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Brian Skyrms' investigation of dynamic deliberation began when he contrasted dy­
namical deliberation based on evidential decision theory with dynamical deliberation 
baseci on causal decision theory(Skyrmsl982). According to Skyrms, counterintuitive 
features of deliberation dynamics based on evidential decision theory undercut attempts 
by Ellery Eells and Richard Jeffrey to use dynamical considerations to argue that evi­
dential decision theory could be trusted to agree with the recommendations of causal 
decision theory in the examples that had been used to motivate causal decision theory. 

Skyrms went on to investigate the light dynamic deliberation could throw on game 
theory and on the relation between decision and infonnation. His weil known 
book,The Dynamics of Rational Deliberation, reports the interesting results he had 
obtained by 1990. Since the book, Skyrms' has begun to investigate dynamical delib­
eration more closely tied to rational belief change and to induction. He has also begun 
to investigate interpretations of dynamic deliberation that can illuminate the new 
trend in game theory to interpret equilibria as more or less stable configurations that 
can be reached as states of indecision evolve by processes that are more like evolution 
than like deliberations ofrational agents. 

1. Basics 

Skyrms models the state of indecision of an agent at a stage of deliberation as a 
probability assignment to the acts the agent is deliberating about. The utility of the 
status quo for such a state of indecision can be represented as the expected utility of 
the corresponding mixed act. At each stage of deliberation the agent calculates ex­
pected utility and then adjusts the state of indecision by a dynamical rule. The rule is 
required to: 

(a) raise the probability of an act only if that act has utility greater than the Status 
quo. 

(b)raise the sum of the probabilities of all acts with utility greater than the status 
quo. 

A rule which satisfies these conditions is said to seek the good. 
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Upon applying a dynamical rule to change her state of indecision an agent may also 
provide information feedback which changes the probabilities she attributes to the 
events on which the outcomes of her acts depend. A deliberational equilibrium for a 
given dynamical rule and information feedback system will be a fixed point in the de­
liberation process-a state which is not changed by additional stages of deliberation. 
Skyrms shows that for any continuous information feedback system a dynamical rule 
that seeks the good will lead to a deliberational equililibrium which will also count as a 
deliberational equilibrium for any other dynamical rule which seeks the good. 

A deliberational equilibrium may be a decision to perform a specific act if it con­
centrates all the probability on that act, or it may correspond to a mixed act where the 
probabilities are distributed over several acts if such a state of indecision is a fixed 
point of deliberation. We can think of the default mixed act corresponding to such a 
state as the best estimate of the probabilities if the agent were forced to choose while 
in such a state. This interpretation corresponds to the assumption that an agent's delib­
eration is effective in changing her state of indecision in the way it specifies.1 

Skyrms suggests that dynamic deliberation can illuminate the relation between 
game theory and individual rational choice theory. In a game the decisions of the 
other players are events on which the outcomes of an agent's acts depend. Skyrms 
supposes that the initial state of indecision and the dynamical rule of each player is 
common knowledge. This provides for updating by emulation as an information feed­
back, where at each stage the other players go through the calculations of a given 
player and use the resulting state of indecision as their best estimate of what that play­
er will end up doing. Skyrms shows that under these assumptions the adaptive rules 
seek the good and each player is at a deliberational equilibrium if and only if the re­
sulting acts count as a Nash equilibrium of the game. That is the act(mixed or pure) 
corresponding to the end point state of each player is a best reply to the combination 
of acts that correspond to the end point states of the other players. 

