recall that a dg A-B-bimodule X is called left quasi-balanced if the canonical
map A −→ HomB(X, X) of dg algebras is a quasi-isomorphism. Dually, X is called
right quasi-balanced if the canonical map B −→ HomAop (X, X) of dg algebras is a
quasi-isomorphism. If both the canonical map A −→ HomB(X, X) and the canonical
map B −→ HomAop (X, X) of dg algebras are quasi-isomorphisms, then X is called
a quasi-balanced bimodule. Let X be a dg A-B-bimodule. Then, HomB(AXB, YB)
becomes a right dg A-module by (f a)(x) = f (ax) for f ∈ HomB(AXB, YB) and x ∈ X .
Similarly, Hom(AXB,A Y ) is a left dg B-module by (bf )(x) = (−)|x|(|f |+|b|)f (xb) for f ∈
HomB(AXB,A Y ) and x ∈ X .

Here, we give a condition for a fully faithful exact functor between triangulated
categories to be an equivalence. We also refer the reader to [1, Theorem 3.3].

LEMMA 3.3. Let T and S be triangulated categories. Let F : T −→ S and G : S −→
T be an adjoint pair of triangle functors. Then, we have the following:

(1) If the unit η : IdT −→ GF is an isomorphism and GX � 0 ⇔ X � 0, then F
and G induce mutually inverse equivalences between T and S.

(2) If the counit ε : FG −→ IdS is an isomorphism and FY � 0 ⇔ Y � 0, then F
and G induce mutually inverse equivalences between T and S.

Proof.
(1) For any Y ∈ S, there is a triangle

FGY
εY−→ Y −→ Z −→ (FGY )[1]
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Applying the functor G, then we get the following triangle:

GFGY
G(εY ) �� GY �� GZ �� (GFGY )[1].

GY

ηGY

�� ���������

���������

Therefore, we get 1GX = G(εY )ηGY . Since ηGY : GY −→ GFGY is an

isomorphism, GFGY
G(εY )−→ GY is an isomorphism. Then, GZ � 0. By

assumptation, Z � 0. Consequently, FGY � Y .
(2) The proof of (2) is similar to that of (1).

�

The following lemma is the Morita theory for derived categories of dg sense which
was proved by Keller [11]. We give an another characterization by Lemma 3.3.

LEMMA 3.4. Let AMB be a dg A-B-bimodule such that MB is a homotopically
projective compact generator in D(B) and the canonical map

A −→ HomB(M, M), (a �→ (m �→ am))

is a quasi-isomorphism of dg algebras. Then, − L⊗A M and RHomB(M,−) induces
mutually inverse equivalences between D(A) and D(B).

Proof. Let F = − ⊗A M and G = HomB(M,−). Then, we consider the left and

right derived functor F̄ := − L⊗A M and Ḡ := RHomB(M,−), respectively. We know
that G preserves a quasi-isomorphism. Then, we have the following:

AA
ηA−→ GFA = HomB(AMB, A ⊗A M) −→ HomB(M, M),

(a �→ (m �→ a ⊗ m �→ am)).

Hence, ηA is a quasi-isomorphism. Since MB is a homotopically projective, the unit of
A −→ ḠF̄A is an isomorphism. Let

X = {X ∈ D(A)| ηX : X −→ ḠF̄X is an isomorphism}.

Then, X is a subcategory of D(A) containing AA. Let
K (A)ac = {M ∈ K (A)| M is acyclic as k-complex} and K (A)⊥ac = {X ∈
K (A)| HomK (A)(K (A)ac, X) = 0}. Then, we have the following triangle functors:

Tria(A)
λ

↪→ K (A)
q−→ D(A),K (A)⊥ac

μ
↪→ K (A)

q−→ D(A).
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Here, qλ and qμ are equivalent of triangle functors. Let γ and γ ′ be the quasi-inverse of
qλ and qμ, respectively. Set p := λγ and i := μγ ′. We thus have the following diagram:

K (A)

q

��

p

��

F ��
K (B)

G
��

q

��

p

��
D(A)

i

��

LF
��
D(B).

