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Abstract
For the launch vehicle attitude control problem, traditional methods can seldom accurately identify the fault types,
making the control method lack of pertinence, which largely affects the effect of attitude control. This paper proposes
an active fault tolerant control strategy, which mainly includes fault diagnosis and fault tolerant control. In the fault
diagnosis part, a small deviation attitude dynamics model of the launch vehicle is established, Kalman filters with
different structures are designed to detect and isolate faults through residual changes, and the fault quantity of the
actuator is further estimated. In the fault tolerant control part, the following control scheme is adopted according to
the above diagnostic information: when the sensor fault is detected, the sensor measurement data is reconstructed;
when the actuator fault is identified, the control allocation matrix is reconstructed. Simulation results show that
the proposed method can effectively diagnose sensor fault and actuator faults, and significantly improve attitude
tracking accuracy and control adjustment time.

Nomenclature
FTC fault tolerant control
ACS attitude control system
FDD fault detection and diagnosis
EKF extended Kalman filter
CAM control allocation matrix
MMFD multiple model fault diagnosis
i-ACEKF the i-th actuator corresponds to the EKF
ACEKF actuator corresponds to the extended Kalman filter
SCKF the sensor corresponds to the Kalman filter
j-SCKF the j-th sensor corresponds to the Kalman filter
WSSR the weighted sum of squares of residual
BCL basic control law
CDL control distribution law
ABSA-1 actuator booster swing angle 1

1.0 Introduction
With the booming space activities in today’s world and the increasing demand for international com-
mercial launches, the development of a new generation of launch vehicles is the key to future space
development planning [1]. The attitude control system (ACS), as the core system of the launch vehicle,
has a complex structure and is prone to failure. According to statistics, ACS failures account for more

C© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society.

https://doi.org/10.1017/aer.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.14
https://orcid.org/0000-0002-7933-5297
https://orcid.org/0009-0004-1454-1964
mailto:yangshuming07@nudt.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/aer.2024.14&domain=pdf
https://doi.org/10.1017/aer.2024.14


1876 Chang-lin et al.

than 60% of all system failures [2]. Fault diagnosis and FTC technology can make full use of the fault
information through parameter adjustment, control reconfiguration and other measures so that the sys-
tem can maintain a certain control performance under the fault state to ensure the successful completion
of the mission, which has been widely used in the design of aerospace flight control systems.

The existing fault detection and diagnosis (FDD) techniques are mainly classified into three types
of methods, model-based, data-based and knowledge-based. Considering the easy availability of ACS
mathematical models and the scarcity of flight history data, model-based fault diagnosis methods occupy
the majority of the research, particularly, the methods for diagnosing by establishing observers have
attracted wide attention [3]. For example, in [4], an actuator fault diagnosis method was studied for the
design of corresponding observers for satellite attitude control systems. In [5], the fault-tolerant control
of a flight control system under sensor/actuator failure is accomplished using the Kalman filter technique
and control reconstruction approach. A sliding film controller is utilised to accomplish high-precision
tracking of the attitude with finite-time convergence in [6], which investigates an adaptive finite-time
extended state observer to estimate the brake failure of the attitude system. According to [7], a collection
of full-order linear parameter-varying unknown input observers is intended to identify, distinguish, and
estimate sensor parameters for nonlinear system failure detection.

Fault tolerant control (FTC) techniques are mainly categorised into passive fault tolerant control and
active fault tolerant control, which can ensure the stability of the system while effectively compensating
for the fault loss. Most of the existing passive FTC techniques are based on Lyapunov functions and use
theoretical methods to construct fault tolerant controllers, such as smooth mode control [8], adaptive
control [9] and backward control [10]. However, the design and derivation forms of such controllers are
too complex, and most of them are only for a single fault mode, which makes it difficult to ensure the
stability of control under extreme faults. Due to the limited onboard storage space and computational
capability, passive FTC is rarely used in practical engineering.

The main difference between active FTC over passive FTC is that the structure of this sort of con-
troller is not fixed, and the gain or structure may be altered by giving fault information via the FDD
module [11]. For example, an unscented Kalman filter based on a multimodel approach integrated with
a PD controller for active FTC was built for a precise estimate of the attitude control system [12]. To
effectively increase the rocket attitude tracking accuracy, an adaptive fault observer is built in [13],
and the sliding model fault-tolerant controller is devised on this premise. In [14], backstepping and
adaptive methods are used with fault observation information to develop an active fault-tolerant con-
troller. According to [15], a spacecraft attitude FTC is implemented using an adaptive learning observer
based on a backpropagation controller. It can be seen that this type of control method has strong auton-
omy, diversified design methods, and means, makes full use of analysis redundancy, and can reasonably
ensure the stability of the system in the event of known or unknown faults with the advantages of sys-
tem hardware and software. Additionally, the use of active FTC approaches in aircraft engineering is
mostly successful. Examples of this include the Falcon 9 rocket, which used fault diagnostic and online
reprogramming techniques to launch an engine with thrust failure during the maiden ISS flight in 2012
and complete the mission. Additionally, the Chinese CZ-5 new-generation launch vehicle successfully
achieved attitude stability control after the booster engine was turned off by using the engine control
force dynamic distribution technology [1].

