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1. Introduction

Let 91 be a complex Banach algebra, possibly non-commutative, with
identity e. By a Reynolds operator we mean here a bounded linear operator
T : 91 -> 91 satisfying the Reynolds identity

[*] Tx-Ty= T{Tx • y+x • Ty)-T(Tx • Ty)

for all x, y e 91. We prove that under certain conditions the resolvent of T,
R(p, T) = (pI—T)-\ has the form

(1.1) R(P, T)x = - + \ T [z exp (- - s)] • exp ( - s)

where s = — log(e—Te) and exp y = e+y+y2j2\ + • • -.
The conditions are, roughly, that a suitable logarithm of e—Te exists in

91; and the argument then shows that T is quasinilpotent. The formula holds
in particular if the spectral radius of Te is less than 1: the logarithm —s in
question is then the sum of the usual series. The existence of \og(e—Te)
implies that 1 is in the resolvent set of Te; thus Reynolds operators for
which Te = e (as required by some authors) are excluded from the discus-
sion. A precise statement of sufficient conditions under which the formula
is valid is given in the theorem in § 3, below.

Similar formulae are also known for the resolvents of averaging opera-
tors, antiderivations and summation operators. We make some comparisons
in §4.

Since Reynolds operators exist which are not quasinilpotent and can
have infinitely many points in their spectra, a formula for the resolvent
of an arbitrary Reynolds operator must be expected to be somewhat more
complicated than (1.1). Such a formula would be of some interest, but none
is known at present.

Notation. We write S3 (91) for the Banach algebia of all bounded linear
operators on 91, with identity / , and Res (a), Sp(a) for the resolvent set
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and spectrum respectively of a e9I, and likewise for 93(31). The spectral
radius of a is

v(a) = lim Ha"!!1/".
n—M»

Throughout §§ 1, 2 and 3 of the paper, T is assumed to be a Reynolds
operator. We write

* = Te.

The proof we give of (1.1) is by verification, since this method leads
to the largest range of validity for p. On the other hand, a more natural-
seeming if longer argument is to deduce the formula by studying certain
functions of t, first finding a formula for

(2.1) /A = R(X, T)e

in terms of t, and then obtaining (1.1) in the form

(2.2) R(P, T)x = ^z+~

where

(2.3) „ * , x =
1—A l+p

This is the type of proof used in [3] and [5] to obtain the formulae mentioned
in § 4 below. It explains to some extent the form of formula obtained, and
the reason for the condition on Sp(£).

We begin by sketching this argument. Since for large A,

e ~ Tn~lt

A. n = l A

we look for a formula for Tnt, which turns out to require first a formula
for T(tn).

To this end, we observe that

(2.4) T[(n+l)t"~ ntn+1] = tn+l

for n = 0, 1, 2, • • •. Case n = 0 is the definition of t; case n = 1 is got by
the substitution x = y = e in [*], and the inductive proof of the general
statement is made by putting (n-\-l)tn—ntn+1, e in [*].

Let
v = Tt = TH.

Writing (2.4) as
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- / ' B + 1 \ = T(-\-
\n+lj

we prove easily that

(2.5) r - = • 2 2 - 3

for n = 1, 2, 3, • • •.
At this point we need some restriction upon the spectrum of t in order

to find v as a function of t. Suppose v(t) < 1. Then ||£n/w|| -> 0 as n ->• oo,
also the series ^tnj(n— \)n converges absolutely; and so (2.5) gives

oo /n+1

(2.6) v = y -

Defining log(e—t) by the series —2^=i tnln> w e C£in write this

(2.7) v = t+(e-t)log(e—t).

We now prove the following formula, valid if v(t) < 1:

for ft = 1, 2, • • •, where the y's are defined inductively by

, , 9 , * - • , ( i a " •

rl1' = 2 - 0" ^ i).
i V(*-D

yf) = J i=L ( / ^ l , * ^ 1),

and where the series converges absolutely in 91.
The proof is by induction. Case k = 1 is (2.6). Assume case k; then

oo •,(*—1) / n £m+l
- y "~1 [%)— y

n=l W \ m = ]

= iim 2 - ^ - b - 2 -r-rrj
iV-̂ -oo Ln=l » \ m=lW(W+lj/

JV /m+1 m - 1 ,,(*—1)-
i T •^ /n—1

=1m(m+l)
rT(fN\ N

TiiLJ y

m-1 v(*-l)-i

y ~x

n=i n J
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To show that (2.8) holds for the case k-\-l, and so complete the proof, it
remains to verify that

(2.10) lim -j~ y(P = 0.

This in turn is proved by induction on k. Consider the case k = 1. Since
v(t) < 1, we have ||^n||1/n = sn where en - > / , / < 1, and so \\tn\\ < /J for
large enough n, where l0 < 1. Thus the norm of the lefthand side of (2.10)
is less than or equal to

\\T\\l± QogN+y)

where y is Euler's constant: (2.10) follows, for k = 1. To prove (2.10) by
induction one can use the inequality

1 1 1

n 2n 12n2

to show that y^ < Ak(y-\-log n)h for some numbers Ak independent of n,
and then argue as above. This establishes (2.8).

