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ON THE CLARKE SUBDIFFERENTIAL OF AN INTEGRAL
FUNCTIONAL ON Ly, 1 <p<oo

E. GINER

ABSTRACT. Givenanintegral functional definedonLp, 1 < p < oo, under agrowth
condition we give an upper bound of the Clarke directional derivative and we obtain a
nice inclusion between the Clarke subdifferential of the integral functional and the set
of selections of the subdifferential of the integrand.

0. Introduction. It wasfirstly for locally Lipschitz numerical functions that F. H.
Clarkeintroduced thegeneralized subdifferential (see[2]). Then the geometrical notion of
thetangent conewas developedfollowing Clarke[4, 9] and thisenabled R. T. Rockafellar
[7, 8] to study a subdifferential of any numerical function. For integral functionals, i.e.,
for functionals of the type:

X— g (X) = /Q*f(w. X(w)) du(w),

where f is the integrand defined on the cartesian product of a measured space Q by a
finite dimensional space E with valuesin R U {oo}, the study of the subdifferential was
carried out by R. T. Rockafellar in the convex case [6], and the Lipschitz caseis treated,
among others, in F. H. Clarke'sbook [2]. There remains the non-smooth casein general.
We fill this gap in the present paper when I; is defined on aspace Ly, 1 < p < oo.
We suppose that the integrand f satisfies a growth condition which guarantees that the
associated integral functional does not take the value —oo. Under this sole condition
we show that the generalized Clarke-Rockafellar derivative of the functional integral is
bounded above by the integral functional associated with the generalized derivative of
the integrand, i.e., with R. T. Rockafellar’s notation (see [7]), at a given point x of the
domain of I¢:

vy elp  (0)'06Y) < gy (Y)-

Finally, with the help of this upper bound, we deduce that the elements of the sub-
differential of I; at X are measurable selections of the subdifferential of the integrand f

ax:

a'l(¥) C (X" € Lg, %) + % =1:x(w) € an(w.x(w)).u-ae.} )

Received by the editors June 20, 1996.

AMS subject classification: 28A25, 49352, 46E30.

Key words and phrases: Integral functional, integrand, epi-derivative.
(©Canadian Mathematical Society 1998.

41

https://doi.org/10.4153/CMB-1998-008-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1998-008-5

42 E. GINER

1. Preliminaries. Let(X,|.|) beanormed vector space. Givenafiltered family (M),
of subsets of X, we defineits lower limit as follows:

liminf M, = {x € X: limd(x. M) =0},

with d(x, M;) =inf{|x —m|,m & M, }.
For asubset M of X and an element x belonging to its closure, the Clarke tangent cone
[2, 4,5, 7] is defined by:

(1.2) TM = liminf r~{(M —x),
¥ Mx
where X' 2 x means ¥’ eEM, X — X

The Clarke tangent cone is a closed convex cone with apex 0.

To this geometric tangent notion corresponds a generalized derivative for numerical
functions. R. T. Rockafellar considersthis casein [7]. More explicitly, if f isanumerical
function defined on X with valuesin RU{ oo}, one considersitsepigraphepi f = {(x,r) €
Xx R:f(x) <r}andtherelation

(1.2) epifl () = T 1o DI f

enablesto definethe Clarke-Rockafellar generalized derivativef'(x;.) of f at the point .
The generalized derivative defined in such away is convex lower semi-continuous and
its subdifferential at O in the sense of convex analysisis just the Clarke subdifferential
of f ax

(1.3) M) = {x" e X 1 (x"..) <fl(x.)}.

In the present work we study the subdifferential of integral functionals defined on spaces
Lp, 1 <p<oo.

Throughout, we consider ameasured space (Q. S. 1) where 11 is aco-finite measure, S
a u-complete tribe.

If Eisafinite dimensional space, G(E) denotesthe Borel tribe in E and Ly(Q. E) the
L ebesgue space of classes of p-integrable functions (for almost p-everywhere equality)
with1 < p < co. Let f:Q x E — RU {oo} be a S @ B(E)-measurable integrand,
“normal” in R. T. Rockafellar’s sense [6], i.e., such that for all w € Q, f(w,.) is lower
semicontinuous.