In order to better realise the FTC of the system, inspired by the previous studies, this paper proposes
a multimodel fault diagnosis (MMFD) and FTC algorithm to accurately track and stabilise the rocket’s
attitude angle, taking into account a variety of typical failure modes. The following is the paper’s struc-
ture. The launch vehicle minor deviation attitude dynamics model is established in Chapter 2. In Chapter
3, numerous Kalman filters with different topologies are built to model the features of actuator and sen-
sor failure, respectively. The technique and approach for fault identification and isolation are proposed
in Chapter 4. The fault diagnostic information is used in Chapter 5 to perform FTC. Chapter 6 conducts
simulation research to validate the efficacy of the multiple-model fault diagnosis and FTC algorithm.
Chapter 7 is the conclusion.
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Figure 1. Engine layout of some strap-on launch vehicles from the bottom view [24].

2.0 Research subject analysis
This paper considers a large Chinese launch vehicle the Long March 5B, which is primarily responsible
for launching the core modules and experimental modules of the space station, and is currently the
heaviest Chinese rocket with near-Earth orbit capability, with a takeoff weight of about 837.5 tons [16].
There are eight swing angles at the tail part of the arrow body, among them, δxj1, δxj3, and δzt1, δzt3

control the pitch channel, δxj2, δxj4 and δzt2, zt4 control the yaw channel. The eight swing angles control
the roll channel of the rocket. The engine layout and swing mode are shown in Fig. 1 below.

The rocket channels are decoupled and the small deviation attitude dynamics are modeled as follows.

ϕ̈ + bϕ1�ϕ̇ + bϕ2�α + bϕ3x�δϕxj = b"ϕ
3x�δ̈ϕxj + bϕ3z�δϕzt + b"ϕ

3z�δ̈ϕzt = �MBZ1 − bϕ2
(
αwp + αwq

)
(1)

ψ̈ + bψ1 ψ̇ + bψ2 ψ − bψ3xj1�δxj1 + bψ3xj2�δxj3 − bψ3zt1�δzt1 + bψ3zt3�δzt3 = �MBY1 − bψ2
(
βwp + βwq

)
(2)

γ̈ + d1γ̇ + d3xδγ xj + d"
3xδ̈γ xj + d3zδγ zt + d"

3zδ̈γ zt = �MBX1 (3)

where �ϕ,ψ , γ ,�θ ,�α, σ , β are the deviations of the rocket’s attitude angle from each Euler angle
during flight, respectively,�δφzt,�δψzt,�δγzt are equivalent swing angle commands for booster engines,
�δφxj, �δψxj, �δγxj are the equivalent swing angle command for the core stage engine. The detailed
derivation procedure and symbolic meaning are presented in [17].

If we set,

x = [
�ϕ �ϕ̇ ψ ψ̇ γ γ̇

]
(4)

u = [
δxj1 δxj2 δxj3 δxj4 δzt1 δzt2 δzt3 δzt4

]
(5)

M = [
0 �MBZ1 − bϕ2

(
αwp + αwq

)
0 �MBY1 − bϕ2

(
βwp + βwq

)
0 �MBX1

]
(6)
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the system state equation may be written as{
ẋ = Ax + Bu + M + w
y = Cx + v

(7)

where x, y, and u are state variables, sensor measured values, and control commands, respectively, A,
B, C, and M are the state matrix; w, v are system noise and measurement noise, respectively, they are
uncorrelated Gaussian white noise, i.e.

E [w(k)] = E [v(k)] = 0 (8)

E
[
w(k), wT(j)

] = Q(k)τkj (9)

E
[
v(k), vT(j)

] = R(k)τkj (10)

where τkj =
{

1, k = j
0, k �= j

The system is sampled at the moment t(k) = kT . By discretising Equation (7), we could obtain{
x(k + 1) = F(k)x(k) + D(k)u(k) + M(k) + w(k)
y(k) = Hx(k) + v(k)

(11)

where F(k) = AT + I , D(k) = BT , H(k) = C.
Assuming the system is completely scalable, the Kalman filtering algorithm flow is as follows [18].

1) Prediction equation. The result of the previous step is used as the initial value for this calculation.
As shown in Equations (12) and (13).

x̂(k| k − 1) = F(k − 1)x̂(k − 1| k − 1) + D(k − 1)u(k − 1) + M(k − 1) (12)

P(k| k − 1) = F(k − 1)P(k − 1| k − 1)F(k − 1)T + E(k − 1)Q(k − 1)E(k − 1)T (13)

2) The Kalman gain matrix is calculated.

K(k) = P(k| k − 1)HT
[
HP(k| k − 1)HT + R(k)

]−1 (14)

3) Updates the equation.

P(k| k) = [I − K(k)H] P(k| k − 1) (15)

x̂(k| k) = x̂(k| k − 1) + K(k)
[
y(k) − Hx̂(k| k − 1)

]
(16)

Where the initial conditions are

x̂(0) = x0 , P(0| 0) = P0 (17)

The Kalman filter residual for this system is

�r(k) = y(k) − H(k)x̂(k| k − 1) (18)

When a system fault occurs, the residuals change rapidly, and statistical features can be analysed to
detect system faults. However, the above generalised Kalman filter can only identify faults and cannot
isolate the type of fault or diagnose the size of the problem. For this reason, this paper proposes an
MMFD algorithm to realise the FDD of the system and at the same time provide effective information
for the FTC of the system.
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3.0 The design of the Kalman filter set
The Kalman filter of the corresponding structure is built using the features of actuator and sensor failures.
First, the methods for detecting actuator faults and estimating parameter values are presented.