Skyrms offers dynamic deliberation as a contribution toward illuminating the very 
irnportant role Nash equilibria have played in game theory . To the extent that the 
strong common knowledge assumptions about the initial states of indecision together 
with the assumptions about the dynamical rules and feedback by emulation are rea­
sonable the result can support the claim that solutions of games played by rational 
agents ought to be equilibria. In the 80s one of the most vibrant topics in game theory 
was the idea that refinements of the equilibrium concept would lead to solutions for 
many games with multiple non interchangeable equilibria by giving reasons to sup­
pose that some of the equilibria would not count as rational. Skyrms shows that dy­
namical deliberation can lead to such refinements of the Nash equilibrium.2 

In the book Skyrms focused, for the most part, on two dynamical rules: The Nash 
dynamic, which is based on a construction that John Nash used to prove that all finite 
games have equilibria, and the Darwin dynamic based on the evolutionary games 
studied by Maynard Smith.3 1 shall concentrate on the Darwin dynamic,4 but will 
mention corresponding results for the Nash dynamic where appropriate. 

2. Noncredible Threats 

Let us see what happens when the Darwin dynamics with updating by emulation is 
applied to represent the deliberations of rational agents in two person non-cooperative 
games. Our first game illustrates the idea of non-credible threats which Selten used to 
initiate what has become a major game theoretic industry of investigating refinements 
to the Nash equilibrium concept. Here is the game in normal form. 
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Row chooser's pure strategies are C (for comply) and D (for defy) and has utilities 
represented by the numbers on the left.5 The non-credible threat is for column choos­
er to play a (aggressive) in an attempt to force row chooser to play C. The other pure 
strategy is b (to back down) which Jets Row chooser profit from playing D. 

Let our deliberation start from the initial position (.5C ,.5D) and (.5a ,.5b). This 
initial position is assumed to be common knowledge. The Darwin dynamic is 

where n is a stage of deliberation, Xis a players strategy, P0 +1(X) is the probability 
assigned to X at stage n+ 1 , P 0 (X) is the probability assigned to X at stage n , U0 (X) 
is the utility of X at the nth stage of deliberation , and U0 (SQ) is the utility of the sta­
tus quo at the nth stage of deliberation. For row chooser the utility of the status quo at 
stage 0 is 

Uo(SQ)= Po(C)Uo(C) + Po(D)Uo(D) = (.5)(.5) + (.5)Uo(D) 

At stage 0 the probabilities are those specified in the initial position. Tue utility to 
row chooser of Cis .5 whatever column chooser does. The utility of D depends on 
the probability assigned to column chooser's acts. At stage 0 these are each .5, so 
Uo(D) = (.5)(0) + (.5)(1) = .5. In this example the Darwin dynamic makes no change 
for row chooser at stage 0 , since Uo(D)=Uo(C)=Uo(SQ). 

Consider column chooser at stage 0. We have Uo(a) = .5(1) + .5(0) = .5 and Uo(b) = 
.5(1) + .5(.5) =.75 ,which makes Uo(SQ) = .625, since U0(SQ) = (.5)l.!_Q(a) + (.5)Uo(b). 
Here the Darwin dynamic makes a change. P1(b) = Po(b)(U0(b)!Uo(S(.l)) = .6. Row 
chooser is already starting to move toward b. This dynarnic leads from the initial state 
(.5C,.5D) (.5a, .5b) to the equilibrium (D,b). Here are the first few steps as probabilities 
of D and of b: 

step 0 .5D .5b 
step t .5D .6b 
step 2 .545D .692b 
step 3 .624D .782b 
step 4 .nw .871b 
step 5 .819D .94b 
step 6 .895D .982b 

The dynamics eventually settles on the equilibrium (D,b). The equilibrium (C,a) is 
not reached from this starting point. Indeed, in this game the Darwin dynarnic will 
reach (D,b) from any starting point that does not already assign probability 1 to a. We 
see here that the Darwin dynamic can act as an equilibrium selection. This is an ad­
vantage in agame like this one where there is more than one equilibrium and a fairly 
compelling reason for selecting one as most rational. 