LG

��

i

��

Note that F̄ = qFp and F̄ = qGi. The functors p, F, q, G preserve coproducts. It
follows that i(

∐
X) � i(

∐
qi(X)) � i(q

∐
i(X)) � iq(

∐
i(X)) � ∐

i(X). Therefore, X
is closed under coproducts. Consequently, we get TriaD(A)(A) ⊆ X ⊆ D(A). Then,
X = D(A). This implies that ηX : X −→ ḠF̄(X)) is an isomorphism. For any X ∈
D(B) such that Ḡ(X) = 0. Thus, qGi(X) = 0. Therefore, qHomB(MB, i(X)) = 0. Thus,
HomB(MB, i(X)) is acyclic. It follows that HomK (B)(MB, i(X)[n]) = 0 for n ∈ �. So,
HomD(B)(MB, X [n]) = 0. Then, X � 0 by MB is a compact generator in D(B). This
completes the proof by Lemma 3.3. �

COROLLARY 3.5. [11] Suppose that φ : A −→ B is a dg algebra homomorphism.

If φ is a quasi-isomorphism of dg algebras, then − L⊗A B and RHomB(B,−) induces
mutually inverse equivalences between D(A) and D(B).

Proof. This is the special case of Lemma 3.4 for M =A BB, ABB is a dg A-B-
bimodule such that BB is a homotopically projective compact generator in D(B). �

4. Derived equivalences of dg algebras induced from triangles. Throughout this
section, we fix A a dg algebra and denote its homotopy category by K (A). The goal of
this section is to get derived equivalences of two dg algebras which are obtained from
some triangles in K (A). As an application, we give an affirmative answer to Dugas’
question [3]. First, we need the following well-known observation.

LEMMA 4.1. [10, Lemma 8.4]Let F : T −→ T ′ be a triangle functor of triangulated
categories and T an object in T . If

FT,T : HomT (T, T [n]) −→ HomT ′(F(T), F(T)[n])

is an isomorphism for any n ∈ �, then

F : thickT (T) −→ T ′

is fully faithful.

We generalizes [10, Lemma 8.5] to dg algebra case in the following.

LEMMA 4.2. Let X be a dg A-module and � = HomA(X, X). The we have a triangle
equivalence between thickK (A)(X) and per �.
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Proof. Consider the following functor:

HomA(X,−) : C (A) −→ C (�)

which sends Y to a dg �-module HomA(X, Y ). A map f : Y1 −→ Y2 in C (A) yields

HomA(X, f ) : HomA(X, Y1) −→ HomA(X, Y2).

Then this functor sends a null-homotopic morphism of dg A-modules to a null-
homotopic morphism of dg �-modules. Therefore, HomA(X,−) induces a triangle
functor K (A) −→ K (�). By composing with the canonical functor K (�) −→ D(�),
we have a triangle functor K (A) −→ D(�) which sends X to �. We thus get a triangle
functor from thickK (A)(X) to thickD(�)(�) = per � by Lemma 4.1. Then, we have the
following commutative diagram:

HomK (A)(X, X [n])

�
��

FX,X [n] �� HomD(�)(�,�[n])

�
��

Hn(�) � �� Hn(�),

for any n ∈ �. It completes the proof by Lemma 4.1. �
LEMMA 4.3. Suppose X and Y are dg A-modules such that Y ∈ thickK (A)(X). Let

� = HomA(X, X). Then, we have the following quasi-isomorphism:

HomA(Y, Z) −→ Hom�(HomA(X, Y ),HomA(X, Z)) f �→ (g �→ f ◦ g),

for any dg A-module Z.

