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1. Introduction

Let X be a smooth projective variety over a ¢eld k. The structure of the Chow groups
CHi�X � of codimension i-cycles modulo rational equivalence is almost entirely
unknown when iX 2. However, when k is a ¢eld of arithmetic interest, there are
far-reaching conjectures about what these groups should look like. In particular,
the conjectures of Bloch [Bl1] and Beilinson [Be] predict that when k is an algebraic
number ¢eld of ¢nite degree over Q, these groups are ¢nitely generated, and their
ranks should be interpreted as the order of vanishing of appropriate L-functions.
However, the structure of these groups over complete topological ¢elds is not as
well-understood, even conjecturally. The case of a p-adic ¢eld (¢nite extension
of Qp) is intermediate between an algebraically closed ¢eld such as C and an
algebraic number ¢eld.

Over a p-adic ¢eld or C, the torsion subgroup of CHi�X � is understood to some
extent, at least when i � 2 or i � dim�X � (see [CT1] and the references therein). This
is accomplished by relating the torsion to an ëtale cohomology group, using fun-
damental results in K-theory such as the Merkur'ev^Suslin theorem. One would like
to use similar techniques to control the groupsCHi�X �=n in these terms (n 2N). This
works well for divisors because the cycle map to ëtale cohomology:

CH1�X �=n! H2�X ;Z=n�1��
is injective, as one can easily deduce from the cohomology of the Kummer exact
sequence of sheaves for the ëtale topology on X . For X over a p-adic ¢eld, the ëtale
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cohomology groups with ¢nite coef¢cients are known to be ¢nite and, hence, the
group CH1�X �=n is ¢nite (this can also be seen by using a theorem of Mattuck [Mat]
and ¢nite generation of the Nëron^Severi group). Unfortunately, even when k is
algebraically closed, it is not always true that the cycle map

CHi�X �=nÿ!H2i�X ;Z=n�i��

is injective for iX 2 (see [BCC], p. 135, [BE] and [To2]; for an example over a p-adic
¢eld we refer to [PS]), and the kernel is even less understood when k is not algebraic-
ally closed. For this reason, there is very little known in general about the groups
CHi�X �=n.

A natural question is whether the group CH0�X �=n is ¢nite for any smooth pro-
jective variety X over a p-adic ¢eld k and any n 2N (here CH0�X � �
CHd�X �; d � dim�X �). This was known to be true for surfaces X such that the
Albanese mapping is injective over k and for any n (see [CT1], Thëore© me 8.5
and Remark (4.5.8) below), or for X a surface and n prime to p ([SaSu], Theorem
2.5). However, there were no results that are valid for any n for varieties X with
H2�X ;OX � 6� 0. In this paper, we answer this question af¢rmatively when X is a
product of curves whose Jacobians have a mixture of good ordinary and split
multiplicative reduction (we call this semi-ordinary below). We are not able to
say anything at the moment about the case of, e.g., a self-product of an elliptic curve
with supersingular reduction.

Our method is simple to describe, and most of the paper consists of proving the
results that are necessary to realize this simple philosophy. To illustrate, let
C1;C2 be smooth, projective, geometrically connected curves having rational points
over a ¢eld k, and denote by J1; J2 their Jacobians. Let A0�C1 � C2� denote the group
of 0-cycles of degree 0 modulo rational equivalence. We show that the kernel of the
Albanese map:

A0�C1 � C2�ÿ!J1�k� � J2�k�

may be realized as a `Milnor K-group' K�k; J1; J2�, which is de¢ned by symbols
fa1; a2gL=k, where L ranges over ¢nite extensions of k and ai 2 Ji�L� �i � 1; 2�. This
approach was started by Bloch (unpublished) and by Somekawa [So] when k is
algebraically closed and C1;C2 are elliptic curves; we extend Somekawa's methods
to general k;C1;C2. Kahn [Ka1], [Ka2] has also studied similar groups, but with
fewer relations. In many cases, Kahn's groups suf¢ce for our purposes. When k
is a p-adic ¢eld and n is a positive integer, we try to relate K�k; J1; J2�=n with
KM