In the extensive fonn the non-credibility of the threat can be more obvious. 
Suppose Row chooser gets to move first, and has the utilities at the top, so that the 
game tree is as follows. Row chooser is player 1, column chooser is player 2. 
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0 1 
0 .5 

This makes player 2's threat reduce to a commitment to choose 0 over .5. Skyrrns has 
provided a way of building extensive form information into the dynamics. The idea is 
that probabilities are evaluated relative to information sets governing choices. In this 
game player 2's utilities are Uo(a)=O and Uo(b)=.5,so that Uo(SO) = .5(0) + .5(.5) = 
.25. This makes the Darwin dynamics give a one step jump to b.rJ 

P1(b) = Po(b) CUo(b)!Uo(SQ)) = .5(.5/.25)=1 

In this example the Darwin dynamics exploits the information provided by the exten­
sive form to very quickly reach player 2's optimal choice which is to back down. 

The Darwin dynamic does not do such an efficient job for player 1. Here are the 
probabilities of D in the füst few stages of deliberation, .5 , .667, .8, .889 , .941 , .969, 
.983 , .991 , .995 . By stage 8 player 1 still has not settled on choosing D. This failure to 
move player 1 more quickly to D is some what at odds with the motivation Skyrrns pro­
vides for rational agents to leave room for additional stages of deliberation. 

Let us suppose that one deliberates by calculating expected utility. In the sim­
plest cases, deliberation is trivial; one calculates expected utiJity and maxi­
mizes. But in more interesting cases, the very process of deliberation may gen­
erate information that is relevant to the evaluation of the expected utilities. 
Then,processing costs permitting, a Bayesian deliberator will feed back that in­
formation, modify his probabilities of states of the world, and recalculate ex­
pected utilities in light of the new knowledge.(1990,p28) 

In the normal form game when player 1 changes the probabilities assigned to C and 
D this can provide information (in the feedback by emulation) which changes the 
probabilities assigned to player 2's playing a or b. In the extensive form example, 
however, player 2's choice of bis fixed after the first stage, so that player 1 's later 
stages of deliberation are not providing any feedback about what player 2 may be ex­
pected to do.7 This suggests that Darwin would need tobe supplemented by some 
rule for shortcutting in such examples if it is to model dynamic deliberation appropri­
ate to rational deliberators. 

3. An lncorrect Recommendation 

In the non credible threat example the Darwin dynamics gives what is intuitively 
the correct answer from almost any starting point I have criticized its failure to short­
cut stages of deliberation when the motivation Skyrrns has offered for having addi­
tional stages is rnissing, but we have not yet seen any grounds for supposing that it 
would lead to a recommendation that would not be rational. I shall argue that the 
game we are about to consider does raise such worries. In order to make this case I 
shall contrast the dynamic deliberation approach with a different approach based on a 
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reconstruction of a suggestion by Von Neumann and Morgensternmade possible by 
applying causal decision theory to game theory. 

Here is the game in extensive fonn.8 Player 1 has pure strategies A, Land R, and 
has the utilities at the top. Player 2 chooses at infonnation set 2, which leaves open 
whether Player 1 has played L or R . 

. 6 

.6 

r 
.2 
.6 

Let us suppose, as before, that the initial states of indecision distribute probabilities 
equally over the alternative pure strategies. In this case we have (1/3 A , 1/3 L, 1/3 R ) 
and (1/2 /, 1/2 r ). Consider player 1. We have Uo(A) = .6, while Uo(L) = .5(1) + .5(0) 
= .5 and U0(R) = .5(.8) + .5(.2) = .5 as weil. Uo(SQ) for player 1 is (1/3)(.6) + 
(1/3)(.5) + (113)(.5) = .5333. The Darwin dynamic gives P1(A)=.375 and gives P1(L) 
= .3125 = P1 (R). An important thing to notice here is that player 1 moves toward A, 
but keeps dividing the rest of the probability evenly between Land R. 

Consider player 2. We have Uo(/) = (1/3)(.6) + (1/3)(.4) and Uo(r) = (1/3)(.6) + 
(1/3)(.4) + (1/3)(.6), so that land r have equal utility as long as the probabilities as­
signed to Land R are equal . So long as these probabilities are equal the utilities of l, r 
and the status quo will be equal for player 2 so that player 2 will stay at the initial 
state of indecision which assigned .5r and .51. The result of applying the Darwin dy­
namics to this game from this starting point will be that player 2 stays at (.5r,.51), 
while player l converges to A. The pair (A ,(.5r, .5l)) is a Nash equilibrium which, 1 
shall argue, is not a solution which rational players should opt for in this game. 