3.1 Actuator malfunction
Typical failures of launch vehicle actuators include engine swing angle jamming, actuator damage, and
loose float swing [19]. The real swing angle of the i-th actuator failure can be represented as

u′
i = ui + ei

(
δ̃i − ui

)
(19)

where ui
′ is the true swing angle value after the failure of the i-th actuator, ei is the non-zero matrix

(ei = 1, ej = 0, i �= j), δ̃iis the magnitude of the failure of the i-th actuator. The system equation of state
after the i-th actuator failure is as follows.⎧⎨

⎩
x(k + 1) = F(k)x(k) + Dremain(k)u(k) + Di(k)δ̃i(k)
+M(k) + w(k)
y(k) = Hx(k) + v(k)

(20)

where Di(k) is the i-th column of the matrix, Dremain(k) is the matrix after the i-th column of the matrix
is sets to zero.

To obtain information about the actuator failure parameters, the state variables of Equation (4) are
extended as follows,

x̄(k) =
{

x(k)
δ̃i(k)

(21)

Then the equation of state can be expressed as⎧⎪⎪⎨
⎪⎪⎩

x̄(k + 1) = G(k)

[
x(k)
δ̃i(k)

]
+ L(k)u(k) +

[
1
0

]
M(k) + w(k)

y(k) = [
H 0

] [
x(k)
δ̃i(k)

]
+ v(k)

(22)

where G(k) =
[

F(k) Di(k)
0 1

]
, L(k) =

[
Dremain(k)

0

]
.

From the system in Equation (22), the Kalman filter equation for the i-th actuator fault is obtained [20].

x̄i(k| k − 1) =
[

x̂i(k| k − 1)
δ̂i(k|k − 1)

]
(23)

x̂i(k| k − 1) = F(k − 1)x̂i(k − 1| k − 1) + Dremain(k − 1)u(k − 1) + M(k − 1) (24)

Pi(k| k − 1) = G(k − 1)Pi(k − 1| k − 1)G(k − 1)T + E(k − 1)Q(k − 1)E(k − 1)T (25)

Ki(k) = Pi(k| k − 1)HT
[
HPi(k| k − 1)HT + R(k)

]−1 (26)

Pi(k| k) = [I − Ki(k)H] Pi(k| k − 1) (27)

x̄i(k| k) = x̄i(k| k − 1) + Ki(k)
[
y(k) − Hx̄i(k| k − 1)

]
(28)
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At time k + 1, the i-th actuator corresponds to the EKF (i-ACEKF), which can be represented as

�ri(k + 1) = y(k + 1) − Hx̂i(k + 1| k) = y(k + 1) − [F(k)x̂i(k| k) + Dremain(k)u(k)

+ M(k)] = HF(k)
[
xi(k) − x̂i(k| k)

] + Di(k)δ̃i(k) + v(k + 1) (29)

This research focuses solely on the failure of a single actuator. When the i-th actuator does not fail,
the corresponding residual value follows a multivariate distribution with a zero mean; when the i-th
actuator fails, the corresponding residual value�ri(k) abruptly changes, allowing the associated failure
to be discovered and isolated.

3.2 Sensor malfunction
The platform and rate gyroscope are used to measure the attitude angle and angular rate of the carrier
rocket, respectively [21]. According to the different sensor installation positions, the measurement signal
can be expressed as

�ϕzt =�ϕ −
∑

p

Wp
′ (xT) qp (30)

�ϕs = �̇ϕ −
∑

p

Wp
′ (xs) q̇p (31)

where wp
′ (xT)is the slope of the p-th oscillation at the attitude angle measurement device installation,

wp
′ (xs) is the slope of the p-th oscillation at the velocity gyro mounting.
The main manifestations of the launch vehicle sensor failure are jamming, bias, increased drift, and

increased noise [19]. Since the structure of the sensor corresponds to the Kalman filter (SCKF) is rela-
tively simple, and the coupling between filter equations is weak. When only the sensor fails, the system
(11) can be rewritten as ⎧⎨

⎩
x(k + 1) = F(k)x(k) + D(k)u(k) + M(k) + w(k)[

yj(k)
yremain(k)

]
=

[
Hj

Hremain

]
x(k) + v(k) +

[
fj(k)

fremain(k)

]
(32)

where yj(k), fj(k) are the j-th row of the system output vector and the sensor fault vector, respectively,
yremain(k), fremain(k) are the remaining rows of the system output vector and sensor fault vector, respectively.
Hj is the j-th row of the H matrix in Equation (11), Hremain is the remaining row of the H-matrix in the
system.