2 �k�=n, the Milnor K2-group of k, modulo n. This works well when the formal
groups attached to J1; J2 are of multiplicative type. For example, if E1;E2 are Tate
elliptic curves over k, we show that there is a surjection:
K2�k�=nÿ!K�k;E1;E2�=n:One easily sees that the group K2�k�=n is ¢nite, hence that
K�k;E1;E2�=n is ¢nite.
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Here is a more precise description of our main results: Let X1; . . . ;Xd be smooth,
projective, geometrically connected curves over a p-adic ¢eld k, and assume that
Xi�k� 6� ; for all i. We will say that the Jacobian variety Ji of Xi has split
semi-ordinary reduction if Ji has semi-Abelian reduction over k, and the special ¢bre
of the Nëron model of Ji over the ring of integers of k is an extension of an ordinary
Abelian variety by a torus that is split over the residue ¢eld. Note that this ordinary
Abelian variety may be 0, so this includes split multiplicative reduction. Our main
result, which is based on work of Kahn [Ka2] and Somekawa [So], is the following
(see Corollaries 3.5.1 and 4.5.6 for the precise statements):

THEOREM 1.1. Assume Xi�k� 6� ; and that the Jacobians J1; . . . ; Jd of X1; . . . ;Xd

have split semi-ordinary reduction. Let A0�X1 � . . .� Xd� be the subgroup of
CH0�X1 � . . .� Xd� generated by zero cycles of degree 0. Then the kernel of the
Albanese map A0�X1 � . . .� Xd� ! J1�k� � . . .� Jd�k� is of the form F �D for a
¢nite group F and a divisible group D. In particular, CH0�X1 � . . .� Xd�=m is ¢nite
for every positive integer m.

To prove Theorem 1.1, we ¢rst show, using the simple observation that every
closed point is, after a ¢nite base extension, an intersection of divisors supported
in the ¢bres of the projections

X1 � . . .� Xdÿ!Xi �i � 1; . . . ; d�;
that the group CH0�X1 � . . .� Xd�may be described in terms of the Picard groups of
X1; . . . ;Xd . More precisely, we have a surjectionM

E=k finite

Pic��X1�E� 
 . . .
 Pic��Xd �E��ÿ!CH0�X1 � . . .� Xd � �1:2�

induced by the exterior product. By assuming that each Xi has a k-rational point, we
can also write (1.2) in terms of the Jacobians:

Z�
M

E=k finite

M
1W nW d

M
1W i1<...<in W d

Ji1 �E� 
 . . .
 Jin �E�ÿ!CH0�X1 � . . .� Xd �:

�1:3�
In Section 2 we give a precise description of the kernel of this map. We will show that
(1.3) induces an isomorphism (Corollary 2.4.1)

Z�
M

1W nW d

M
1W i1<...<in W d

K�k; Ji1 ; . . . ; Jin � � CH0�X1 � . . .� Xd�: �1:4�

Here the group K�k; Ji1 ; . . . ; Jin � denotes the Milnor K-group attached to Ji1 ; . . . ; Jin .
This result holds over an arbitrary base ¢eld.

In the case where k is a p-adic ¢eld and each Jacobian Ji has split semi-ordinary
reduction, we can control the groups K�k; Ji1 ; . . . ; Jin �=n in terms of KM

n �k�=n,
and this last group is easily seen to be ¢nite. Theorem 1.1 then follows from some
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simple Abelian group theory (Lemma 3.4.4). When m is prime to p, the hypothesis of
semi-ordinarity of the special ¢bre is not necessary (Corollary 3.5.1).

For arbitrary semi-Abelian varietiesG1; . . . ;Gn over k, Somekawa [So] has de¢ned
a Milnor K-group K�k;G1; . . . ;Gn� attached to G1; . . . ;Gn, generalizing the usual
Milnor K-theory, which corresponds to the case where each Gi is equal to Gm;k.
He has proved (1.4) in the case of a product of two elliptic curves over an algebraic-
ally closed ¢eld. The isomorphism (1.4) ¢ts nicely into the picture of the (conjectural)
¢ltrations on Chow groups related to Ext-groups of mixed motives (Remark
2.4.2(b)).