Consider yourself player 1 facing this game. You do not yet know what the solu­
tion to this game is, but, initially at least, you believe that there is a rational solution 
which each of you will end up doing your parts to achieve. You are now in a position 
to apply an indirect argument suggested by Von Neumann and Morgenstern to test 
your strategies as candidates for your part of such a solution.9 Under the assumption 
that some strategy Xis your part ofthe solution you can assume that the other player 
will figure this out and will make a best reply to it. !et P be a best reply prior just in 
case P(Y /X)=O unless Y is a best reply to X. 

If on the assumption you were going to do X another act X' would be evaluated as 
better than X , then it would not be rational to commit youself to doing X. We can de­
fine ratifiability as a requirement on any act worthy of choice.10 

Xis ratifiable iff Ux(X) ~ Ux(X') for all X', 

where Ux(X') is your evaluation on the assumption that you will do X of the ulility 
you would expect ifyou were to do X' instead.11 Now we have the apparatus to apply 
the Von Neumann indirect argument as a test. Any strategy will fail this test unless 
some best reply prior will ratify it. 
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Consider strategy R for player 1. The unique best reply is for player 2 to play r. 
This mak:es UR(R) = .2 for any best reply prior, but UR(A) = .6 whatever player 2 
does, so R fails the test. Consider L. VdL) = 1, which is at least as high as UL(X) for 
any alternative X, so L passes. In order to evaluate A we need to consider U A(L). If 
player 1 were to do L instead of A this would put player 2 into the information set, 
which player 2 would not get to if player 1 did A. The evaluation of UA(L) depends 
on what player 2 can be expected to assume at the information set. The only strategy 
of player 1 which meets the information set and also passes the test is the pure strate­
gy L. f2 Player 1 can expect player 2 to be sure that L was played, therefore U A (L) = 1 
> .6 = U A (A) , which mak:es A unratifiable. 

1 have argued that this game has (L,l) as the unique solution that rational players 
would reach. We have seen that the Darwin dynamic will not reach this solution from 
the starting point (1/3 A, 1/3 L, 1/3 R) and (.5/,.5r).13 lf the dynamical deliberation 
approach to game theory is to recover this solution with the Darwin (or Nash) dynam­
ics, then some way must be found to argue that this initial position we started from is 
not one that rational agents would use. Such a critique of starting points, however, 
would be more like the classical approach to game theory where one uses reasoning 
about the game to generate one's probabilities about what the other player will end up 
doing rather than starting out with an initial assignment of such probabilities as given. 

4. Information Feedback 

In the book Skyrms explores interesting generalizations of Good 's theorem that 
Bayesian deliberators will evaluate an opportunity to leam before choosing as optimal 
so long as the learning is cost free.14 This helps motivate dynamic deliberation so 
lang as later stages of deliberation can be cost free sources of information. Skyrms 
also provides an interesting chapter on dynamic coherence which ends with the fol­
lowing passage: 

The question of how learning should be modeled in dynamic deliberation is a 
delicate question, because it is computation, not perception, that generates the 
new information. This is the realm of what I. J. Good (1950, 1983) called "dy­
namic probability". Tue evidence could be modeled as data for conditioning in a 
very big space, but this does not square weil with the emphasis of the approach 
on real-time computation and procedural rationality. lt is possible--0n the basis 
of such considerations-to doubt whether any sort of Bayesian approach to 
these situations is possible. Such worries should be eased by coherence results 
for quite general black-box learning models. The qualitative features of general­
ized coherent updating can serve as a touchstone for dynamic deliberation, with­
out irnposing unrealistic excess structure on the model. (1990 p. 125) 

Let us explore the information feedback in the examples we have been considering. 