According to the system in Equation (32), the Kalman filter equation when the j-th sensor fails can
be obtained.

x̂j(k| k − 1) = F(k − 1)x̂j(k − 1| k − 1) + D(k − 1)u(k − 1) + M(k − 1) (33)

Pj(k| k − 1) = F(k − 1)Pj(k − 1| k − 1)F(k − 1)T + E(k − 1)Q(k − 1)E(k − 1)T (34)

Kj(k) = Pj(k| k − 1)Hj
T
[
HjPj(k| k − 1)Hj

T + R(k)
]−1 (35)

Pj(k| k) = [
I − Kj(k)Hj

]
Pj(k| k − 1) (36)

x̂j(k| k) = x̂j(k| k − 1) + Kj(k)
[
yj(k) − Hjx̂j(k| k − 1)

]
(37)

The j-th sensor corresponds to the Kalman filter (j-SCKF) at moment k + 1 can be expressed as

�rj(k + 1) = yj(k + 1) − Hjx̂i(k + 1| k) = y(k + 1) − [
F(k)x̂j(k| k) + D(k)u(k) + M(k)

]
= HjF(k)

[
x(k) − x̂j(k| k)

] + fj(k + 1) + v(k + 1) + w(k) (38)
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Figure 2. Flowchart of launch vehicle actuator based on MMFD algorithm.

From Equation (38), if the state estimate is unbiased at the initial moment when the j-th sensor is
without failure i.e., f i = 0, the state estimated by the j-SCKF is unbiased for system (32) and the residuals
conform to the multivariate distribution with zero mean; when a fault occurs in the j-th sensor, i.e., f i �=0,
the residual has changed, so that the failure can be detected and isolated and has no effect on the residuals
of the remaining SCKF.

4.0 The multimodel fault diagnosis algorithm isolation strategy
4.1 The flow of the multimodel fault diagnosis algorithm
The MMFD algorithm developed in this research is applicable to actuator or sensor failures in any state
of the carrier rocket. In order to reduce the influence of noise on the diagnosis results, the sum of the
weighted squares algorithm is used to process the residual signal, and the formula is as follows.

Zτ (k) = 1

N + 1

∑k

τ=k−N
�r

T (τ ) �r (τ ) (39)

where N is the length of the data window. When N is increased, the robustness of the system detec-
tion increases, and the likelihood of false alarms decreases, but the system’s computation amount
increases.

The idea of a classical special observer is applied to the failure of the launch vehicle actuator, and
the principle of fault detection and isolation based on the MMFD algorithm is shown in Fig. 2, where
�ri is the residual, which is the difference between the predicted output value of the Kalman filter and
the measured value.

The fault detection and isolation process based on the MMFD algorithm is also obtained for the
launch vehicle sensor, as illustrated in Fig. 3. And the signal processing modules in Figs. 2 and 3
correspond to the noise reduction processing shown in formula (39).

In order to improve detection accuracy and reduce the rate of false alarm and false alarms, a
twofold threshold is used for fault detection. After determining the detection threshold DT and absolute
threshold, the dual threshold detection method is as follows.

1) When the weighted sum of squares of residuals (WSSR) Zτ (k) exceeds the detection threshold
for three consecutive moments, it is regarded to have a failure, i.e., Zτ (k)>DT , where k = t,
t + 1, t + 2.
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Figure 3. Flowchart of launch vehicle sensor based on MMFD algorithm.

2) When the WSSR Zτ (k) exceeds the absolute threshold at a certain time, it is considered to have
a failure, i.e., Zτ (k)>DTMax.

4.2 Isolation strategy based on multimodel fault diagnosis algorithm
The above methods can only detect and isolate a single fault. In order for the diagnostic system to be
able to detect and isolate both actuator and sensor faults, a corresponding isolation strategy needs to be
derived.

Since the weak coupling of the SCKF set, the first localisation of faults is performed using this filter
set. We can deduct from Equation (38) that several sets of SCKF residuals exceed the threshold when
an actuator fails. Considering the extremely low probability of multiple sensors failing at the same time,
the multifault isolation technique based on the MMFD algorithm is as follows.

1) When only one set of WSSR of SCKF exceeds the threshold, it indicates that the sensor is
defective and can be recognised directly.

2) When multiple sets of WSSR of SCKF exceed the threshold, it indicates that the actuator is
faulty. Then, the actuator corresponding to the EKF (ACEKF) group is utilised to achieve fur-
ther isolation and localisation. The multifault isolation strategy of the launch vehicle is shown
in Fig. 4.

On the basis of the above method, the fault detection and isolation of actuators and sensors were
accomplished. Further, richer actuator fault information was obtained by utilising EKF, laying the
foundation for FTC of the launch vehicle.

5.0 Fault tolerant control under launch vehicle failure
The ACS is broken into two parts: the basic control law (BCL) and the control distribution law (CDL).
Among them, the BCL generally includes the PD control and correction network, whose primary duty
is to calculate the rocket attitude angle information measured on the arrow during flight through the
basic control law to obtain the virtual control commands for the three channels of rocket pitch, yaw and
roll (δs

ϕ
, δs

ψ
, δs

γ
); The commands of the BCL are then assigned to the core and boost channels accord-

ing to a predetermined distribution ratio to obtain the respective equivalent swing angle commands
( δs

ϕxj , δs
ψxj , δs

γ xj and δs
ϕzt , δs

ψzt , δs
γ zt). The CDL’s purpose is to deliver comparable swing angle orders to

the servo mechanisms on the core stage and boost motors, causing each swing motor to swing to create
control torque and, ultimately, adjust the rocket’s flying attitude. Figure 5 illustrates the specific flow.
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Figure 4. Multi-fault detection and isolation strategy of launch vehicles.