The group K�k;G1; . . . ;Gn� is de¢ned as a quotient of
L

E=k finite G1�E�

 . . .
 Gn�E� with respect to two relations; the ¢rst one forces K�k;G1; . . . ;Gn�
to satisfy a projection formula and the second one forces the existence of a
`reciprocity law' for K�k;G1; . . . ;Gn� (see De¢nition 2.1.1). Unfortunately, in the
case of Abelian varieties G1 � A1; . . . ;Gn � An, it is hard to `calculate'
K�k;A1; . . . ;An�. For the proof of (1.1), we work with a larger quotient ofL

E=k A1�E� 
 . . .
 An�E� denoted by �A1

M

. . .
MAn��k�; namely, we factor out only

the ¢rst relation (
M stands for the tensor product in the sense of Mackey functors).
These groups were introduced by Kahn, and he uses them to reprove the ¢niteness
of the Chow group of zero cycles of degree zero for products of curves over a
¢nite ¢eld [Ka2]. Based on his result, it is easy to deduce ¢niteness of
CH0�X1 � . . .� Xd �=m form prime to p in the case where all Xi have good reduction.
This is worked out in Section 3. Section 4 is devoted to the study of the group

�A1

M

. . .
MAn��k�=pm. In the case where each Ai has semi-ordinary reduction, we

can relate �A1

M

. . .
MAn��k�=pm via £at cohomology and p-adic uniformization to

the usual Milnor K-groups of k. Local class ¢eld theory allows us then to deduce

¢niteness of �A1

M

. . .
MAn��k�=pm.
While many of the results in this paper are proved by only using the tensor product

of Mackey functors instead of the Milnor K-groups, we have developed the Milnor
K-group formalism because we expect it to be necessary when the base ¢eld is ¢nitely
generated over Q.

NOTATION

N denotes the set of positive integers. Given an Abelian group A and a nonzero
integer m, let mA be the kernel and A=m be the cokernel of multiplication by m
on A. For a prime number p, we denote by A�non-p� the prime to p part of the torsion
subgroup ofA. For a schemeX and a point x onX , we denote by k�x� the residue ¢eld
of x. If X is a variety over a ¢eld and i is a nonzero integer, we denote by Xi the set of
points of dimension i on X and Zi�X � the group of cycles of dimension i, i.e. Zi�X � is
the free Abelian group with basis Xi. By CHi�X � (resp. CHi�X �) we denote the Chow
group of dimension i (resp. codimension i) cycles on X modulo rational equivalence.
For a cycle z 2 Zi�X �, we write �z� 2 CHi�X � for the class of z.
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For a scheme S and a nonzero integerm, we denote by mm the group scheme ofmth
roots of unity over S. IfA! S is an Abelian scheme we letA�m� be the group scheme
of m-division points ofA. If k is a ¢eld we denote by Gk the absolute Galois group of
k. By H��k;M� we denote the Galois cohomology groups of Gk with values in a
discrete Gk-module M with continuous Gk-action. By a p-adic ¢eld we will mean
a ¢nite extension ofQp. If k is an arbitrary ¢eld, by an extension of k we will always
mean a ¢eld extension.

2. Milnor K-groups of Chow Groups and Zero-cycles on Products of
Varieties

2.1. The aim of this section is to give a description of the Chow group of zero cycles
of a product of varieties X1; . . . ;Xn in terms of the Chow groups of zero cycles
of the Xi. We begin by de¢ning a Milnor K-group for Chow groups of varieties
in the same way as in ([So], sect.1). Let k be a ¢eld and let Vk be the category
of smooth projective varieties over k. We will use the notation X 2 Vk as shorthand
for writing that X is a smooth projective variety over k. For X 2 Vk and E=k a ¢eld
extension, let XE � X 
k E. If j : E ! F is a k-morphism of extensions of k, the
pull-back CH��XE� ! CH��XF � will be denoted by j�; if F=E is ¢nite, the
push-forward CH��XF � ! CH��XE� will be denoted by j�, or sometimes NF=E .
Let X1; . . . ;Xn 2 Vk. We will denote by CH0�Xi� the functor on ¢eld extensions
of k that associates to each ¢eld extension E=k, the group CH0��Xi�E�.

DEFINITION 2.1.1. The Milnor K-group K�k; CH0�X1�; . . . ; CH0�Xn�� attached to
CH0�X1�; . . . ; CH0�Xn� is the Abelian group

M
E=k

CH0��X1�E� 
 . . .
 CH0��Xn�E�
 !