We denote by | the integral functional defined on L(Q, E) by:

l1(x) = Inf {/Q udy. u € Ly(Q. R), u(.) > f(.,x(.))u-ae.} .

We assume that the integrand satisfies the following growth condition:
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(C) Thereexists(a. %) € L1(Q. R)xLp(Q. E), b € R. suchthat for all (w,€) € QxE:

(0, €) > —ble— xo(w) +aw).

When this condition is fulfilled the integral functional I+ does not take the value —oo
on Lp(Q, E).

Condition (C) holds when I; is finite at some point xg of L,(Q, E) and when the
integrand f is Lipschitz, that is:

(L) Thereexistsk € Lo(Q. R), % + é =1, suchthatforal w € Q,e,e, € E

[f(w. &) — f(w. &)] <kw)ler —ey.

Indeed, Holder's inequality implies:
f(w. €) > —k(w)|e — Xo(w)| +f(w. Xo(w)) > —%|e— Xo(w)[P — %k(w)q +f(w. Xo(w)).

Moreover, in the case where the integrand f is convex and satisfies f = f**, with
f*(w. €) = sup,((e*. €) — f(w. €)), the above condition is satisfied when there exists an
element x* € Lo(Q. E), 5 + ¢ = 1, suchthat Ir- (x) isfinite.

Let us prove the latter assertion: x* being such an element, for al (w,€) € Q x Ewe
have:

f(w,€) > <X*(w), e> —fr (w. )(k(w));
thus Holder’s inequality yields:
1 1 y
f(w.0) = —T[el = 2] @) =1 (X ()-
In the sequel, if x: Q — E is measurable, f(x) will stand for, by abuse of notation, the
function w — f(w. X(w)).

2. Measurability questions. In this paragraph, we study the mathematical objects
introduced previoudly, i.e., the generalized derivative and the notion of subdifferential.
For that end, we need the following lemma.

LEMMA 2.1. Let M be a subset of E and let e be in the closure of M. Then

TIM= liminf n(M — €).

M
e—e
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PrROOF. LetS=Iliminf n—o0 n(M—€); by virtueof 1.1, itisclear that T/M iscontained

e/H
in S. Conversely, if s € § Ie% us show that for every sequence (r;); of real humbers

converging to 0 and for every sequence (€) LN e, we haves € liminf r-{(M — €). For
that matter, observefirst of al that if for any real number r, 0 < r < 1, nis the integer
part of r—, we necessarily have:

d(sr*M—¢)) =rtdrsM—¢) <r Yrs—n's+rtdn"'s M —€);

hence:
d(s.r '(M —¢€)) <8 |1 — (rn) Y + (rn)~'d(s.n(M — €)).

and if n; stands for the integer part of "%, we have

d(s.ri*(M — &) < Is|[1— (rm) 7| + (rim) ~*d(s. (M — €0)).

Now, sincelim; rin; = 1, lim; d(s. (M — &)) = 0, we obtain lim; d(s. r; }(M — €)) = 0.
The proof istherefore complete. ]

Let M beameasurablemultifunction, in the sense of [1], defined on Q and with closed
non-empty valuesin E.

ProPosITION 2.2. I xisa measurableselection of M, then the multifunction Tl(') M(.)
defined by

w— T

wyM(w) ismeasurable.

PrROCF. If Bisthe unit ball of E, we introduce the integrands
1
fum(w, €) = SUP {d(e. n(M(w) — e’)). ¢ e MW)N {x(w) + aB} } .

By applying ([1] 111 39), fom(., €) is measurable and moreover, for all w € Q and e, € in
E, we have
fam(w, €) < |e - e(| + fam(w. e{)

which shows that f, m(w, .) is Lipschitz. So by ([1] 111 14), fum is S ® B(E)-measurable.
Furthermore, Lemma 2.1 gives

graph (TJM) = (limsup f,m)~1(0)
n,m

and ([6] 1 E) implies the announced result. ]

COROLLARY 2.3. Letf beanormal integrand and let x be a measurable selection of
its domain. Thenf'(x(.); .) is also a normal integrand.