Proof. As in the proof in Lemma 4.2, the functor HomA(X,−) induces a triangle
functor K (A) −→ K (�). Applying the functor Hi to

HomA(Y, Z) −→ Hom�(HomA(X, Y ),HomA(X, Z)),

it yields that

HomK (A)(Y, Z[i]) −→ HomK (�)(HomA(X, Y ),HomA(X, Z)[i]).

We now let

X = {Y ∈ K (A)| for any object Z ∈ K (A), the functor HomA(X,−)

induces the following isomorphism:

HomK (A)(Y, Z[i]) −→ HomK (�)(HomA(X, Y ),HomA(X, Z)[i])}.

Then, X is a subcategory of K (A). Clearly, X is closed under shifts and direct
summands. Suppose that

Y1 −→ Y2 −→ Y3 −→ Y1[1]
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is a triangle in K (A) with Y1, Y2 ∈ X . Then we have the following commutative
diagram:

K (A)(Y1[1], Z[i])

�
��

�� K (A)(Y3, Z[i])

��

�� K (A)(Y2, Z[i])

�
��

�� K (A)(Y1, Z[i])

�
��

K (�)((X, Y1[1]), (X, Z)[i]) �� K (�)((X, Y3), (X, Z)[i]) �� K (�)((X, Y2), (X, Z)[i]) �� K (�)((X, Y1), (X, Z)[i]).

It follows that Y3 ∈ X . Therefore, X is a thick subcategory of K (A). If Y = X , then

HomK (�)(HomA(X, X),HomA(X, Z)[i]) � HomK (�)(�,HomA(X, Z)[i])

� HomD(�)(�,HomA(X, Z)[i])

� Hi(HomA(X, Z)) � HomK (A)(X, Z[i]).

Thus, X ∈ X . Consequently, thickK (A)(X) ⊆ X . This completes the proof. �
The following lemma is useful, for the convenient we give the proof here. We

also thank Professor Bernhard Keller for his discussions in the proof of the following
lemma.

LEMMA 4.4. Suppose that X and Y are dg A-modules such that Y ∈ thickK (A)(X)
and X ∈ thickK (A)(Y ). Let � = HomA(X, X) and � = HomA(Y, Y ). Then, there is a
triangle equivalence between D(�) and D(�).

Proof. Consider the dg �-�-bimodule HomA(X, Y ). By Lemma 4.3, we have the
following quasi-isomorphism:

HomA(Y, Y ) −→ Hom�(HomA(X, Y ),HomA(X, Y )) f �→ (g �→ f ◦ g).

Similarly to the proof of Lemma 4.3, it follows that

HomA(X, X) −→ Hom�op (HomA(X, Y ),HomA(X, Y )) f �→ (g �→ (−1)|f ||g|g ◦ f )

is a quasi-isomorphism of dg algebras. Then, the dg �-�-bimodule HomA(X, Y ) is
quasi-balanced.

It follows from Lemma 4.2 that HomA(X, Y )� ∈ per � and
�HomA(X, Y ) ∈ per �op, since Y ∈ thickK (A)(X) and X ∈ thickK (A)(Y ).
So � ∈ thickD(�)(HomA(X, Y )�). Then, thickD(�)(HomA(X, Y )�) = per �.

Consequently, HomA(X, Y ) is a compact generator for D(�). By Lemma 3.4,
we have a triangle equivalence between D(�) and D(�) defined by the dg �-�-
bimodule HomA(X, Y ). �

COROLLARY 4.5 [4, Proposition 8.3] or [17, Proposition 3.3]. Assume that dg A-
modules X and Y are homotopy equivalent. Then, the dg algebras � = HomA(X, X),
� = Hom(Y, Y ) are quasi-isomorphic. Moreover, we have a triangle equivalence
D(�) � D(�).

