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Introduction. For a finite group G and a non-negative integer ¢, let Pg(¢) be the
probability that a randomly chosen ordered z-tuple from G generates G. In [7] P. Hall
gave an explicit formula for Pg(7), exhibiting the latter as a finite Dirichlet series
>, ann~', with a, € Z and a,, = 0 unless n divides |G|; that is,

w(G, H)
Pg(1) = —

where p is the Mobius function of the subgroup lattice of G.

In view of Hall’s formula, we can speak of Pg(s) for any arbitrary complex number
s. The function Pg(s) is the multiplicative inverse of a zeta function for G, as described
by Mann [9] and Boston [2]. If N is a normal subgroup of G and ¢ is an integer with
Pgyn(t) # 0, we define Pg n(f) = Pg(t)/Pg/n(2); this is the probability that a z-tuple
generates G, given that it generates the G module N. W. Gaschiitz (see [5]) gave a
formula for Pg n(f), generalizing Hall’s formula. As noted in [3], although Gaschiitz
avoided explicit mention of the Mdbius function, his formula can be written as

w(G, H)
Pgn(1) = Z sl
oG |G : H|

The identity Pg(s) = Pg n(s)Pg/n(s) holds initially for sufficiently large positive
integers 7, but it remains valid as an identity in the ring of Dirichlet series. In [4],
E. Detomi and A. Lucchini gave the following factorization, which is independent of
the choice of the chief series,

P =[] [] Pr.o,

A4 1<i<8G(A)

where A runs over the set of irreducible G-groups G-equivalent to a non-Frattini chief
factor of G and §5(A4) is the number of non-Frattini chief factors G-equivalent to A4,
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given a chief series of G. The monolithic primitive group associated with 4 is defined as
L4 =(G/Cg(A))[A] if A4 is abelian and L4 = G/ Cg(A) otherwise. The factors Py, i(¢)
are defined in [4] as follows. Let L be a monolithic group, and let NV be its socle. Then

Ppi(t) = Prn(2)
and fori > 1itis

(14 gn + -+ 45w

Ppi(t) = PLn(1) — N .

where yy = |Cauwy(L/N)| and gy = [End ()|, if N is abelian and gy = 1 otherwise.

Using this factorization the coefficients of Pg(7) can be given in terms of those
of Pr socz)(f) for a monolithic group L. The present paper arose from an attempt
to describe the coefficients of Py sor)(f) by means of Py soc(x)(?) for certain almost
simple groups X. More precisely, let G be a monolithic primitive group whose socle
is nonabelian, S a simple component of soc(G) and N = N(S). Consider the almost
simple group X = N/ Cg(S). In Theorem 5 for those integers m with | S| t m we describe
the coefficients a,, of Pg soc(c)(f) in terms of those of Py socx)(?)-

It was proved in [3] that Pg(—1) is precisely the Euler characteristic of the coset
poset of G. (This was first noticed by Bouc; see [3].) In the same paper, certain divisibility
properties of Pg(—1) were studied. Our Theorem 5 provides a relationship between
divisibility properties of Ps(—1) and of Py(—1).

The following theorem, proved by Gross—Kovacs [6], will be essential to the proof
of Proposition 3.

THEOREM 1. (See [6] and 1.1.35 of [1].) Let G be a group in which there exists
a normal subgroup M of G such that M = S| x --- X S,, where {S1, ..., Sy} is the
set of all conjugate subgroups of a normal subgroup Sy of M. Write N = Ng(S1) and
K=58 x---x§8,.
(1) Let L/K be a supplement of M/K in N/K. Then, there exists a supplement H of
M in G satisfying the following properties.
(a) L=HNN)K and HNM =(HNS)) x---x (HNS,). Further, HN S| =
LNS;.
(b) Suppose that Hy is a supplement of M in G such that

(HyNN)K/K < L/K.

Then there exists k € K such that H(])‘ <H.

