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ON THE CLARKE SUBDIFFERENTIAL OF AN INTEGRAL
FUNCTIONAL ON Lp, 1 � p Ú 1

E. GINER

ABSTRACT. Given an integral functional defined on Lp, 1 � p Ú 1, under a growth
condition we give an upper bound of the Clarke directional derivative and we obtain a
nice inclusion between the Clarke subdifferential of the integral functional and the set
of selections of the subdifferential of the integrand.

0. Introduction. It was firstly for locally Lipschitz numerical functions that F. H.
Clarke introduced the generalized subdifferential (see [2]). Then the geometrical notion of
the tangent cone was developed following Clarke [4, 9] and this enabled R. T. Rockafellar
[7, 8] to study a subdifferential of any numerical function. For integral functionals, i.e.,
for functionals of the type:

x 7! If (x) =
Z Ł

Ω
f
�
°Ò x(°)

�
dñ(°)Ò

where f is the integrand defined on the cartesian product of a measured space Ω by a
finite dimensional space E with values in R [ f1g, the study of the subdifferential was
carried out by R. T. Rockafellar in the convex case [6], and the Lipschitz case is treated,
among others, in F. H. Clarke’s book [2]. There remains the non-smooth case in general.
We fill this gap in the present paper when If is defined on a space Lp, 1 � p Ú 1.
We suppose that the integrand f satisfies a growth condition which guarantees that the
associated integral functional does not take the value �1. Under this sole condition
we show that the generalized Clarke-Rockafellar derivative of the functional integral is
bounded above by the integral functional associated with the generalized derivative of
the integrand, i.e., with R. T. Rockafellar’s notation (see [7]), at a given point x of the
domain of If :

8y 2 LpÒ (If )"(x; y) � If "(x;)( y)

Finally, with the help of this upper bound, we deduce that the elements of the sub-
differential of If at x are measurable selections of the subdifferential of the integrand f
at x:

] "If (x) ²
(

xŁ 2 LqÒ
1
p

+
1
q

= 1 : xŁ(°) 2 ] "f
�
°Ò x(°)

�
Ò ñ-a.e.

)

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42 E. GINER

1. Preliminaries. Let (XÒ jj) be a normed vector space. Given a filtered family (Mr)r

of subsets of X, we define its lower limit as follows:

lim inf Mr =
n
x 2 X : lim

r
d(xÒMr) = 0

o
Ò

with d(xÒMr) = inffjx�mjÒm 2 Mrg.
For a subset M of X and an element x belonging to its closure, the Clarke tangent cone

[2, 4, 5, 7] is defined by:

(11) T"
x M = lim inf

r!0+

x0
M
!x

r�1(M � x0)Ò

where x0
M
! x means x0 2 M, x0 ! x.

The Clarke tangent cone is a closed convex cone with apex 0.
To this geometric tangent notion corresponds a generalized derivative for numerical

functions. R. T. Rockafellar considers this case in [7]. More explicitly, if f is a numerical
function defined on X with values inR[f1g, one considers its epigraph epi f = f(xÒ r) 2
X ð R : f (x) � rg and the relation

(12) epi f "(x; ) = T"

(xÒ f (x)) epi f

enables to define the Clarke-Rockafellar generalized derivative f "(x; ) of f at the point x.
The generalized derivative defined in such a way is convex lower semi-continuous and
its subdifferential at 0 in the sense of convex analysis is just the Clarke subdifferential
of f at x:

(13) ] "f (x) =
n

xŁ 2 XŁ : hxŁÒ i � f "(x; )
o


In the present work we study the subdifferential of integral functionals defined on spaces
Lp, 1 � p Ú 1.

Throughout, we consider a measured space (ΩÒSÒ ñ) where ñ is a õ-finite measure, S
a ñ-complete tribe.

If E is a finite dimensional space, å(E) denotes the Borel tribe in E and Lp(ΩÒE) the
Lebesgue space of classes of p-integrable functions (for almost ñ-everywhere equality)
with 1 � p Ú 1. Let f : Ω ð E ! R [ f1g be a S 
 å(E)-measurable integrand,
“normal” in R. T. Rockafellar’s sense [6], i.e., such that for all ° 2 Ω, f (°Ò ) is lower
semicontinuous.

We denote by If the integral functional defined on Lp(ΩÒE) by:

If (x) = Inf
²Z

Ω
u dñÒ u 2 L1(ΩÒ R)Ò u() ½ f

�
Ò x()

�
ñ-a.e.