REMARK 4.6. Let A be a finite dimensional k-algebra, and X be a finitely generated
A-module. Let P•

X be a projective resolution of X . Then, we have RHomA(X, X) =
HomA

•(P•
X , P•

X ), where RHomA(X,−) is the right derived functor. Suppose PX
• and

QX
• are two projective resolutions of X which are homotopy equivalent, and let

567

https://doi.org/10.1017/S0017089518000368 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000368


�1 = HomA
•(PX

•, PX
•) and �2 = HomA

•(QX
•, QX

•) be two dg algebras. Then we
have a triangle equivalence between D(�1) and D(�2) by Lemma 4.5.

Proof. We give a new proof of D(�) � D(�) by Lemma 4.4 for reader’s
convenience. Since dg A-modules X and Y are homotopy equivalent,

thickK (A)(X) = thickK (A)(Y ).

Let � = HomA(X, X) and � = HomA(Y, Y ). There is a dg �-�-bimodule
HomA(X, Y ) which yields a triangle equivalence between D(�) and D(�) by Lemma
4.4. �

The following is the main result in this section.

THEOREM 4.7. Let M be a dg A-module in homotopy category K (A) of dg algebra
A and

X
f−→ M1

g−→ Y
h−→ X [1]

be a triangle in K (A) with M1 ∈< M >, where < M > denotes the full additive
subcategory generated by ∪i∈� add M[i]. Then there is a derived equivalence of dg algebras
Hom(X ⊕ M, X ⊕ M) and Hom(Y ⊕ M, Y ⊕ M).

Proof. Suppose that M is a dg A-module in K (A). Let

X
f−→ M1

g−→ Y
h−→ X [1]

be a triangle in K (A) with M1 ∈< M >. Then, there is a triangle

X
f−→ M1 ⊕ M

g−→ Y ⊕ M
h−→ X [1].

Therefore, Y ⊕ M ∈ thick(X ⊕ M) and X ⊕ M ∈ thick(Y ⊕ M). Set U = X ⊕ M
and V = Y ⊕ M. By Lemma 4.4, the dg bimodule HomA(U, V ) defines a derived
equivalence between Hom(X ⊕ M, X ⊕ M) and Hom(Y ⊕ M, Y ⊕ M). �

By Theorem 4.7 and [3, Theorem 4.1], we can restate the above theorem for the
case of a k-algebra A.

COROLLARY 4.8. Suppose that A is a k-algebra and M• is a complex in K (A). Let

X• f •
−→ M1

• g•
−→ Y • h•−→ X•[1]

be a triangle in K (A) with M1
• ∈< M• >. Assume that f • is a left < M• >-

approximation of X• and g• is a right < M• >-approximation of Y •. Then,
(1) there is a derived equivalence between dg algebras HomA

•(X• ⊕ M•, X• ⊕
M•) and HomA

•(Y • ⊕ M•, Y • ⊕ M•);
(2) the cohomology rings H�(X• ⊕ M•) and H�(Y • ⊕ M•) are also derived

equivalent, where H�(X• ⊕ M•) = ⊕
i∈� HomK (A)(X• ⊕ M•, (X• ⊕ M•)[i]).

REMARK 4.9. There is a derived equivalence between dg algebras HomA
•(X• ⊕

M•, X• ⊕ M•) and HomA
•(Y • ⊕ M•, Y • ⊕ M•). Under some mild conditions, we

get the cohomology rings of these dg algebra are derived equivalent. This gives an
affirmative answer to a problem of Dugas [3] in some special case.
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COROLLARY 4.10. [3, Theorem 5.2] Let A be a symmetric algebra and X• and
M• be any complexes in K b(proj-A). Then, there exists a left < M• >-approximation

X• f •
−→ M′• of X• in K b(A). If Y • = cone(f •), we get the derived equivalence between

HomA
•(X ⊕ M, X ⊕ M) and HomA

•(Y ⊕ M, Y ⊕ M).