The immediate irnpact of an agents calculation at a stage of deliberation govemed 
by the Darwin (or the Nash) rule is to change the assignments of probability to her 
own acts. This suggests that the information about the other players acts to be fed 
back ought to fit Jeffrey's rule for generalizing conditionalization where the input is 
the change in the probability assignrnents over the partition of the agent's own acts.15 
Consider steps 2 and 3 of the dynamic deliberation in example 1. The output of stage 
2 was to assign .545D and .692b. lf the assignment tob is to agree with what player 1 
could learn about player 2 by using Jeffrey's rule to update on the input consisting of 
the new assignments to 1 's own acts C and D then we have 
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.692 = .455(y) + .545(x), 

where y and x are resi1ritively P(blC) and P(blD), which according to Jeffrey's rule 
should remain fixed. 6 From stage 3 we have 

.782 = .376(y) + .624(x). 

On the assumption that y and x do not change these give two equations for x which 
together yield x=l.2 which is impossible. 

The Darwin dynamic with feedback by emulation does not satisfy the require­
ments for Jeffrey's generalization when the origin of the shift is to be the assignments 
to the partition of the agent's pure acts. Skyrms suggests that the coherence results for 
black box leaming models can ease worries about information feedback in dynarnical 
deliberation. In order to apply this suggestion to the stages of Darwin deliberation 
with feedback by emulation it would appear that at each stage the output probabilities 
about the other player's acts have tobe treated as the appropriate result for a black 
box that takes the new assignments to the agents own acts as input. Such more fine 
grained specification as is suggested by Jeffrey's rule does not seem possible.17 

Skyrms has begun to study dynamic deliberation based on rules where the agents 
treat each round of deliberation as an inductive trial(Skyrms 1991). Here is his char­
acterization of how the players update their starting points. 

Each player then calculates the other player,s expected utilities, identifies the 
act with highest expected utility and counts that act as exemplified on the first 
trial to getan updated probability over the other player's acts. Each player can 
now emulate the other player's calculation in this process to find the other 
player's updated probability. This process is then repeated, generating a tra­
jectory in the joint belief space of the players.(p227) 

Here is his characterisation of updating by Camap's rule C. 

Suppose that Column has m possible acts, Al ····.Am . After N trials in which act 
Ai has been chosen n times, 

pr(Aj) = (n + l)/(N + m) 

This natural generalization of Laplace's rule sets the acts as equiprobable on no 
evidence and updates using a simple frequency count.(p229) 

He proposes to award ties with fractional successes proportional to the tied strategies 
current probabilities and summing to one. (p227note3, p229note4) 

Let us apply this to the our game from section 3. The equiprobable starting point is 
the same one we used to try out the Darwin dynamic. A wins on the first trial for play­
er 1 and l ties with r for player 2. This inductive dynamic leads right to the same bad 
equilibrium (A , (.51, .5r)) that the Nash and Darwin dynarnics got to from the same 
starting point. 

Skyrms suggests that one may want to consider decision-makers who do not start 
with such symmetry based priors(p230). The most general version of such inductive 
models he discusses is based Dirichlet priors. 
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If there are m possible outcomes then the Dirichlet distribution is characterized 
by positive parameters a 1, ...• CXm . Take ß = a 1 + ... +Uni. Then if n is the 
number of occurrences of Ai in N trials we get the general rule 

pr(Aj) = (n + <Xj) / (N + ß) 

If the C1j are all unity we get (C); if they are all equal we get Carnap's continu­
um (C C). (p231) 

To get to the rational equilibrium (L , /) in this game with an inductive rule we need 
a starting point that makes P(L)>P(R) or that makes P(l) > .6. Even with inductive de­
liberation the dynamical approach needs to be supplemented with some way of 
putting appropriate constraints of what can count as reasonable initial assignments of 
probabilities to what rational agents can be expected to do in this game. 

Skynns offers some general results about inductive deliberation that could be ex­
ploited to suggest a fairly interesting method for two person normal form games. An 
accessible point is one that can be reached as a limit by inductive players starting 
from some completely rnixed initial state. 