Figure 5. Structure of launch vehicle attitude control system [24].

5.1 Fault tolerant control under actuator failure
The CDL redistributes the engine swing angle so that the redistributed control torque is equal to the
desired generated control torque to achieve FTC under the rocket fault, with the following mathematical
expression (the detailed derivation process is shown in Appendix A).

⎡
⎣ bϕ3x�δ

s
ϕxj + bϕ3z�δ

s
ϕzt

bψ3xδ
s
ψxj + bψ3zδ

s
ψzt

d3xδ
s
γ xj + d3zδ

s
γ zt

⎤
⎦ =

⎡
⎣ 0 −bϕ3xj2 0 bϕ3xj1 0 −bϕ3zt2 0 bϕ3zt4

−bϕ3xj1 0 bϕ3xj2 0 −bϕ3zt1 0 bϕ3zt3 0
d3x1 d3x2 d3x3 d3x4 d3z1 d3z2 d3z3 d3z4

⎤
⎦ ×

[
δx

δz

]
(40)
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Figure 6. Flow chart of launch vehicle active FTC.

where bϕ3x, bϕ3z, bϕ3xj1, bϕ3xj2, bϕ3zt2, bϕ3zt4, bψ3x, bψ3z, bψ3xj1, bψ3xj2, bψ3zt1, bψ3zt3, d3x, d3z, d3x1−4, d3z1−4 are the coefficients
of rigid body motion equations, and the detailed meanings can be seen in reference [17]. �δs

ϕxj, �δs
ϕzt,

δs
ψxj, δs

ψzt, δs
γ xj, δs

γ zt are the equivalent swing angle instruction of core stage and boost, δx = [δx1 δx2 δx3 δx4 ]T,
δz = [

δz1 δz2 δz3 δz4

]T are the swing angle of the core stage and the boost engine, as shown in Fig. 5.
It can be expressed as

M = Bu (41)

where M is the desired torque, B is the CAM.
If an actuator fails, the MMFD algorithm isolates the failure features of the i-th actuator, and this

failure information is integrated into the ACS.
At moment k, the actual swing angle after the failure of the i-th actuator is shown in Equation (19),

then the CAM at this point can be expressed as

B∗ = [Bremain Bi]

[
uremain

δ̃i

]
(42)

where Bi is the column vector of the CAM corresponding to the i-th actuator, Bremain, uremain are the
remaining columns of the CAM and the remaining rows of the actuator, respectively.

When the i-th actuator malfunctions, we may inverse solve for the magnitude of the remaining swing
angle after redistribution by the CAM, i.e.

u′ = (B∗)−1M (43)

Based on the above method, FTC under actuator failure is achieved, as shown in Fig. 6.

5.2 Fault tolerant control under sensor failure
After using the MMFD algorithm for fault detection of the launch vehicle, if only the faulty sensors are
separated, it will lead to a reduction of the monitored measurement parameters, which will not accurately
reflect the flight attitude of the rocket and affect the normal operation of the controller.

Considering that the input variables of the jth filter do not contain faulty sensor data at the moment
of fault, an accurate estimation of output and state variables can be realised. According to the system
in Equation (11), the fault data of the jth sensor is replaced with the corresponding estimated data as
shown in Fig. 6.
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Detection Threshold Absolute Threshold

Figure 7. The SCKF group diagram of the faultless state.

Fault injection is used to simulate defects during rocket flight, as shown in Fig. 6. When no fault is
present, the measured signal y is directly output; when a fault is present, the MMFD method is used to
detect and isolate faults of various fault types and to calculate the category and magnitude of the fault.
Finally, the necessary reconfiguration steps are performed to mitigate the effects of the problem and
restore system performance.

6.0 Numerical validations
To validate the efficiency of the suggested strategy, simulation analysis is performed for several launch
vehicle failure scenarios. This study proposes eight Kalman filters for the FDD of actuators, as well as
six Kalman filters for the FDD of sensors.

6.1 Faultless state
When the launch vehicle operates correctly, none of the residuals of SCKF and ACEKF weighted square
values surpass the threshold value, as seen in Figs. 7 and 8.

It can be seen that when the system does not fail, there is a certain correspondence between the core
stage engine swing angle and the boost engine swing angle, so the simulation curve of�r5 ∼�r8 is also
similar to �r1 ∼�r4, which is close to the zero-mean multivariate distribution. Due to the influence of
wind interference, noise, and other factors, some of the residual values have slight fluctuations, but none
of them exceed the set threshold.

The estimated value of the pendulum angle of the actuator corresponding to the EKF in the absence
of faults is given in Fig. 9, and the actual value in the figure is the normal state value of the system. Due
to no change in the rocket control torque, the actuator’s pendulum angle value is close to zero.