Proof. Let K̃ (A) denote the orbit category K (A)/[1]. Then, there is a triangle

X• f •
−→ M′• g•

−→ Y • h−→ X•[1]

such that M′• ∈ add
˜K (A)

M, f • is a left < M• >-approximation and g• is a
right < M• >-approximation by [3, Theorem 4.1]. It completes the proof by
Theorem 4.7. �

EXAMPLE 4.11. [3, Section 7] We now show how to realize dg algebras in one
concrete case. Set

A = k[x, y]/(xn − ys, xy)

and consider

T• = A
(x,0)−→ A ⊕ A

concentrated in degree −1 and 0. Write T• = T•
1 ⊕ T•

2 , where

T•
1 := (0

0−→ A) and T•
2 := (A

x−→ A).

Then, we conclude that

T•
2

[
γ
γ ε

]

−→ T•
1 [1] ⊕ T•

1

is a left < T•
1 >-approximation, yielding the following triangle in K b(proj-A)

(A
x−→ A)

(1,y)−→ (A
0−→ A)

(x,1)−→ (A
y−→ A) −→ (A

x−→ A)[1],

where

A

γ : 1
��

x �� A
,

��
A �� 0

A

ε:

��

x �� A

y

��

�� 0

.

��
0 �� A ��x �� A

Theorem 4.7 thus shows that two dg algebras

⎡
⎢⎢⎢⎢⎢⎢⎣

A0 A0
−x �� A1

A−1

x

��
A0

A−1

x

��

x �� A0

x

��
A0

−x �� A1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

A0 A0
−y �� A1

A−1

y

��
A0

A−1

y

��

y �� A0

y

��
A0

−y �� A1

⎤
⎥⎥⎥⎥⎥⎥⎦

569

https://doi.org/10.1017/S0017089518000368 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000368


are derived equivalent, where A−1 = A0 = A1 = A concentrate in degree −1, 0, 1,
respectively.

5. Derived equivalence of dg algebras induced from standard derived equivalences of
finite dimensional algebras. Starting from a standard derived equivalences of finite
dimensional algebras, we construct in this section derived equivalences of two dg
algebras. Moreover, under some conditions, the cohomology rings of these dg algebra
are also derived equivalent.

Throughout this section, suppose k is a field. Let A and B be finite dimensional
k-algebras. Recall that a standard derived equivalence between derived categories
D−(Mod-A) and D−(Mod-B) is an exact functor such that it is an equivalence and is
isomorphic to RHom(X•,−) for some object X• of Db(Mod-A ⊗ B) [19]. An object
X• of Db(Mod-A ⊗ B) is called a two-sided tilting complex if it induces such an
equivalence.

LEMMA 5.1 [8, Lemma 2.1]. Let F : D(Mod-A) −→ D(Mod-B) be a derived
equivalence. For each A-module X, the image F(X) is isomorphic, in D(Mod-B), to
a complex T̄•

X of the form

0 −→ T̄0
X −→ T̄1

X −→ · · · −→ T̄n
X −→ 0

with T̄ i
X projective for all 1 ≤ i ≤ n. Moreover, if X admits a projective resolution P•

X with
Pi

X finitely generated for 0 ≤ i ≤ m with m ≥ n. Then, T̄ i
X can be chosen to be finitely

generated for all 0 ≤ i ≤ n and T̄0
X admits a projective resolution Q•, where Qi is finitely

generated for −m ≤ i ≤ 0.

LEMMA 5.2 [8, Proposition 3.4]. Let F : Db(mod-A) −→ Db(mod-B) be a derived
equivalence. Then, there is an additive functor

F : mod-A → mod-B

sending X to F(X), such that the following diagram:

mod-A can ��

F

��

Db(mod-A)/K b(proj-A)

F
��

mod-B can �� Db(mod-A)/K b(proj-B)

is commutative up to natural isomorphism.

The following theorem is the main result of this section.