(1) Accessible points are Nash equilibria.(p235) 

This suggests that an agent who is in a game with such a deliberator can ignore non­
Nash strategies.18 On the left is the Kreps Wilson game in normal form.1g On the right 
is the result of deleting pure strategy R which is not part of any equilibrium strategy . 

I r 
A (1,1) (1,1) 
L (3,1) (-2,0) 
R (2,0) (-1,1) 

A 
L 

I r 
(1,1) (1,1) 
(3,1) (-2,0) 

Note that once R is deleted, I weakly dominates r. Skynns gives another general result 
which can be applied to the reduced game. An admissible act is one which is not 
weakly dominated. 

(2) Accessible points give probability only to admissible acts.(p. 236) 

This supports dropping r, which leaves the good equilibrium (L,l) as the only reason­
able solution.20 

5. Evolutionary Game Theory 

Skynns' results about chaos in even quite simple evolutionary games are relevant 
to the recent trend ,among some economists,to treat equilibria in games as relatively 
stable configurations reached by processes more akin to evolution than to deliberation 
by rational agents. One response would be to take up, for games modelling interac­
tions among human decision makers, the lessons Skynns draws for evolutionary 
games. These would include embracing concepts from Chaos Theory such as that of 
strange attractor as of potentially more interest than rnore traditional game theoretic 
concepts such as that of equilibrium. lt may,however, be instructive to investigate the 
extent to which the chaotic results are due to the extremely limited rationality of the 
dynamical deliberations at work. 
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A beginning of such investigations is to note that when the Carnap inductive dy­
namic is applied to the game of Skyrms' example 7 with the parameter a set at 5, the 
value at which chaos starts to show up with the Taylor - Janker dynamics from evolu­
tionary game theory, the inductive dynamic goes right to an equilibrium which is 
completely missed by the evolutionary dynamic.21 Even this relatively simple minded 
inductive rule is enough to avoid the Chaos faced by the evolutionary dynamic. This 
suggests that more work is needed before the significance of results about evolution­
ary games for games modelling interactions among human agents will become clear. 

Notes 

lSkyrms expresses some discomfort with the classical interpretation of mixed acts 
in game theory, which requires that an agent turn her choice over to a random de­
vice(l 991 p225). One feature he has found attractive about dynamics based on induc­
tive leaming rules is that mixed strategy equilibria can be quite naturally interpreted 
as equilibria of belief along the lines suggested in Aumann 1987. 

2Skyrms also has interesting ideas about how dynamic deliberation can illuminate 
what happens when the classical common knowledge constraints are weakened in re­
peated games. His discussion of good habits contributes to the growing literature on 
conditions under which rational agents can cooperate in iterated prisoner's dilemmas. 

3See Skynns 1990 p. 30,31 for the Nash dynamic, p. 37,38 for the Darwin dynamic. 

4Skyrms(1990 pp. 36,37)argues that the Darwin dynamic is more consistent with 
Bayesian updating because it does not change assignments of probability 1 or 0. 

5This is a version of agame motivated by Puccini 's opera Gianni Schicchi in 
Harper 1991 pp. 268,269. The Darwin dynamic requires non-negative utilities. 
Skyrms suggests that one can normalize to a scale such as [O,l]in transforming games 
with other utilities. The renormalization of the version of this game in Harper 1991 
would have utilities (.75,1), (0,0), and (1 ,.75) instead ofthe (.5,1), (0,0) and (1,.5) 
used here. 

6This also happens with the utilities (.75,1), (0,0) and (1,.75) that correspond to the 
version ofthe game in Harper 1991. 

70nce the probability of b has reached 1 , player 1 can use the general result that 
Darwin dynamics will not change assignments of 1 or 0 to know that later stages of 
deliberation will not provide any information about what player '.t. may be expected to 
do. 