=R;

where E runs through all ¢nite ¢eld extensions of k, and where R is the subgroup
generated by the following elements

(2.1.2) If j : E1! E2 is a morphism of ¢nite ¢eld extensions of k and if
xi0 2 CH0��Xi0 �E2

�, xi 2 CH0��Xi�E1
� (for i 6� i0) for some i0, then

�x1 
 . . .
 j��xi0 � 
 . . .
 xn� ÿ �j��x1� 
 . . .
 xi0 
 . . .
 j��xn�� 2 R:

(2.1.3) Let K be a function ¢eld in one variable over k, i.e. a ¢nitely generated exten-
sion of k of transcendence degree one*. Let f 2 K� and xi 2 CH0��Xi�K �. ThenX

u

ordu�f � su�x1� 
 . . .
 su�xn� 2 R;

*We do not assume that k is algebraically closed in K.
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where the sum is taken over all places v ofK=k, and where su : CH��XK � !CH��Xk�u��
denotes the specialization map (as de¢ned in ([Fu], Chap. 20)).

For a ¢nite ¢eld extension E=k and x1 2 CH0��X1�E�; . . . ; xn 2 CH0��Xn�E�, we
denote by fx1; . . . ; xngE=k the class of x1 
 . . .
 xn in K�k; CH0�X1�; . . . ;

CH0�Xn��, and refer to elements of this type as symbols. As in ([So], sect. 1.3),
one can de¢ne for any ¢eld extension k0=k a restriction map

resk0=k : K�k; CH0�X1�; . . . ; CH0�Xn�� ! K�k0; CH0��X1�k0 �; . . . ; CH0��Xn�k0 ��:
and, if k0=k is ¢nite, a norm

K�k0; CH0��X1�k0 �; . . . ; CH0��Xn�k0 ��ÿ!K�k; CH0�X1�; . . . ; CH0�Xn��:
On symbols we have Nk0=k�fx1; . . . ; xngE=k0 � � fx1; . . . ; xngE=k.

THEOREM 2.2. There is a canonical isomorphism

K�k; CH0�X1�; . . . ; CH0�Xn�� ÿ!� CH0�X1 � . . .� Xn�:

Proof. First, we de¢ne a canonical map

f : K�k; CH0�X1�; . . . ; CH0�Xn��ÿ!CH0�X1 � . . .� Xn�:
Let pi : X1 � . . .� Xn! Xi be the projection. We also use the same notation for base
changes by extensions of k. If K=k is a ¢eld extension, let

fK : CH0��X1�K � 
 . . .
 CH0��Xn�K �ÿ!CH0��X1 � . . .� Xn�K �:
be the exterior product, i.e. fK �x1 
 . . .
 xn� � p�1�x1� � . . . � p�n�xn� (intersection
product). Let

ef �M
E=k

NE=k � fE :
M
E=k

CH0��X1�E� 
 . . .
 CH0��Xn�E�ÿ!CH0�X1� . . .�Xn�:

We will see that ef factors through K�k; CH0�X1�; . . . ; CH0�Xn��. That ef vanishes on
elements of the form (2.1.2) follows from the projection formula for the intersection
product ([Fu], Proposition 8.3(c)). To see that ef vanishes on elements of the form
(2.1.3), we need the following simple fact:

(2.2.1) Let k be a ¢eld and K be a function ¢eld in one variable over k. Let X be a
smooth projective variety over k. Then for every f 2 K� and every x 2 CH��XK �,
we haveX

u

ordu�f �Nk�u�=k�su�x�� � 0

in CH��X �.
Proof. Let C be the regular proper model of K over k. If z 2 Z��XK � is a cycle

representing x, then we denote by z0 its extension to a cycle of X � C and by
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x0 � �z0� the corresponding class in CH��X � C�. We haveX
u

ordu�f �Nk�u�=k�su�x�� � p��div�f �� � x0 � 0;

where p : X � C ! C is the projection. This proves (2.2.1).