THEOREM 5.3. Suppose k is a field. Let F : D(Mod-A) −→ D(Mod-B) be a standard
derived equivalence and

F : mod-A −→ mod-B

be the additive functor induced by F as in Lemma 5.2. Then, there is a derived equivalence
between dg algebras RHomA(A ⊕ X, A ⊕ X) and RHomB(B ⊕ F(X), B ⊕ F(X)) for
each A-module X.
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REMARK 5.4. If X ∈ ⊥A, then there is a derived equivalence between dg
algebras RHomA(A ⊕ X, A ⊕ X) and RHomB(B ⊕ F(X), B ⊕ F(X)) by Theorem 5.3.
Moreover, the cohomology rings H�(A ⊕ X) and H�(B ⊕ F(X)) of RHomA(A ⊕
X, A ⊕ X) and RHomB(B ⊕ F(X), B ⊕ F(X)), respectively, are derived equivalent by
[16, Theorem 1.1].

Proof. Let U = A ⊕ X and V = B ⊕ F(X). And let P•
U and PV

• be projective
resolutions of U and V , respectively. Then, we have RHomA(U, U) = HomA

•(P•
U , P•

U )
and RHomA(V, V ) = HomA

•(P•
V , P•

V ). By Remark 4.6, the dg endomorphism algebras
HomA

•(PU
•, PU

•) and HomA
•(PV

•, PV
•) are unique under derived equivalences. Let

� = HomA
•(PU

•, PU
•) and � = HomA

•(PV
•, PV

•). It suffices to show that dg algebras
� and � are derived equivalent.

Let T̄•
U = F(U) and P•

T̄•
U

be a projective resolution of T̄•
U . Set �′ =

HomB
•(P•

T̄•
U
, P•

T̄•
U

). We claim that there is a derived equivalence between �′ and �.
In the following, we are going to prove the claim.

It follows from Lemma 5.1 that T̄•
U is isomorphic, in D(B-mod), to a complex of

the form

0 −→ T̄0
U −→ T̄1

U −→ · · · −→ T̄n
U −→ 0

with T̄ i
U projective for 1 ≤ i ≤ n, T̄0

U = T̄0 ⊕ F(X) and T̄0 is the first term of T̄•, where
T̄• is a tilting complex for B by Lemma 2.1, we see that add T̄• generates K b(addB B)
as triangulated category. All the terms of T̄• are in addB B. From the distinguished
triangle,

T̄+ → T̄•
U → T̄0

U → T̄+
U [1],

it follows that T̄0
U is in the triangulated subcategory generated by add(T̄•

U ).
Therefore, add T̄•

U generates K b(addB V ) as a triangulated category. Consequently,
thickK (B)(T̄•

U ) = thickK (B)(V ). The definition of P•
T̄•

U
implies thickD(B)(P•

T̄•
U

) =
thickD(B)(T̄•

U ). Similarly, thickD(B)(P•
V ) = thickD(B)(V ). The canonical functor

K (B)
q−→ D(B) induces an equivalence between thickK (B)(P•

T̄•
U

) and thickD(B)(P•
T̄•

U
)

by [6, Remark 1.7]. Since V ∈ thickK (B)(V ) = thickK (B)(T̄•
U ), Lemma 3.1 shows

V ∈ thickD(B)(T̄•
U ). Thus, we get thickD(B)(V ) ⊆ thickD(B)(T̄•

U ) = thickD(B)(P•
T̄•

U
). Con-

sequently, we obtain thickD(B)(P•
V ) = thickD(B)(V ) ⊆ thickD(B)(P•

T̄•
U

). It follows from
[6, Remark 1.7] that thickK (B)(P•

V ) ⊆ thickK (B)(P•
T̄•

U
). Similarly, thickK (B)(P•

T̄•
U

) ⊆
thickK (B)(P•

V ). Then, there is a dg �-�′-bimodule HomB
•(P•

T̄•
U
, PV

•) which induces
the derived equivalence between �′ and � by Lemma 4.4. It completes the proof of the
claim.