(c) H is unique up to conjugacy under K.

(2) There is a bijection between, on the one hand, the conjugacy classes in G of
supplements H of M in G such that HONM =(HNS;) x --- x (HNS,) and,
on the other hand, the conjugacy classes in N/K of supplements L/K of M /K in
N/K.

(3) Under the bijection above the maximal subgroups of G are in correspondence with
maximal subgroups of N/ M.

Let G be a monolithic group with soc(G) nonabelian and S a simple component
of M = soc(G). Consider the projection p : M — S. The maximal subgroups not
containing soc(G) can be classified in terms of their intersection with soc(G) as follows.
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Type a: maximal subgroups H with p(H N M) = S.
Type b: maximal subgroups H with 1 < p(H N M) < S.
Type ¢: maximal subgroups H with H " M = 1.

The next result can be found in some of the proofs of the O’Nan Scott Theorem.

PrOPOSITION 2. (See 1.1.52 and 1.1.53 of [1]). Let G be a monolithic group with
M = soc(G) = S| x --- x S, nonabelian.
(a) If H is a maximal subgroup of type b, then

HNM=MHNS) x ---x(HNS,) #1.

(b) There exists a bijection between the set of all conjugacy classes of maximal
subgroups of N/(Sy x ---x S,) that supplement but do not complement
M/(Sy x --- x S,) and the set of all conjugacy classes of core—free maximal
subgroups of N/ Cg(Sh).

(¢c) Let L/(Sy x---xS,) be a maximal subgroup of N/(Sy x---xS,)
supplementing M /(S> X --- x Sy). Then Sy x --- xS, < LN M if and only if
Cs(S1) < L. (See the proof of 1.1.53 of [1].)

In 4.3 of [8], Kovacs determines the number of conjugacy classes of maximal
subgroups with a trivial core. Any monolithic group with nonabelian soc(G) has
maximal subgroups of type b and it may happen that these are the only maximal
subgroups not containing soc(G). For intersections of such maximal subgroups we
have the following result.

PROPOSITION 3. Let G be a monolithic primitive group with soc(G) nonabelian. Let S
be a simple component of soc(G), N = Ng(S), X = N/ Cs(S) andn = |G : N|. Suppose
that H is a supplement of soc(G) in G such that all maximal subgroups containing H are
of type b. Finally denote by p(H) = (H N N)Cg(S)/ Cs(S) < X. If u(G, H) # 0, then
we have

G, H) = (X, o(H)).
Moreover |G : H| = |X : o(H)|" and |H N S| = |p(H) N Inn(S)].

Proof. Write M =soc(G) =S; x---xS,,S=S1and K =85, x --- x §,,.
Set

Q={H<G|HM =G, HNM =(HNS)) x---x (HNS,)}
and
T={K<Y<N|(Y/K)M/K)= N/K}.

We can define amapg: Q — X by p(H) = (HNN)K. Let He Q. As HM =
G, H acts transitively on the components of M and thus the subgroups H N S; are
conjugated. Hence |[H N M| = |HN S|". Let R = H N S. We have

P(H)NM=HNNKNM=HNNNMK=HNMK=HNS)x K=Rx K.
It follows that p(H)N'S = HN S and |R| = |(p(H) N M)/K|. Hence

|G:H|=|M:MNOH|=(S|:|R)"=(M/K]|:|(p(H)/KN(M/K))" =N :9(H)|".
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Now we prove that if H; € Q and H =NH,; € Q, then @(H) = Ng(H;). By
definition, it is clear that if H; < H», then

o(H)) < p(H).

Therefore (H) < Np(H;).
Let R; = H; N S. Note that NR; = H N S and hence p(H)N M = (NR;) x K. We
also have p(H;) N M = R; x K and

(N@(H)) N M = (NRHK =p(H) N M.