¦


We assume that the integrand satisfies the following growth condition:
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(C) There exists (aÒ x0) 2 L1(ΩÒ R)ðLp(ΩÒE)Ò b 2 R+ such that for all (°Ò e) 2 ΩðE :

f (°Ò e) ½ �bje� x0(°)jp + a(°)

When this condition is fulfilled the integral functional If does not take the value �1
on Lp(ΩÒE).

Condition (C) holds when If is finite at some point x0 of Lp(ΩÒE) and when the
integrand f is Lipschitz, that is:

(L) There exists k 2 Lq(ΩÒ R)Ò
1
p

+
1
q

= 1Ò such that for all ° 2 ΩÒ e1Ò e2 2 E

j f (°Ò e1) � f (°Ò e2)j � k(°)je1 � e2j

Indeed, Hölder’s inequality implies:

f (°Ò e) ½ �k(°)je � x0(°)j + f
�
°Ò x0(°)

�
½ �

1
p
je� x0(°)jp �

1
q

k(°)q + f
�
°Ò x0(°)

�


Moreover, in the case where the integrand f is convex and satisfies f = f ŁŁ, with
f Ł(°Ò eŁ) = supe

�
heŁÒ ei � f (°Ò e)

�
, the above condition is satisfied when there exists an

element xŁ 2 Lq(ΩÒE), 1
p + 1

q = 1, such that If Ł (xŁ) is finite.

Let us prove the latter assertion: xŁ being such an element, for all (°Ò e) 2 Ωð E we
have:

f (°Ò e) ½
D
xŁ(°)Ò e

E
� f Ł

�
°Ò xŁ(°)

�
;

thus Hölder’s inequality yields:

f (°Ò e) ½ �
1
p
jejp �

1
q
jxŁ(°)jq � f Ł

�
°Ò xŁ(°)

�


In the sequel, if x: Ω ! E is measurable, f (x) will stand for, by abuse of notation, the
function ° ! f

�
°Ò x(°)

�
.

2. Measurability questions. In this paragraph, we study the mathematical objects
introduced previously, i.e., the generalized derivative and the notion of subdifferential.
For that end, we need the following lemma.

LEMMA 2.1. Let M be a subset of E and let e be in the closure of M. Then

T"
e M = lim inf

n!1

e0
M
!e

n(M � e0)
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PROOF. Let S = lim inf n!1

e0
M
!e

n(M�e0); by virtue of 1.1, it is clear that T"
eM is contained

in S. Conversely, if s 2 S, let us show that for every sequence (ri)i of real numbers

converging to 0 and for every sequence (e0i)
M
! e, we have s 2 lim inf r�1

i (M � e0i). For
that matter, observe first of all that if for any real number r, 0 Ú r � 1, n is the integer
part of r�1, we necessarily have:

d
�
sÒ r�1(M � e0)

�
= r�1d(rsÒM � e0) � r�1jrs� n�1sj + r�1d(n�1sÒM � e0);

hence:
d
�
sÒ r�1(M � e0)

�
� jsj j1 � (rn)�1j + (rn)�1d

�
sÒ n(M � e0)

�
Ò

and if ni stands for the integer part of r�1
i , we have

d
�
sÒ r�1

i (M � e0i)
�
� jsj j1 � (rini)�1j + (rini)�1d

�
sÒ ni(M � e0i)

�


Now, since limi rini = 1, limi d
�
sÒ ni(M � e0i)

�
= 0, we obtain limi d

�
sÒ r�1

i (M � e0i)
�

= 0.
The proof is therefore complete.

Let M be a measurable multifunction, in the sense of [1], defined on Ω and with closed
non-empty values in E.

PROPOSITION 2.2. If x is a measurable selection of M, then the multifunction T"

x()M()
defined by

° ! T"

x(°)M(°) is measurable

PROOF. If B is the unit ball of E, we introduce the integrands

fnÒm(°Ò e) = sup
(

d
�

eÒ n
�
M(°) � e0

��
Ò e0 2 M(°) \

(
x(°) +

1
m

B
))



By applying ([1] III 39), fnÒm(Ò e) is measurable and moreover, for all ° 2 Ω and e, e0 in
E, we have

fnÒm(°Ò e) � je� e0j + fnÒm(°Ò e0)

which shows that fnÒm(°Ò ) is Lipschitz. So by ([1] III 14), fnÒm is S 
 å(E)-measurable.
Furthermore, Lemma 2.1 gives

graph (T"
x M) = (lim sup

nÒm
fnÒm)�1(0)

and ([6] 1 E) implies the announced result.

COROLLARY 2.3. Let f be a normal integrand and let x be a measurable selection of
its domain. Then f "

�
x(); 

�
is also a normal integrand.