Finally, it suffices to show that � and �′ are derived equivalent. Since F is a
standard derived equivalence, we write F � Y • ⊗L

A −, where Y • can be a bounded
above complex of projective B-A-bimodules [19]. Then,

RHomB(T̄•
U , T̄•

U ) � Hom•
B(Y • ⊗L

A P•
U , Y • ⊗L

A P•
U )

= Hom•
B(Y • ⊗A P•

U , Y • ⊗A P•
U ) � ⊕n∈� �i∈� HomB(Mp, Mp+n).

We set M• = Y • ⊗L
A P•

U and then Mp = ⊕i∈�Y p−i ⊗A Pi
U . Thus, we have

HomB(Mp, Mp+n) = HomB(⊕i∈�Y p−i ⊗A Pi
U ,⊕i∈�Y p−i ⊗A Pn+i

U ).
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Now, we can define a dg algebra homomorphism HomA
•(P•

U , P•
U ) −→

HomB
•(M•, M•) defined by (f i) → (gp), where gp = (Y p−i ⊗ f i). Indeed, we the above

dg algebra homomorphism is a chain map between complexes. Then, we get the
following commutative diagram:

�i∈�HomB(Pi
U , Pi+n

U )

��

d �� �i∈�HomB(Pi
U , Pi+n+1

U )

��
�i∈�HomB(Mp, Mp+n+1)

d
�� �i∈�HomB(Mp, Mp+n+1),

chasing by the following diagram:

(f i)

��

d �� (df i − (−1)nf i+1d)

��
((1 ⊗ f i)) d �� (d(1 ⊗ f i) − (−1)n(1 ⊗ f i+1)d).

That is, df i − (−1)nf i+1d �−→ ((1 ⊗ d) − (−1)n(1 ⊗ f i+1)(1 ⊗ d), (d ⊗ 1) − (−1)n(1 ⊗
f i)(d ⊗ 1)). Therefore, the dg algebras HomA

•(P•
U , P•

U ) and HomB
•(M•, M•) are quasi-

isomorphic. It follows that � and �′ are quasi-isomorphic. Then the dg algebras �

and �′ are derived equivalent by Corollary 3.5. By the above argument, we conclude
that the dg algebras � and � are derived equivalent. �

EXAMPLE 5.5. Let A = k[x]/(xn). Then, A is a representation-finite self-injective
algebra. Denote the indecomposable A-module by

Xr := k[x]/(xr)

for r = 1, 2, · · · , n. Theorem 5.3 thus shows that two dg algebras RHomA(A ⊕ Xr, A ⊕
Xr) and RHomA(A ⊕ Xn−r, A ⊕ Xn−r) are derived equivalent with F(Xr) = �(Xr) =
Xn−r. Take the minimal projective

P•
Xr

=: · · · −→ A
fr−→ A

fn−r−→ A
fr−→ A

fn−r−→ A −→ 0

and

P•
Xn−r

=: · · · −→ A
fn−r−→ A

fr−→ A
fn−r−→ A

fr−→ A −→ 0

of Xr and Xn−r, respectively, where fr : Xn −→ Xn by 1 + (xn) �→ xn−r + (xn) and
fn−r : Xn −→ Xn defined by 1 + (xn) �→ xr + (xn), see [20] for more details. Then, two
dg algebras Hom•

A(A ⊕ P•
Xr

, A ⊕ P•
Xr

) and Hom•
A(A ⊕ P•

Xn−r
, A ⊕ P•

Xn−r
) are derived

equivalent.
It is known that the �-Auslander–Yoneda algebras E�(A ⊕ Xr) and E�(A ⊕ Xn−r)

are derived equivalent, and they are described in terms of quivers with relations [20].
Then, we get the derived equivalence between dg algebras Hom•

A(A ⊕ P•
Xr

, A ⊕ P•
Xr

)
and Hom•

A(A ⊕ P•
Xn−r

, A ⊕ P•
Xn−r

), and their cohomology rings E�(A ⊕ Xr) and E�(A ⊕
Xn−r) are also derived equivalent.
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