Combining Figs. 7–9, it is clear that the ACEKF may estimate the angle of each pendulum angle of
the actuator. Under fault-free conditions, the MMFD algorithm can perform health detection of the state
of the launch vehicle servo mechanism or sensor.

https://doi.org/10.1017/aer.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.14


1886 Chang-lin et al.

Figure 8. The ACEKF group diagram of the faultless state.

Figure 9. Simulation curve of core stage swing angle.

6.2 Sensor failure
Fault 1: A 0.5% constant bias fault occurred in the launch vehicle yaw angle measurement element at
the 60s, i.e., a bias fault occurred in the corresponding sensor 1. Figure 8 shows the 1-SCKF residuals
simulation curve after the bias fault occurs.

As demonstrated in Fig. 10, when sensor 1 fails, the related residuals surpass the threshold value, but
the remainder of the Kalman filter residuals is unaffected, as shown in Fig. 7. As a result, sensor FDD
is achieved.

6.3 Actuator failure
Fault 2: A jamming fault occurred in the launch vehicle actuator booster swing angle 1 (ABSA-1) at
the 60s. Figure 11 depicts the SCKF bank residual simulation curve following the jamming fault, while
Fig. 12 depicts the 5-ACEKF residual simulation curve.
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Figure 10. The 1-SCKF residual simulation curve at bias failure.

Figure 11. The SCKF group residual simulation curve at jamming fault.

Figure 12. The 5-ACEKF residual simulation curve at jamming fault.

When the actuator fails, the residuals of the SCKF exceed threshold values in four sets, with �r4

(the WSSR of the pitch angle velocity) being the most sensitive to the failure of the ABSA-1, and the
remainder of the residual curves still depicted in Fig. 7. According to the fault isolation method based
on the MMFD algorithm described in Section 4.2, the actuator has failed at this moment.

From Fig. 12, it can be seen that the 5-ACEKF residual has changed abruptly and exceeded the set
threshold value. So, the fault diagnosis result is that the ABSA-1 works normally until the jamming fault
occurs at the 60s, thus, the FDD of the actuator can be achieved too.

According to the analysis in Sections 6.1–6.3, the construction of multiple Kalman filters can effec-
tively isolate actuator and sensor faults in any mode, providing accurate information for subsequent FTC
decisions.

6.4 Launch vehicle FTC
The preceding subsection implements the launch vehicle’s fault diagnosis using the MMFD algorithm,
and the next step is to use the fault diagnostic information for FTC.

For sensor faults, the reconstructed sensor data are imported into the ACS for active FTC. Suppose a
bias fault develops in sensor 1 with bias sizes of 0.5%, 0.8% and 1%, respectively. The following Figure
13 depicts the reconstructed results of the measured data following the occurrence of the bias fault.
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Figure 13. Attitude angle deviation curve under sensor bias fault.

Figure 13 shows the deviation curves of the pitch angle simulation results from the flight program
angle, where the pitch angle simulation curve is corresponding to the measured data of sensor 1.
When the sensor data is not reconstructed, the pitch angle deviation increases with increasing bias;
after reconstruction, the pitch angle deviation decreases significantly. After a period of time when the
failure occurs, the simulation curves after reconstruction with varied bias levels are consistent and near
to the normal simulation curves because the measured values are replaced by the estimated values using
the relevant Kalman filter. It can be seen that the reconstructed sensor data can meet the requirements
of the launch vehicle ACS in terms of accuracy and stability.

For actuator faults, the fault information is brought into Equation (41), and the CDL is used to imple-
ment the redistribution of the swing angle for attitude FTC. In this paper, we conduct a control law
reconstruction using all functioning core stages and booster engines.

Assume an ABSA-1 jamming failure occurs, with jamming angles of 4◦, 6◦ and 8◦, respectively. The
following graph depicts the change in attitude angle once the stuck fault occurs.

Figure 14 shows that when a stuck fault occurs in the ABSA-1, the system can respond quickly, and
the CAM starts to reconfigure. The fault mainly affects the yaw and roll channels, which appear a slight
change at 60s, closely matching the residual variation characteristic in Fig. 11. The b: Stuck angle-8◦ in
Fig. 14(c) represents the roll angle curve of the stuck fault during the reconstruction without control law,
when the curve does not converge at this time and the angular deviation is more than 12◦. In contrast,
the swing angle redistribution can effectively compensate for the torque loss and reduce the attitude
angle deviation, whose roll angle error after reconfiguration does not exceed 0.05◦ (as shown in a: stuck
angle-8◦).

Figure 15 shows the swing angle reconstruction curve of the actuator when the boost swing angle 1
is stuck at 8◦. It can be seen from the figure that after the stuck fault occurs, both the remaining core
stage and the boost swing angle will swing substantially, mainly because the system needs to provide
more control moments to compensate for the lost control moment and the interference moment caused
by the swing angle stuck. Because the core stage and boost swing angle do not exceed the maximum
swing angle limit, the system still has a certain safety margin. It can also be seen from Fig. 15(e) that
the ACEKF can accurately estimate the fault quantity, and the angle curve of boost swing angle 1 is
consistent with the fault injection quantity.
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Figure 14. Attitude angle deviation curve under actuator jamming fault.

The following table lists the rocket roll Angle attitude control results under different control methods
when the actuator is stuck. References (22,23), whose control object is still a large Chinese launch
vehicle (Table 1).