PROOF. By 1.2 we have:

epi f "(x; ) = T"

(xÒ f (x)) epi f

and since f is normal, epi f is measurable (by [6] 2 A) and following Proposition 2.2,
T"

(xÒ f (x)) epi f is measurable. Using again ([6] 2 A) allows us to complete the proof.
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COROLLARY 2.4. Let f be a normal integrand and let x: Ω ! E be a measurable
selection of its domain. Then the multifunction ] "f (x) defined by ° ! ] "f

�
°Ò x(°)

�
is

measurable.

PROOF. Set Ω1 =
n
° 2 Ω : f "°

�
x(°); 0

�
= �1

o
. Then by Corollary 2.3, Ω1 is

measurable and for all ° 2 Ω1 we have ] "f
�
°Ò x(°)

�
= ;. For all ° 2 ΩnΩ1, f "°

�
x(°); 

�
is convex lower semicontinuous, proper and using (1.3) and ([6] 2 X) we conclude that
] "f (x) is measurable on Ω nΩ1.

3. Epi-derivative and subdifferential of an integral functional defined on Lp,
1 � p Ú 1. The main result of the present work is:

THEOREM. Let f : Ω ð E ! R [ f1g be a normal integrand satisfying the growth
condition (C). If x 2 Lp(ΩÒE) is such that If is finite at x, then for all y in Lp(ΩÒE):

(If )"(x; y) � 1f "(x;)( y)

Furthermore, we always have the inclusion:

] "(If )(x) ²
(

xŁ 2 Lq(ΩÒE)Ò
1
p

+
1
q

= 1 : xŁ(°) 2 ] "f°
�
x(°)

�
ñ-a.e.

)


We shall prove this result after having verified some intermediate results.
If M is a measurable multifunction defined on Ω with non-empty closed values

in E ð R, Lp ð L1(M) will stand for the set of measurable selections which are in
Lp(ΩÒE) ð L1(ΩÒ R). With this notation, we have the following result:

PROPOSITION 3.1. For all x 2 Lp ð L1(M) the following inclusion always holds:

Lp ð L1(T"
x M) ² T"

x

�
Lp ð L1(M)

�


PROOF. For z = (eÒ r), and z0 = (e0Ò r0) in EðR, set ö(zÒ z0) = je� e0jp + jr� r0j. Then
in Eð R, limn zn = z , limn ö(zÒ zn) = 0, so that if for a subset A of Eð R, we set

ö(zÒA) = inf
n
ö(zÒ a)Ò a 2 A

o
Ò

then
z 2 T"

aA () lim
r!0+

a0
A
!a

ö
�
zÒ r�1(A � a0)

�
= 0

Likewise, in Lp ð L1 we have: (xn) ! x , limn
R

Ω ö(xÒ xn) dñ = 0, and if we denote for
a subset N of Lp ð L1:

dö(xÒN) = inf
u2N

Z
Ω
ö(xÒ u) dñ

we have:
y 2 TxN () lim

r!0+

x0
N
!x

dö
�
yÒ r�1(N � x0)

�
= 0
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By virtue of ([6] 3 A), we have:

dö
�
yÒLp ð L1(M)

�
=
Z

Ω
inf

e2M(°)
ö
�
y(°)Ò e

�
dñ =

Z
Ω
ö
�
y(°)ÒM(°)

�
dñ

Let y 2 Lp ð L1(T"
x M) and let (rn)n converge to 0+ and (xn)

LpðL1(M)
����! x. We can always

extract from (xn)n a subsequence (xnk )k converging ñ-almost everywhere. Then we have
for all ° 2 Ω:

lim
k
ö
�

y(°)Ò r�1
nk

�
M(°) � xnk (°)

��
= 0

Furthermore, since 0 2 r�1
�
M(°) � xnk (°)

�
, we have the following bounds:

0 � ö
�

y(°)Ò r�1
nk

�
M(°) � xnk (°)

��
� jy1(°)jp + jy2(°)j 2 L1(ΩÒE ð R)

Using the Dominated Convergence Theorem we then deduce

lim
k

dö
�

yÒ r�1
nk

�
Lp ð L1(M � xnk )

��
= lim

k

Z
Ω
ö
�

y(°)Ò r�1
nk

�
M(°) � xnk (°)

��
dñ = 0

Since this is true for all sequences (xn)n and (rn)n, we get

lim
r!0+

(xn)
LpðL1(M)
�����!x

dö
�

yÒ r�1
�
Lp ð L1(M � x0)

��
= 0Ò

that is, y 2 T"
x

�
Lp ð L1(M)

�
.