Now let K; x1; . . . ; xn; f be as in (2.1.3). By using (2.2.1) and the compatibility of
the specialization map with pull-backs ([Fu], Proposition 20.3(b)), we get:

ef X
u

ordu�f � su�x1� 
 . . .
 su�xn�
 !
�
X
u

ordu�f �Nk�u�=k�fk�u��su�x1� 
 . . .
 su�xn���

�
X
u

ordu�f �Nk�u�=k � su�fK �x1 
 . . .
 xn�� � 0:

Hence ef induces a map f : K�k; CH0�X1�; . . . ; CH0�Xn�� ! CH0�X1 � . . .� Xn�. To
de¢ne the inverse of f, we need some preparation. Let X 2 Vk and let K=k be
an extension of ¢elds. A k-morphism Z : Spec K ! X de¢nes a K-rational point
x�Z� of XK , hence a cycle z�Z� 2 Z��XK �. We have (see [Fu], p.399):

(2.2.2) Let K=k be a function ¢eld in one variable, Z : Spec K ! X a k-morphism and u
be a place of K=k with valuation ring R. The morphism Z extends uniquely to a map
Spec R! X and hence de¢nes a map su�Z� : Spec k�u� ! Spec R! X. Then
su��z�Z��� � �z�su�Z���.

We need to reformulate (2.2.2) slightly. Let C be the regular proper model of K
over k. The morphism Z : Spec K ! X extends uniquely to a morphism
g : C ! X . For a closed point x 2 C, let u be the corresponding place of K=k.
Then the map su�Z� : Spec k�x� ! X is just the composite g � ix, where
ix : Spec k�x� ! C is the canonical map. Hence (2.2.2) gives for the cycle z�x��def z�ix�:

g���z�x��� � g���z�ix��� � �z�g � ix�� � �z�su�Z��� � su��z�Z���:
Here we have written g� as shorthand for �g
k k�x���.

Now we are going to de¢ne the inverse

c : CH0�X1 � . . .� Xn� ! K�k; CH0�X1�; . . . ; CH0�Xn��
of f. Let ec : Z0�X1 � . . .� Xn� ! K�k; CH0�X1�; . . . ; CH0�Xn�� be de¢ned by

ec X
x

nx x

 !
�
X
x

nx f�p1���z�x��; . . . ; �pn���z�x��gk�x�=k:

To see thatec factors through rational equivalence, let C � X1 � . . .� Xn be a closed
irreducible subset of dimension 1, let K be its function ¢eld, and take f 2 K�. Let eC
be the normalization of C and denote by p : eC ! X1 � . . .� Xn the canonical
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morphism. We have to show that ec�divC�f �� � 0: If we let Z : Spec K ! eC !
X1 � . . .� Xn be the composite and Zi � pi � Z, i � 1; . . . n, then we have by (2.2.2)
and the remarks following it:

ec�div�f �� � ec X
x2eC0

ordx�f ��k�x� : k�p�x���p�x�

0B@
1CA

�
X
x2eC0

ordx�f � �k�x� : k�p�x��� f�p1���z�p�x���; . . . ; �pn���z�p�x���gk�p�x��=k

�
X
x2eC0

ordx�f � f�p1 � p���z�x��; . . . ; �pn � p���z�x��gk�x�=k

�
X
u

ordu�f � fsu��z�Z1���; . . . ; su��z�Zn���gk�u�=k � 0:

Hence, ec induces a map

c : CH0�X1 � . . .� Xn� ! K�k; CH0�X1�; . . . ; CH0�Xn��:

A simple norm argument shows that K�k; CH0�X1�; . . . ; CH0�Xn�� is generated by
symbols f�x1�; . . . ; �xn�gE=k where E=k is a ¢nite extension and xi is an E-rational
point of �Xi�E for i � 1; . . . ; n. Moreover it is easy to see that the f's and c's commute
with norms for ¢nite extensions of k. Therefore, to verify that they are inverse to each
other, it is enough to see that �c � f��f�x1�; . . . ; �xn�g� � f�x1�; . . . ; �xn�g for k-rational
points xi of Xi and �f � c���x�� � �x� for a k-rational point x of X1 � . . .� Xn. This
is clear. &

(2.3) Our aim now is to extend Theorem 2.2 to Chow motives. This can be done in a
totally formal manner. Firstly, we recall some notation and facts about
correspondences and Chow motives. As general references for what we need here,
see ([Fu], Chapter 16), [Man] and [Sou, ½1]. For X ;Y 2 Vk and an integer r, let
Corrr�X ;Y � be the group of correspondences of degree r between X and Y , i.e.
Corrr�X ;Y � �Li�1;...;r CH

dimXi�r�Xi � Y � if X � Si�1;...;r Xi is the decomposition
of X into irreducible components. For X ;Y ;Z 2 Vk we have the composition
law