Since @(H) < N@(H;) and both groups supplement M/K with the same
intersection, counting orders, we get that p(H) = Np(H;). Note that  contains all
the maximal subgroups of types b and ¢. Consider now the sets

Q = {H € Q| H is an intersection of maximals subgroups of type b}
and
¥ ={Y < X | YS = X with Y an intersection of maximal subgroups}.

Let H € Q, H = NH; and H; maximal of type b. We have ¢(H) = Np(H;) and,
by Proposition 2 (¢), Cs(S) < @(H;) and so Cs(S) < @(H). Therefore, we can define a
map ¢ : Q@ — X with

p(H) = (H N N)C6(S)/ C6(S) = 9(H)/ Ci(S).

Asp(H)NS = HNS,wehave |HNS| = |p(H)NInn(S)|.

Let Y/ Cg(S) € =. By Theorem 1, there exists H € Q such that g(H) = Y. Assume
that ¥ = NY;, where the subgroups Y; are maximal in N. Then for each index i there
exists U; € Q such that @(U;) = Y;. As ¢(H) = Y < Y; by Theorem 1, we can find
some k € K with H* < U;. Hence we get H < U¥ ' and g(U* ') = V..

This means that, changing notation, we can choose for each i a subgroup U;
maximal in G such that H < U, and ¢(U;) = Y;. By Proposition 2, U; is of type b and
so it belongs to 2. We have

o(H) =Y =nY;=Ng(Uj) =o(NU)).

Using Theorem 1 we deduce that H and NU; are conjugated and since H < NU; € €,
we have H = NU; and H € Q. Therefore o(H) = 9(H)/ Cs(S) = Y/ Cs(S).

This means that ¢ is surjective. Clearly if H;, H; € Q and H; < H,, then ¢(H)) <
@(H>).

Let H be a supplement of soc(G) in G such that all maximal subgroups containing
H are of type b. Suppose u(G, H) # 0. Then H € Q. Recall that if u(G, U) # 0, then U
is the intersection of maximal subgroups of G. It follows that if H < U and u(G, U) #
0, then U € Q.

Take Hy, H, € @ such that H < H; and H < H,. Assume that ¢(H,) = ¢p(H>).
Then H < U = H| N Hyandso U € Q. Applying ¢ we get o(U) = ¢(H,) N'p(H,) and
as 9(H,) = ¢(H3), we have

o(U) =9(H) = o(H).
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We have already seen that |G: U|=|N:@(U)|" and so now we obtain
|G:U|=|G: H|| =|G: H,|. Also as U < H}, we deduce that H; = U. Analogously
U = H,. Hence H; = H>.

For any H € , ¢ is injective when restricted to {U € Q | H < U} and its image is
[Yex|oH) <Y}

Recall that the M6bius function is defined by ug(G) = 1 and

> ws(K) =0

K>H

for H < G. Using the bijection above we finally get

w(G, H) = p(X, p(H)).
O

THEOREM 4. Let G be a monolithic finite group with nonabelian soc(G). Let S be a
simple component of soc(G), N = Ng(S), X = N/ Cg(S) and n = |G : N|. Suppose that
all the maximal subgroups of G supplementing soc(G) are of type b. Then

3 WG, H) 3 XY (X, Y)

PG»SOC(G)([) = |G : H|' - (X : Y| = PX,S(nt —n+1)

Hsoc(G)=G YS=X

Moreover, denoting

PG,soc(G)(s) = Z amm™* and Py ycx () = Z bypm™?,

meN meN

we have
_ -1
damp = / b].

Note that for any simple group S, any X with S < X < Aut(S) and any transitive
permutation group P, of degree n, the group G = X : P, satisfies the hypothesis of the
theorem above.

Proof. Let M =soc(G)=S; x--- xS, S=S;and K =8, x --- x S,. Take a
subgroup H of G such that Hsoc(G) = G and u(G, H) # 0.