REMARK. It can be verified that yf' = 0 for k > /. Then the last
equation of (2.9) becomes

For large 2 we can now write

e t °° Tk(t)

(2.11)

= 1 , 1 + y tn+l

after substitution from (2.8) and reversal of order of summation. Write,
for fixed X,

n v(*-l)

Wn = 1 ~ ~ (» = 1, 2, 3, • • •).

Then

= I + l "y fl

whence
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n — fn-1 = T
A «—1

and so

Substitution for i/>n in the last term of (2.11), leads to the formula, valid
for \k\ >v(T):

e-log(e-t) (if 1 e Res(r) and 1 = 1).

The first series is easily identified as a binomial expansion, and (making
that interpretation of the power) we have, for ^ / 1,

This is the required formula for /A. The proof of (2.2) now goes roughly
as in the proof of the theorem in § 3 below, but with c defined by

where X and p are related by (2.3). We shall not anticipate here the proof
of this second part.

The foregoing argument requires v(t) < 1, and does not give infor-
mation about Res(r). In the next section we relax the first condition,
though still requiring 1 e Res(i), and can show that Sp(T) = {0}.

3. The main theorem

Given x e 91, we define log x to be any solution y in 9( of exp y = x.
The solution is of course in general not unique. As used in § 2, log (e—t)
conforms to this definition, since it was there assumed that v(t) < 1; but
log (e—t) may also exist for v{t) S: 1, provided 1 e Res (t), for the elements
of % having logarithms lie in the maximal group of regular elements. See [4].

The following discussion avoids specifying log (e—t) by its power series
in t. First, we remark that in the context of § 2, the element s' = —log (e — t)
satisfies the two equations Ts'— s'—t, Tt = t—(e—t)s'. The second of
these is (2.7), while the first can be proved by applying T to the power
Series for s' and using (2.5), rather as in the proof of (2.8).

DEFINITION. Let .s be any simultaneous solution in 1 of the equations

(3.1a) Ts = s-1'
(3.1b) Tt = t-e(e-t)s.
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It will be shown subsequently that the solution is unique, and that
—s is a logarithm of e—t: thus the existence of a solution implies that
1 e Res (t). We no longer require the convergence of ]£ tnln or of the series
in (2.6); v (= Tt) is now given by (3.1b).

LEMMA 1. The elements s and t commute.

PROOF. Put s, e in Reynold's identity [*], and again put e, s in [*],
and use (3.1a). The result follows. //

We need a formula for T(exp as), and to this end first compute T(sn).

LEMMA 2. For n = 1, 2, • • •, we have

(a)n T(S") = (-l)*n
k=l

(b)n

PROOF. The proof is by complete induction on the two equations
simultaneously. Cases {a)x and (6)x are (3.1a) and (3.1b) respectively. For
(a)2 we can take s, s in [*] and use (3.1); for (b)2 take e, s2 in [*] and use
(«)i> (a)2. (b)i- ( N o t e t h a t T(iZ) = 2v—t2, by (2.5), and since v is given by
(3.1b), the formula for T(t2) in terms of t, s uses (b)1.)

Assume (a)x, («)B_X and {b)1, (b)2, • • •, (6)n_x, and put s, s"-1 in [*];
a rather long and tedious computation leads to (a)n. Then put e, sn in [*]
and use (a)lt (a)2, • • •, (a)n, (b)^ (b)2, • • •, (b)n_r; a similar computation
leads to (b)n. We omit the details. //

LEMMA 3. The element —s is a logarithm of e—t, that is

exp (—s) = e—t,
so that 1 e Res (t).

PROOF. Divide («)„ by (—l)nw!, and let «-> oo, noting that ||sn/M!||^0
and T is assumed continuous. //

LEMMA 4. We have

(3.2) (£—e-\-exp (as)) (a =/= —1),

T (exp (as)) = / 1+a

(3.3) isexp(-s) (a=-l).

PROOF.
oo „*:

T (exp (as)) = t+ 2 -r- ^(s*)
fc=i «

r N N (—s)n N i
= lim J (-«)*<+2 ^ - p 2(-«)*
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by Lemma 2. Assume a ^ — 1. Using the formula for the sum of the geo-
metric series and making some rearrangement, we get

T (exp (as)) = L ^ ^ ) )
l-Hc v

1 r N (—s)n"l

1 + ajV-̂ oo L n=l »! J

Lemma 3 shows that the expression in square brackets tends to 0 as N -> oo;
it is easy to verify from Lagrange's form for the remainder in the exponential
series that the last term is 0. This proves (3.2); and the proof of (3.3) is
similar (or one can use Lemma 3 and (3.1b) directly. //

For notational convenience let us write

c = exp (— s) , (p =£ 0)

so that c~l = c_p and c_x — e—t. Lemma 4 becomes

(3.4) Tcp = ~— {t~e+cp) (P =£ - 1 ) , Tc_x = sc^.