� : Corrr�X ;Y � � Corrs�Y ;Z�ÿ!Corrr�s�X ;Z�;

making Corr0�X ;X � into a ring with 1 � 1X � �DX �. Let a be a correspondence
between X and Y . It induces a map of Chow groups a� : CH��X � ! CH��Y �, given
by a��x� � �pY ���a � �pX ���x��. Since £at pull-backs, intersection products and proper
push-forwards commute with specialization maps ([Fu], Proposition 20.3), we see
that a� commutes with specialization, too. The category of Chow motivesMk con-
sists of triples �X ; p;m�, where X is a variety, p � p2 2 Corr0�X ;X � is an idempotent
andm is an integer. For two motives �X ; p;m�, �Y ; q; n�, the set of morphisms is given
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by

Hom��X ; p;m�; �Y ; q; n�� � q � Corrnÿm�X ;Y � � p:

Mk is a pseudo-Abelian category with tensor products (see, e.g., [Sou], ½1), and there
is a contravariant faithful functor h : Vk !Mk de¢ned on objects by
h�X � � �X ; 1X ; 0�. For n 2 Z we denote by Z�n� the motive �Spec k; 1; n�. The Chow
groups CH��M� of a motive M � �X ; p;m� are de¢ned as p�CH��m�X �. By the
remark above, one can also de¢ne specialization maps for Chow groups of motives.

Hence, De¢nition (2.1.1) carries over to motives, i.e. one can de¢ne the Milnor
K-group K�k; CH0�M1�; . . . ; CH0�Mn�� in exactly the same way as K�k; CH0

�X1�; . . . ; CH0�Xn��. Note that the map �M1; . . . ;Mn� 7! K�k; CH0�M1�; . . . ;

CH0�Mn�� is linear in each component.

COROLLARY 2.3.1. Let X1; . . . ;Xn be smooth projective varieties and
pi 2 Corr0�Xi;Xi� be idempotents. Put Mi � �Xi; pi; 0� for i � 1; . . . ; n. Then,

CH0�M1 
 . . .
Mn� � K�k; CH0�M1�; . . . ; CH0�Mn��:

Proof. By linearity, K�k; CH0�M1�; . . . ; CH0�Mn�� (resp. CH0�M1 
 . . .
Mn�) is a
direct summand of K�k; CH0�X1�; . . . ; CH0�Xn�� (resp. CH0�X1 � . . .� Xn�), and it is
easy to see that the isomorphism f maps K�k; CH0�M1�; . . . ; CH0�Mn�� onto
CH0�M1 
 . . .
Mn�. &

(2.4)We apply now 2.3.1 to products of curves. LetX1; . . . ;Xd be smooth, projective,
geometrically connected curves over k. We assume that eachXi has a k-rational point
Pi. Then we have a decomposition h�Xi� � Z�0� � X�i �Z�ÿ1�, where X�i is the
motive �Xi; pXi ; 0� with pXi � �DXi � ÿ �Pi � Xi� ÿ �Xi � Pi� (see, e.g., [Man], ½10).
Therefore we get

h�X1 � . . .� Xd� �
Od
i�1

h�Xi�

�
M

m�nWd

M
1W i1<...<in W d

dÿ n

m

� �
X�i1 
 . . .
 X�in 
Z�ÿm�:

The binomial coef¢cient comes from the fact that there are dÿn
m

� �
ways to get Z�ÿm�

in the tensor product. We now apply the functor CH0 to this decomposition of
motives. Note that CH0 will be zero on any summand for which m > 0. Using (2.3.1),
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we then get:

CH0�X1 � . . .� Xd �
� Z�

M
1W nW d

M
1W i1<...<in W d

CH0�X�i1 
 . . .
 X�in �

� Z�
M

1W nW d

M
1W i1<...<in W d

K�k; CH0�X�i1 �; . . . ; CH0�X�in ��:

If J1; . . . ; Jd are the Jacobians of X1; . . . ;Xd , then we have CH0�X�i � �
Ker��Pi � Xi��� �Xi � Pi�� : CH0�Xi� !CH0�Xi���Ker�deg: CH0�Xi� ! Z� � Ji�k�.