PrOOF. By 1.2 we have:
epif1 () = T 1o €DIf

and since f is normal, epi f is measurable (by [6] 2 A) and following Proposition 2.2,
T&f ) epi f ismeasurable. Using again ([6] 2 A) allows us to complete the proof. ]
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COROLLARY 2.4, Let f be a normal integrand and let x: Q — E be a measurable
selection of its domain. Then the multifunction o 'f (x) defined by w — 9 'f (w. X(w)) is
measurable.

PROOF. Set Q1 = {w € Q : f(X(w);0) = —oo}. Then by Corollary 2.3, Q; is
measurableand for all w € Q; wehaved ' (w. x(w)) = 0. Forall w € Q\ Qq, f](x(w);.)
is convex lower semicontinuous, proper and using (1.3) and ([6] 2 X) we conclude that
a1 (x) is measurableon Q \ Q. .

3. Epi-derivative and subdifferential of an integral functional defined on L,
1 <p < oo. Themain result of the present work is:

THEOREM. Letf:Q x E— RU {oo} be a normal integrand satisfying the growth
condition (C). If x € Ly(Q, E) issuch that I isfinite at x, then for all yin L,(Q, E):

(0106 Y) < Ltigey(W)-

Furthermore, we always have the inclusion:
T . 1,1 . T
)X C {X* € Ly(Q,E), b + 0 1:x'(w) €0 fw(x(w))u-a.e.} .

We shall prove this result after having verified some intermediate results.

If M is a measurable multifunction defined on Q with non-empty closed values
in Ex R, Ly x L1(M) will stand for the set of measurable selections which are in
Lp(Q. E) x L1(Q, R). With this notation, we have the following result:

PropPosITION 3.1. For all x € Lp x L1(M) the following inclusion always holds:
Lp x La(TxM) C Ti(Lp x La(M)).

PrOOF. Forz=(er),andZ =(€/,r')iINEX R, set p(z Z) = |le—€|P+|r —r'|. Then
iNE xR, lim,z,=z< lim, p(z z,) =0, so that if for asubset A of E x R, we set

p(z A) =inf{p(z.a).a € A}.

then
ZeTA= Iirgn p(zri(A—-a)) =0.
r—0;
ala
Likewise, in Lp x Ly we have: (X)) — X & limy fq p(X. X,) du = 0, and if we denote for
asubset N of L, x Li:
d,( N) = inf | p(x. u) d

we have:
y € TN« lim d,(y.r }(N—x)) =0.
r—0;

s N
X —X
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By virtue of ([6] 3 A), we have:

dy(y. Lp x La(M)) = /

[ inf p(Y(w)-€) du = [ p(Y(e). M) du.

LpxLi(M
Lety € Lp x Ly(T/M) and let (r,)n converge to 0, and (x») Lext1 () x. We can always

extract from (xn)n a subsequence (x», )k converging p-almost everywhere. Then we have
foral w e Q:
limp(Y(). (M) =% () ) = 0.

Furthermore, since 0 € r~(M(w) — X, (w)), we have the following bounds:

0 < p(Ye). 'RHME) =0 () ) < Wa@)P + 2] € L@, E x R).
Using the Dominated Convergence Theorem we then deduce
|i|[ndﬂ(y, rd(Lp X Li(M — xnk))> = |i|£n/Q p(y(w). (M) — xnk(w))) du = 0.
Sincethisistrue for all sequences (x,)n and (rn)n, we get

rlchr)l d, (y. r(Lp x Ly(M — x’))) =0,
LpxLq(M)
() ———x
that is, y € T}(Lp x L1(M)).
ProPOSITION 3.2. Let f beanintegrand. If Aisthe mappingon L, x L1, with values
on L, x R defined by A(x, u) = (X, Jo udg), then:
epi lf = A(Lp x La(epif)).