PROPOSITION 3.2. Let f be an integrand. If A is the mapping on Lp ð L1, with values
on Lp ð R defined by A(xÒ u) = (xÒ

R
Ω u dñ), then:

epi If = A
�
Lp ð L1(epi f )

�


PROOF. The inclusion A
�
Lp ð L1(epi f )

�
² epi If is trivial. Conversely let (xÒ r) 2

epi If ; then If (x) � r. We consider two cases. Either f (x) is integrable or f (x) is not
integrable with If (x) = �1. In both cases, we can find u 2 L1(ΩÒ R) such that f (x) � uÒ ñ-
almost everywhere with

R
u dñ � r. We can choose then a positive integrable function ã

such that
R
ã dñ = r�

R
Ω u dñ, and we set v = u +ã. Then we have (xÒ v) 2 LpðL1(epi f )

and A(xÒ v) = (xÒ r).

DEFINITION. Let A: X ! Y be a continuous linear mapping between normed spaces
X and Y, C a subset of X. We say that A is open on C at the point x if:

8( yn)nÒ ( yn)
A(C)
�! A(x)Ò 9xn 2 C \ A�1( yn)Ò (xn) ! x

The interest of this definition lies in the following two results.

LEMMA 3.3. If A is open on C at the point x, then:

A(T"
x C) ² T"

A(x)A(C)
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PROPOSITION 3.4. The mapping A defined in Proposition 3.2 is open on LpðL1(epi f )
at every point

�
xÒ f (x)

�
where If (x) Ú 1.

Using the characterization of Clarke’s tangent cone

y 2 T"
x M () 8(rn) ! 0+Ò 8(xn)

M
! x 9( yn) ! y : 8nÒ xn + rnyn 2 M

The proof of Lemma 3.3 is easy and is left to the reader.
Let us prove Proposition 3.4. Let (xnÒ rn)n be a sequence of elements of epi If con-

verging to
�
xÒ If (x)

�
= A

�
xÒ f (x)

�
where If (x) Ú 1.

By Proposition 3.2, one can find a sequence (vn)n of integrable functions such that for
all n 2 N:

(xnÒ vn) 2 Lp ð L1(epi f ); A(xnÒ vn) = (xnÒ rn)

If we extract from (xn)n a subsequence(xnk )k convergingñ-almost everywhere to x, using
the normality of the integrand f , we deduce that

�
inffvnk Ò f (x)g

�
k

converges ñ-almost

everywhere to f (x). Since this last result is true for every subsequenceof
�
inffvnÒ f (x)g

�
n
,

we conclude that this sequence converges in measure to f (x). But, by the growth con-
dition (C) the last sequence is uniformly integrable and consequently the convergence
holds true in L1(ΩÒ R).

Since limn rn = If (x), the sequence of positive functions

vn � f (x) �
�
inf

n
vnÒ f (x)

o
� f (x)

�

converges to 0 in L1(ΩÒ R). This shows also that (vn)n converges to f (x) in L1(ΩÒ R).
Hence we have shown that (xnÒ vn) 2 A�1(xnÒ rn) converges to

�
xÒ f (x)

�
in Lp ð L1(epi f ).

The proof of Proposition 3.4 is therefore complete.
Now we are in a position to prove the main Theorem.

PROOF OF THE THEOREM. We show that if If (x) Ú 1, then (If )"(x; ) is bounded
above by If "(x;)(), which is equivalent to the inclusion:

epi If "(x;)() ² epi(If )"(x; )

But we have the string of relations:

epi If "(x;)() = A
h
Lp ð L1

�
epi f "(x; )

�i
(Proposition 3.2)

= A
h
Lp ð L1(T"

(xÒ f (x)) epi f )
i

(see (1.2))

² A
h
T"

(xÒ f (x))Lp ð L1(epi f )
i

(Proposition 3.1)

² T"

A(xÒ f (x))A
h
Lp ð L1(epi f )

i
(Lemma 3.3 and Proposition 3.4)

= T"

(xÒIf (x)) epi If (Proposition 3.2)

= epi(If )
"(x; ) (see 1.2)

which shows that epi If "(x;) ² epi(If )"(x; ).
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Let xŁ 2 ] "If (x); then in the sense of convex analysis we have xŁ 2 ] If "(x;)(0), and
since f "(x; 0) � 0 ñ-a.e., the normal convex integrand f "(x; ) verifies the hypotheses of
([6] 3 E) and, consequently, for almost every ° 2 Ω, we have

xŁ(°) 2 ] "f
�
°Ò x(°)

�

which shows the last inclusion of the Theorem.
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