THEOREM. / / a solution s of equations (3.1a), (3.1b) exists, then T is
quasinilpotent, that is, Sp(T) = {0}; and for all x e 21 and all p # 0,

(3.5) R(P, T)x = - x + i T fx exp / - I s)l • exp / -

(3.6) ^ix+

PROOF. Define the operator Kp for p ^ 0 by

Kpx = — a; + — T(xc_p) • cp.

Clearly # „ e»(8l). Now

(3.7) (PI-T)Kpx = x+~ T(xc_p) • c - I T x - , /

To simplify the last term, write >̂ = T(xc_p), supposing a; and p given.
If p ^ — 1 , put a;c_̂ , and cp—p(l+p)-1e in [*]; using (3.4), one finds after
simplification

T[T(xc_p) • cp] = T(pcp) = P(pcp-Tx).

Substituting this in (3.7), we get

(3.8) (PI-T)Kpx = x,
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when p ^ - 1 . If p = — 1, put instead xcx and c_x + ^ = e in [*]; one finds

and then (3.7) becomes

= x—p(e—t)—pt-'rT[x(c1t-\-e)] since c_x = e—t

= x—p-\-T(xc1) since cxt-\-e = cx

= a;.

Thus (3.8) holds for all p ^ 0.
Again

(3.9) Kp(PI-T)x = x+ - T(xc^p) • cp- - Tx~ \ T(Tx • c_p) • cp.

To simplify the last term, suppose first p ̂  1 and put x, c_p—p(p—l)~1e
in [*], to find

T(Tx • c_p) • cp = PT{xc_p) — PTx • c_p.

Substituting this in (3.9), we get

(3.10) Kp(PI-T)x = x,

when p ^ 1. If p = 1, we have c_x = e—t, and to simplify (3.9) it suffices
to take x, e in [*]. Thus (3.10) holds for all p # 0. Then (3.9) and (3.10)
show that (pI—T)'1 exists, equalsKp, and so belongs to 33(91); so p e Res(T)
and (3.5) follows. The form (3.6) results from the use of the same sub-
stitutions in [*], in the reverse order. //

COROLLARY 1. The solution s of (3.1a) and (3.1b), when it exists, is
unique.

PROOF. If a solution exists, then by the theorem Sp (T) = {0}. Let s,
sx be two solutions, and write z = s—s^, then Tz = z. Since 1 ^Sp(T),
2 = 0; therefore s = st. //

COROLLARY 2. If v(t) < 1, then T is quasi-nilpotent.

PROOF. AS pointed out in the second paragraph in this section,
v(t) < 1 implies the existence of the solution s' for (3.1). //

4. Some related formulae

For comparison with these results, we list corresponding formulae for
some other classes of operators, specified by identities akin to the Reynolds
identity. The similarities, as well as the differences, are quite striking.
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In each case the operator is denoted by T and is assumed to lie in
33(21); the defining identity is stated, and is assumed to hold for all x,
ye%. We write t = Te, fA = R(/., T)e.

1° Antiderivation Tx • Ty = T(Tx • y+x • Ty). Here Sp (T) = {0},
and for all ). ^ 0,

T) T(f?)h

where /A = I/A exp {tjl).
Also T(tn) = f'^Kn+l) (« = 1, 2, • • •). See [1] and [5].

2° Summation operator Tx • Ty = T(Tx • y+x • Ty—xy). Here
Sp {T) Q {0, 1}, and for all A ^ 0, 1,

v ' ; ;. ' x{x-\)
where

Also

T(tn) = -7-7 *n+i(e+t) (n = 1, 2, • • •),

where <Pn denotes the nth Bernoulli polynomial. See [6]. (That the formula
for R(A., T)x holds for all X i=- 0, 1 can be verified, as in the proof of the
theorem in § 3; one uses (4.2), (4.5) of [6]. For x = e the result occurs in
[1], p. 17. See also [7], where a fairly complete description of the spectral
properties of summation operators is given.)

3° Averaging operator T(Tx • y) = Tx • Ty = T(x • Ty). Here

where
/A =

The spectral properties of T can be related closely to those of t, and the
formula leads to a fairly detailed analysis of Sp (7"), particularly when
21 = C(X), X compact. See [3]. Also

T(tn) = tn+1 (n = 1, 2, • • •).

4° Reynolds operator Tx • Ty = T(Tx • y+x • Ty—Tx • Ty). In the
restricted case considered in this paper, Sp(T) = {0} and
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where

fl — 1 /*(/*—1) L /<
Also

i r(*-) = *+ (.-0 log {e-t)-

(» = 1, 2, 3, • • •).
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