In terms of control results, this method fully utilises the fault information to obtain the optimal control
scheme, so the attitude tracking accuracy and control adjustment time are better than other methods.
Although adaptive sliding film control can also achieve a better attitude control effect, it only models
the actuator faults accordingly. In contrast, this paper considers arbitrary faults of the system sensors
and actuators.

7.0 Conclusions
In this paper, the problem of fault diagnosis and fault-tolerant control of the launch vehicle attitude con-
trol system is investigated, and the effectiveness of the method is verified by fault simulation injection.
The main contributions are as follows.

(1) A launch vehicle ACS fault diagnosis algorithm is proposed. By analysing the fault character-
istics of actuators and sensors, a Kalman filter with different structures is established, which
realises the accurate identification of typical faults.

(2) The FTC strategy for launch vehicle ACS is designed. Based on the above fault information, the
actuator and sensor faults are automatically compensated by reconfiguring the attitude control
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Core stage swing angle 1 Core stage swing angle 2

Core stage swing angle 3 Core stage swing angle 4

Booster swing angle 1 Booster swing angle 2

Booster swing angle 3 Booster swing angle 4

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 15. Simulation curve of swing angle after actuator fault reconstruction.

law. Compared with other control methods, the attitude tracking accuracy and control adjustment
time are greatly improved, effectively ensuring the flight stability of the launch vehicle.

Further research may include the establishment of a semi-physical simulation environment to validate
the active FTC method proposed in this paper, as well as the consideration of more typical fault models
(e.g., valves, pipelines, etc.) to build observation models to improve the robustness of the ACS.
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Table 1. Comparison of rocket roll angle attitude control results

Maximum Steady-state Control adjustment Failure
Control method deviation(◦) deviation(◦) time(s) mode
PD control 18 18 50 Boost swing

Angle stuck
(8◦)

Adaptive synovial control 0.042 0.042 13.5 Boost swing
Angle stuck
(3◦)

Adaptive FTC control 7 2.5 10.2 Boost swing
Angle stuck
(8◦)

Textual control method
(MMFD + FTC)

0.043 0.032 7.3 Boost swing
Angle stuck
(8◦)
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Appendix A
In Ref. (24), a small deviation attitude dynamics model of the launch vehicle has been derived. For rocket
reconstruction design, considering that the engine swing is very small in the whole flight process, and
the motion of the arrow body is a short period process, the effects of the pendulum angle acceleration
term caused by the engine swing and the rocket centre of mass motion can be ignored. For the following
equation:

�ϕ =�θ +�α

ψ = σ + β

After simplification can be obtained,
�ϕ =�α

�ψ =�β

Then the simplified small-deviation dynamic equation of rocket around the centre of mass is,

�
••
ϕ + bϕ1�

•
ϕ + bϕ2�ϕ − bϕ3xj2�δxj2 + bϕ3xj1�δxj4 − bϕ3zt2�δzt2 + bϕ3zt4�δzt4

= �MBZ1 − bϕ2
(
αwp + αwq

)
••
ψ + bψ1

•
ψ + bψ2 ψ − bψ3xj1�δxj1 + bψ3xj2�δxj3 − bψ3zt1�δzt1 + bψ3zt3�δzt3

= �MBY1 − bψ2
(
βwp + βwq

)
••
γ +d1

•
γ + d3xj1δxj1 + d3xj2δxj2 + d3xj3δxj3 + d3xj4δxj4 + d3zt1δzt1 + d3zt2δzt2

+ d3zt3δzt3 + d3zt4δzt1 = �MBX1

where, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bϕ1 = qSMmdzl2

JZ1 V
, bϕ2 = qSMCα

n (xd − xT)

JZ1

bϕ3xj1 = kxj1Pxj

(
xRxj − xT

) + mRxj

•
WX1 lRxj

JZ1

, bϕ3xj2 = kxj2Pxj

(
xRxj − xT

) + mRxj

•
WX1 lRxj

JZ1

bϕ3zt2 = kzt2Pzt(xRzt − xT)+ mRzt

•
WX1 lRzt

JZ1

, bϕ3zt4 = kzt4Pzt(xRzt − xT)+ mRzt

•
WX1 lRzt

JZ1

�MBZ1 = MBZ1

JZ1
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bψ1 = qSMmdyl2

JY1 V
, bψ2 = qSMCβ

n (xd − xT)

JY1

bψ3xj1 = kxj1Pxj

(
xRxj − xT

) + mRxj

•
WX1 lRxj

JY1

, bψ3xj2 = kxj2Pxj

(
xRxj − xT

) + mRxj

•
WX1 lRxj

JY1

bψ3zt1 = kzt1Pzt(xRzt − xT)+ mRzt

•
W1 lRzt

JY1

, bψ3zt3 = kzt3Pzt(xRzt − xT)+ mRzt

•
WX1 lRzt

JY1

�MBY1 = MBY1

JY1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1 = qSMmdyl2

JX1 V

d3xj1 =
√

2kxj1Pxjr0

2JX1

, d3xj2 =
√

2kxj2Pxjr0

2JX1

, d3xj3 =
√

2kxj3Pxjr0

2JX1

, d3xj4 =
√

2kxj4Pxjr0

2JX1

d3zt1 = kzt1Pztr1

JX1

, d3zt2 = kzt2Pztr1

JX1

, d3zt3 = kzt3Pztr1

JX1

, d3zt4 = kzt4Pztr1

JX1

�MBX1 = MBX1

JX1

After the three-channel control instructions δs
ϕ
, δs

ψ
, δs

γ
are calculated according to the basic control law,

they are allocated to the core stage three channels and boost three channels according to the pre-designed
distribution ratio, that is, ⎧⎪⎨