ProOF. The inclusion A(L, x Ly(epif)) C epils is trivial. Conversely let (x.r) €
epi ls; then 1;(X) < r. We consider two cases. Either f(X) is integrable or f(x) is not
integrablewith I;(x) = —oo. Inboth cases, wecanfindu € L;(Q, R) suchthat f(x) < u, p-
almost everywherewith fudyu < r. We can choosethen apositive integrable function o
suchthat f o dp =1 — Jo udu, andwesetv = u+a. Thenwe have(x, v) € L, x Li(epif)
and A(x, V) = (X, ). ]

DEFINITION. Let A: X — Y be a continuous linear mapping between normed spaces
Xand, Casubset of X. We say that A isopen on C at the point x if:

Y (v) 2D AK). € CNAYY). (%) — X.

Theinterest of this definition lies in the following two results.

LeEmmA 3.3. If Aisopenon C at the point x, then:

A(T|C) C TppyAC).

https://doi.org/10.4153/CMB-1998-008-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1998-008-5

ON THE CLARKE SUBDIFFERENTIAL 47

ProrosiTION 3.4.  Themapping A definedin Proposition 3.2isopenon Ly x Lai(epi f)
at every point (x, f(x)) wherel¢(x) < oo.

Using the characterization of Clarke's tangent cone

yETQM:}V(rn)HOh V(xn)ﬂx A(Yn) — Y : VN Xy + Yy € M.

The proof of Lemma 3.3 iseasy and isleft to the reader.

Let us prove Proposition 3.4. Let (X,, rn)n be a sequence of elements of epil; con-
verging to (. I¢(x)) = A(x. f(x)) where I (x) < oo.

By Proposition 3.2, one can find a sequence (vy)), of integrable functions such that for
alneN:

(X, Vn) € Lp X La(epif); A(Xn, V) = (Xn, In).-

If we extract from (xn)n asubsequence(x,, )x converging p-almost everywhereto x, using
the normality of the integrand f, we deduce that (inf {Vn,. f(x)})k converges -almost
everywheretof (x). Sincethislast result istruefor every subsequenceof (inf{vn. f(x)})n,
we conclude that this sequence converges in measure to f(x). But, by the growth con-
dition (C) the last sequenceis uniformly integrable and consequently the convergence
holdstruein L;1(Q, R).

Since lim, ry, = I(X), the sequence of positive functions

Vo — £ — (inf {vn. f()} — (%))

converges to 0 in L;(Q, R). This shows also that (v,), converges to f(x) in L1(Q, R).

Hence we have shown that (X,. V) € A~*(Xa. I'n) convergesto (x. f(x)) inLp x Ly(epif).

The proof of Proposition 3.4 is therefore complete. ]
Now we are in a position to prove the main Theorem.

PROOF OF THE THEOREM. We show that if I;(x) < oo, then (It)'(x;.) is bounded
aboveby l¢i, y(.), whichis equivalent to the inclusion:

epl Iﬂ(x;.)(') c epi(lf)T(X; )

But we have the string of relations:

AlLp x La(epif'(x))] (Proposition 3.2)

A[LP X Ll(Tgx,f(x)) epi f)} (see(1.2)

A[T(Tx.f(x))LP X Li(epi f)] (Proposition 3.1)

TawtoyALp X La(epif)]  (Lemma3.3 and Proposition 3.4)

epl lfT(x;.)(')

N

N

= Tl €0l (Proposition 3.2)
epi(l)(x;.) (seel.2)

which showsthat epi I y C epi(l)'(x; .).
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Let x* € 9'1;(x); then in the sense of convex analysis we have x* € 9 lt1(x.1(0), and
sincef’(x;0) < 0 p-a.e., the normal convex integrand f'(x; .) verifies the hypotheses of
([6] 3 E) and, consequently, for ailmost every w € Q, we have

X(w) €9'f (w, X(w))

which shows the last inclusion of the Theorem. n
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