By Proposition 3itis u(G, H) = u(X, p(H))and |G : H| = | X, o(H)|".Let Y < X
such that Y'S = X and u(X : Y) # 0. We need to check that

{HeQ|oH) =Y} =IX:Y|"",

where €2 is the same as in Proposition 3.

By Proposition 1, the subgroups {H € Q | ¢(H) = Y} are conjugated under an
element of K and so we have to check that |K : Ng(H)| = |X : Y|"~!. Observe that
Nk (H)| is the same for every H such that o(H) = Y.

As in the proof of Theorem 1, G can be seen in a natural way as a subgroup of
X P,, where P, is the permutation group associated to the permutation action of G
over the n components of soc(G); that is P, >~ G/ N Ng(S;).

(To be more precise: first we choose a family (1, g2, ..., g,) of representatives of
the left cosets of N in G such that $% = §;. For g € G let g;g = ¢; g, where « is the

https://doi.org/10.1017/50017089507004053 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089507004053

80 PAZ JIMENEZ-SERAL

projection of g in P, and ¢}, is the projection of ¢;¢ € N. It is easy to check that the
map g — (cT,g, Ggr v €y g)o 1s @ monomorphism.)
Note that N projects surjectively on the first component. Let H € Q. As

(HNN)K < X x (X P,_1) and Cg(S)) < (HN N)K,

@(H) is the projection in the first component. Choose Y < X supplementing S and
consider

H=(Y:P,)NG.

It is easy to check that ¢(H) = Y.
Let t=(1,1%, ...,t;) € K such that t € Ng(H). For any (yi, ...,yn)o € H,
[(51, ..., yn)a]’ € H; that is,

(yltla, t;lyzlza,...)ot € H.

In particular y;t;« € Y and #« € Y. As H acts transitively on {1, ..., n}, for any i
there is some o with #;« = #; and so we obtain t € H N K. Obviously H N K € Ng(H)
and this implies that Nx(H) = H N K.Moreover HN M = (HN S}) x --- x (HN S,).
Thus |[HN K| = [HN S|" .

By Proposition 3, |[H N S| = | Y N Inn(S)|. Therefore |H N K| = |Y N Inn(S)|""!
and  |K: Nx(H)| =|K: (KN H)| =|S""1/|Y NInn(S)|""! = [Inn(S)Y : Y|""! =
X : Y|l

Hence we get

G H X: Y uX, Y
PGoce() =Y wem _ > | SICER o)

oG |G : H|! e (X : Y|y
As

wX, Y)
Pys(h= Y ===,
Yooy | X : Y|

we deduce that

wX,Y
PG,soc(G)(t) = Z ﬁ = Px,s(nt —n+1).

YS=X
From this we see that if we put

PG,soc(G)(s) = Z amm™*

meN
and
PX,socX(s) = Z bym™*,
meN
then am = I"1b;. O
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THEOREM 5. Let G be a finite monolithic group with nonabelian soc(G), S a simple
component of soc(G), N = Ng(S), X = N/ Cg(S) andn = |G : N|. Set

PG,SOC(G)(S) = Z amm_s and PX,socX(S) = Z bmm_s-

meN meN

Let m be an integer such that |S| does not divide m. If m = [I", then apm = "'p;, and
a, = 0, otherwise.

Proof. Let mbe an integer such thatm = |G : H|, |S| { mand u(G, H) # 0. Assume
that H < U < G for any maximal U of type a or ¢. Then

|G:Hl =|G:U||U: H|,

but | S| divides |G : U], so that | S| divides m, which is a contradiction. Then H can be
contained only in maximal subgroups of type b and so, by Proposition 3, u(G, H) =
w(X,p(H))and |G : H| = |X : ¢(H)|". Thus we get m = [". The same arguments as in
the previous result prove that

{HeQloH)=Y}=|X:YI"",

and so we finally have

an= ) WG H) =) XY uX Y)=I"h.

Hsoc(G)=G, YS=X,
|G:H|=m |X:Y|=l

O
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