8This is agame from K.reps and Wilson 1982 that was discussed in Harper 1991. 
The utilities have been transformed to the interval [0,1] in accordance with Skyrms' 
recommentation for applying the Darwin dynamic. 

9for a more detailed account of this type of analysis of the game, see Harper 1991. 
See Harper 1989 for an account of how this test explicates Von Neumann and 
Morgenstem's indirect argument, for references to Von Neumann and Morgenstern , 
and for a defense of their conclusion that solutions should be equilibria. 

lORichard Jeffrey (1983) introduced the idea of ratifiability in one of his attempts 
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to make evidential decision theory yield the same recommendations as causal deci­
sion theory. See Harper (1986) for an account of some of the advantages of formulat­
ing ratifiability with the resources made possible by causal decision theory. 

llCausal decision theory allows the following definition. 

Ux(X') = Lj P((XO-t Bi)I X) U(X',Bj), where the Bi's are the outcome deter­
mining events , (XO-t Bi) is the subjunctive conditional 

If I were to do X' it would be the case that Bi, 

and U(X',Bj) is the utility of doing X' when event Bi obtains. Game trees pro­
vide information that fixes the evaluation of these subjuctive conditionals 
(Harper 1991). 

12Any mixed strategy which assigns positive probability to R will also fail to be 
best reply ratifiable. This is shown by a slight variation on a calculation given on 
p .. 287ofHarper1991. 

13The Nash dynamic also goes to the wrang equilibrium (A,(.5/,.5r)) from this 
starting point. 

141990 pp. 87-106. This chapter also reports Skyrm's discovery of an anticipation 
ofGood's theorem in a manuscript ofFrank Ramsey's. 

15Skyrms has provided dynamic Dutch book arguments to defend Jeffrey's rule 
when the input from a learning experience is correctly represented by changing the 
probability assignments over a given partition (pp. 119-121,and Skyrms 1987) 

16Jeffrey's rule assumes that an agents conditional beliefs on elements of a parti­
tion do not change when the new assignments over that partition count as the origin 
for the shift. Where the origin of a shift is the probabilities assigned to a partition 
A1, .. ,A0 the new probability tobe assigned to a proposition Xis 

where Po is the agent's old conditional probability. Here is the result of applying 
Jeffrey's rule to represent player l 's stage 3 assignment to player 2's playing b as the 
out come of a Jeffrey rule shift where the input is the new assignments to player l 's 
own pure strategies C and D generated by the Darwin dynamic calculation at that stage. 

The P3's are player 1 's beliefs after the stage three calculation and the P2 are the con­
ditional beliefs before that stage. 

17This suggests that for such dynamic deliberation the new probability assigned to 
your acts is treated as a single default mixed strategy that you are considering directly, 
rather than as a new assignment over the partition of your pure acts. 

18In games where the only strategic information is that provided by the normal 
form, the strategies which survive the best reply ratifiability version of the 
vonNeumann Morgenstern test are exactly the strategies which are part of some equi­
librium (Harperl991 , p. 268) 
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19Here we are using the original Kreps Wilson utilities. The extensive form ver­
sion we used above had the utilities transformed to the interval [0,1) in order to satisfy 
Skyrms' recommendation for applying the Darwin dynarnic. 

20-Jnis procedure of first dropping all non-Nash strategies and then deleting weakly 
dominated strategies was discussed in Harper1991. In more complicated games the 
deletion of weakly dominated strategies is done in stages where at each stage all weakly 
dominated strategies are deleted. This avoids the notorious problem of order depen­
dence when the weakly dominated strategies are deleted one at a time. Somewhat sur­
prisingly it turns out that this procedure for normal form analysis, which gave the cor­
rect result in the normal form game used by Myerson to motivate proper equilibria , 
also gives the correct result in all the other games treated in Harperl 991 including the 
ones where the analysis given turned on the extensive form representation. 

21Skyrms was kind enough to run the Camap dynamic on this game with his com­
puter when 1 asked him what the inductive dynarnics would do in games where he had 
produced chaos with the Taylor - Jonker dynamic. 
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