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Multivariate statistical analysis (MVSA) methods have been shown to yield many advantages in 

analytical instrumentation techniques because they offer an objective means to find complex 

information correlations in data that are not obvious to an observer and they maximize the 

discrimination of low-level signals from noise. Because they are objective in nature, the methods 

hold promise for automated data mining, especially in large data sets. Atom probe tomography 

(APT) hardware improvements in the past decade have shifted the bottleneck from data collection to 

data analysis. It is imperative, therefore, that methods are developed to automate analysis of the 

entire APT data set. MVSA has been applied successfully to other types of large 3D tomographic 

data sets including EDS [1] and ToF-SIMS [2]. We report, here, the adaptation of those techniques, 

in particular multivariate curve resolution (MCR), to APT data. 

 

Analyzing APT data with MVSA techniques poses a number of challenges. Unlike typical analytical 

images, there is no “natural” voxel size as the volumes probed correspond to individual atoms. 

Careful attention must be paid to how the data are aggregated prior to MVSA to optimize the 

tradeoff between spatial resolution and sensitivity. Raw APT data also contain non-specific 

background signal, and when binned, are multinomially distributed due to compositional 

inhomogeneity on the nanometer scale. Properly accounting for these types of noise is critical for 

achieving good results with MSVA. Finally, the presence of multiple charge states corresponding to 

single atomic species requires analysis at higher mass spectral resolution leading to yet larger data 

sets. In the current work, we use improved numerical algorithms that scale better with size yielding 

substantial performance gains over tools previously used to analyze large data sets [1, 2]. 

 

A model system was simulated to validate our MVSA approach. A 97:3 Si:FeCu matrix with 

spherical FeCu precipitates of 4 nm diameter was created as shown in Fig. 1. While not meant to 

simulate a real material, the model captures the salient features of real APT data: spatial and spectral 

overlap, and multinomially distributed ions. This allows us to test the method against a known 

answer, and the MCR-derived components correctly identified both phases. In a second example, a 

multiphase nickel-based superalloy was analyzed as shown in Fig. 2. The alloy phases were readily 

discovered by the analysis and significant carbon segregation (green) was found at the interphase 

boundary.  The last example is a polycrystalline silicon specimen. As shown in Fig. 3, P segregation 

to the grain boundary is just discernable in the atom map with a signal-to-noise ratio of about 2. 

MVSA is able to clearly identify the voxels with elevated P content. Interestingly, with standard 

Poisson weighting [3] MCR cannot discover this component at the same level of spatial aggregation. 

 

We are demonstrating for the first time that MVSA has several important applications to APT data. 

We can envision fully automated analyses that report phase statistics for size, orientation, 

composition, segregation, and volume fraction. These algorithms are fast and run on a desktop 

computer in seconds. Commercial versions of these algorithms in data analysis routines are planned. 
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FIG. 1. 4 nm FeCu particles in a 97:3 Si:FeCu matrix at 0.5 nm resolution. a) model, b) MCR-

estimated abundances for the particle component; detector efficiency was 37%. c) MCR component 

mass spectra. 

   
FIG. 2.  Nickel-based superalloy a) Component 1 is a nickel-rich phase. b) Component 2 is a carbon-

rich region at the interphase boundary. c) Two-phase image showing segregation at the boundary. 

   
FIG. 3.  Polysilicon doped with phosphorus. a) Phosphorus atom map. b) MCR-derived abundances 

for the phosphorus-containing component showing the grain boundary. c) Component mass spectra. 
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