We explain now why the groups K�k; CH0�X�i1 �; . . . ; CH0�X�in �� coincide with the
MilnorK-groupsK�k; Ji1 ; . . . ; Jin � de¢ned by Somekawa in ([So], sect. 1). To simplify
notation, assume that n � d; i1 � 1; . . . ; id � d. We note ¢rst that in the relation
(1.2.2) in ([So], p. 107) the choice of signs is not correct; one has to drop �ÿ1�i�u�
in order to get the results of [So]*. Clearly it is enough to verify that Somekawa's
(corrected) relation (1.2.2) coincides with relation (2.1.3) in the case we consider
here. Let K=k be a function ¢eld in one variable and let f 2 K� and
xi 2 CH0��Xi�K �. Let gi 2 Ji�K� be the image of xi under the isomorphism
CH0��Xi��K � ! Ji�K�. If v is a place of K with valuation ring Ou, we have
Ji�Ou� � Ji�K� since Ji is proper. One can easily verify that gi�u� 2 Ji�k�u�� corre-
sponds to su�xi� under CH0��Xi��k�u�� � Ji�k�u��. If we choose for every place v of
K=k an index i�u� 2 f1; . . . ; dg and denote by @u : Ji�u��K� 
 K� ! Ji�u��k�u�� the local
symbol map de¢ned in ([Se], Chapter III, Section 1), then Somekawa's relation
(1.2.2) isX

u

fg1�u�; . . . ; @�gi�u�; f �; . . . ; gd �u�gk�u�=k � 0:

But since Ji�K� � Ji�Ou�, we have by ([Se], Chapter III, De¢nition 2)

@u�gi�u�; f � � ordu�f � gi�u��u�;
so X

u

fg1�u�; . . . ; @u�gi�u�; f �; . . . ; gd�u�gk�u�=k

�
X
u

ordu�f � fg1�u�; . . . ; gd �u�gk�u�=k

�
X
u

ordu�f � fsu�x1�; . . . ; su�xn�gk�u�=k;

which is just the relation (2.1.3).
Summarizing our discussion in this section, we have

*For example, the calculation
P

u�ÿ1�i�u�Nk�u�=k�fg1�u�; . . . ; @u�gi�u�; h�; . . . ; gd �u�gk�u�=k� �
�N � @��fh; g1; . . . ; grg� is not correct, in general; one finds rather

P
u Nk�u�=k�fg1�u�; . . . ;

@u�gi�u�; h�; . . . ; gd �u�gk�u�=k� � �N � @��fg1; . . . ; gr; hg�. Therefore ([So], Theorem 1.4) holds only
if we drop the signs �ÿ1�i�u� in his relation (1.2.2).
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COROLLARY 2.4.1. Let X1; . . . ;Xd be smooth projective geometrically connected
curves over k with Jacobians J1; . . . ; Jd such that Xi�k� 6� ; for each i. Then,

CH0�X1 � . . .� Xd� � Z�
M

1W nW d

M
1W i1<...<in W d

K�k; Ji1 ; . . . ; Jin �:

Remarks 2.4.2. (a) If k is an algebraically closed ¢eld, d � 2 and X1;X2 are elliptic
curves, this was proved by Somekawa ([So], Theorem (2.4)).

(b) Let X be a smooth projective variety over k. A conjecture of Beilinson predicts
the existence of a ¢ltration on Chow groups arising from a spectral sequence

En;m
2 � ExtnMM�1; hm�X ��m�� �)CHm�X ; 2mÿ �n� m��;

where MM is the (conjectural) category of mixed motives over k with integral
coef¢cients and CH��X ; �� are Bloch's higher Chow groups (see, e.g., [Ja]). If
X � X1 � . . .� Xd is a product of curves withX �k� 6� ;, the spectral sequence should
degenerate (for general X , it is only expected to degenerate after tensoring with Q).
Let again J1; . . . ; Jd be the Jacobians. Somekawa has given a conjectural interpret-
ation of the groups K�k; Ji1 ; . . . ; Jin � in terms of Ext-groups of mixed motives.
By using this description, one can `compute' formally

ExtnMM�1; h2dÿn�X ��d�� �
M

1W i1<...<in W d

K�k; Ji1 ; . . . ; Jin �

Hence, Corollary 2.4.1 conjecturally describes the ¢ltration on CH0�X1 � . . .� Xd�.