⎪⎩
�δs

ϕxj = kxj�δ
s
ϕ

δs
ψxj = kxjδ

s
ψ

δs
γ xj = kxjδ

s
γ

,

⎧⎪⎨
⎪⎩
�δs

ϕzt = kzt�δ
s
ϕ

δs
ψzt = kztδ

s
ψ

δs
γ zt = kztδ

s
γ

The actuator distributes the obtained instructions to each engine according to the pre-designed control
distribution law, which can be obtained,⎧⎪⎪⎨

⎪⎪⎩

δxj1 = −δs
ψxj + δs

γ xj

δxj2 = −�δs
ϕxj + δs

γ xj

δxj3 = δs
ψxj + δs

γ xj

δxj4 =�δs
ϕxj + δs

γ xj

,

⎧⎪⎪⎨
⎪⎪⎩

δzt1 = −δs
ψzt + δs

γ zt

δzt2 = −�δs
ϕzt + δs

γ zt

δzt3 = δs
ψzt + δs

γ zt

δzt4 =�δs
ϕzt + δs

γ zt

The above is the basic control law of the arrow body when there is no thrust fault. When a fault
occurs, the original control distribution law is no longer applicable, and the engine swing angle needs
to be redistributed so that the control torque obtained after reallocation is equal to the expected control
torque, and formula (40) is obtained, the relevant symbolic meanings of the derivation process are shown
in Table 2.⎡

⎣ bϕ3x�δ
s
ϕxj + bϕ3�δ

s
ϕzt

bψ3xδ
s
ψxj + bψ3zδ

s
ψzt

d3xδ
s
γ xj + d3zδ

s
γ zt

⎤
⎦ =

⎡
⎣ 0 −bϕ3xj2 0 bϕ3xj1 0 −bϕ3zt2 0 bϕ3zt4

−bψ3xj1 0 bψ3xj2 0 −bψ3zt1 0 bψ3zt3 0
d3x1 d3x2 d3x3 d3x4 d3z1 d3z2 d3z3 d3z4

⎤
⎦ ×

[
δx

δz

]
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Table 2. The basic symbol meaning

Symbol The symbolic meaning
Sm Maximum cross-sectional area of the rocket
l The rocket length
Jx1, Jy1, Jz1 The moment of inertia of the rocket in the coordinate system around the

arrow body (O1 − X1Y1Z1)
mRxj, mRzt The core stage/boost engine mass
lRxj, lRzt The distance from the centre of mass of the core stage/booster engine to

the corresponding hinge shaft
r0, r1 The distance from the core stage/booster engine thrust operation point to

the rocket axis of symmetry
xRxj, xRzt The distance from the engine hinge shaft to the top of the rocket
xT The distance between the rocket’s centre of mass and the rocket’s tip

from the rocket’s axis of symmetry
xd The distance from the rocket’s pneumatic centre to the top of the rocket
xj1, xj2 The two core engines
zt1, zt2, zt3, zt4 The four booster engines
δxj1, δxj2, δxj3, δxj4 Core stage swing angle
δ̈xj1, δ̈xj2, δ̈xj3, δ̈xj4 Core stage swing angle acceleration
δzt1, δzt2, δzt3, δzt4 Boost swing angle
δ̈zt1, δ̈zt2, δ̈zt3, δ̈zt4 Boost swing angle acceleration
�δϕxj,�δψxj,�δγ xj Core level three channel swing angle command
�δϕzt,�δψzt,�δγ zt Boost three channel swing angle command
�δϕ ,�δψ ,�δγ Virtual swing angle instruction
Pxj, Pzt Core stage/booster engine thrust
kxj1, kxj2, kzt1, kzt2, kzt3, kzt4 Proportional coefficient of thrust reduction of each engine
MBZ1, MBY1, MBX1 Structural disturbance torque around the arrow body coordinate system

direction
V Flight centre of mass velocity
Ẇ Apparent acceleration
ϕ,ψ , γ Pitch/ yaw/ roll angle
θ Velocity dip
σ Track drift angle
ν Angle of heel
β Sideslip angle
α Angle-of-attack
αwp, αwq Additional angle of attack caused by smooth and shear winds
βwp, βwq Additional sideslip angle caused by smooth wind and shear wind
Cα

n , Cβ
n The derivative of rocket normal force coefficient with respect to angle of

attack and sideslip angle
mdx, mdy, mdz The torque coefficient corresponding to the aerodynamic torque
q = 1

2
ρ(�)Ṽ2 q: Kinetic pressure

ρ(h): Atmospheric density at altitude h
Ṽ: The velocity of the rocket relative to the atmosphere during flight can

be approximated as Ṽ = V
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