(c) One can extend Theorem 2.2 and Corollary 2.3.1 to higher Chow groups as
well. Let X1; . . . ;Xn be in Vk and let n1; . . . ; nn; m1; . . . ; mn be nonnegative
integers. Set d � d1 � . . .� dn and n � n1 � . . .� nn. The Milnor K-groups
K�k; CHn1 �X1; m1�; . . . ; CHnn�Xn; mn�� can be de¢ned as in (2.1.1) except that the
relation (2.1.3) has to be replaced by the following (since there are no canonical
specialization maps in general for higher Chow groups*):

(2.1.30) Let K be a function ¢eld in one variable over k. Let f 2 K� � CH1�K; 1� and
xi 2 CHni ��Xi�K ; mi� for i � 1; . . . ; n. Then

X
u

Nk�u�=k � @u� f � x1 � . . .� xn� � 0

*More precisely the specialization maps depend on the choice of uniformizing parameter in
general; see Remark 2.4.2(e) below for more on this.
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Here f � x1 � . . .� xn is the image of f 
 x1 
 . . .
 xn under the exterior product

CH1�K; 1� 
 CHn1��X1�K ; m1� 
 . . .
 CHnn ��Xn�K ; mn� ÿ!CH1�n

� ��X1 � . . .� Xn�K ; 1� m�

and

@u : CH1�n��X1 � . . .� Xn�K ; 1� m� ! CHn��X1 � . . .� Xn�k�u�; m�

is the connecting map in the localization sequence (see [Bl2], Theorem (3.1) and also
[Bl3]). Again the de¢nition works also for Chow motives. We have:

(2.4.4) Let X1; . . . ;Xn be smooth projective varieties of dimensions d1; . . . ; dn, let
n1; . . . ; nn be integers, and let pi 2 Corr0�Xi;Xi� be idempotents. Put Mi �
�Xi; pi; 0� for i � 1; . . . ; n, d � d1 � . . . dn and n � n1 � . . . nn. Then,

CHn�M1 
 . . .
Mn; d ÿ n� � K�k; CHn1 �M1; d1 ÿ n1�; . . . ; CHnn�Mn; dn ÿ nn��:

The proof is a straightforward generalization of the proof of (2.2) if one uses cubes
(as in [To], p. 179) instead of simplices in the de¢nition of higher Chow groups (note
that we are dealing with 0-cycles in (2.4.4)). Let us consider the special case where
X1 � . . . � Xn � Spec k and n1 � . . . � nn � 1. According to ([So], Theorem (1.4)),
we have K�k; CH1�k; 1�; . . . ; CH1�k; 1�� � KM

n �k�, the usual Milnor K-group of k.
Hence (2.4.4) yields CHn�k; n� � KM

n �k�, a result due to Nesterenko and Suslin [NS]
and Totaro [To].

As another special case, one can recover the following formula of Somekawa ([So],
Theorem (2.1)) for a curve X which has a rational point over k (J=Jacobian of X ):

K�k;Gm; J� � V �X � � Ker�Norm : SK1�X � ! k��:

(d) The following remark was communicated to us by B. Kahn. Let k be a ¢eld and
let DM�k� denote Voevodsky's derived category of geometrical effective motives
over k as constructed in [V]. It is an additive triangulated tensor category. Given
a smooth variety X over k (not necessarily projective) or a Chow motive, there
is an associated motive M�X � in DM�k� (in fact the category of Chow motives
embeds as a full subcategory of DM�k�). For arbitrary Chow motives
M1; . . . ;Mn it should be possible to see directly from the de¢nition of the tensor
products in DM�k� that

K�k; CH0�M1�; . . . ; CH0�Mn�� � HomDM�Z;M1 
 . . .
Mn�:

This suggests a more general formalism than that presented above.
(e) Let X be a variety over a ¢eld k, and let C be a smooth projective, irreducible

curve over k with function ¢eld K . Let v be a place of K with valuation ring A.
Let Ah be the henselization of A and Kh its quotient ¢eld. Then there is an exact
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localization sequence:

. . .ÿ!CHi�X �k Ah; j�ÿ!CHi�XKh ; j�ÿ!CHiÿ1�Xk�u�; j ÿ 1�ÿ! . . .

(see [Bl2], Theorem 3.1 and [Bl3] for corrections in the proof of the moving lemma).
The boundary map can be split by the choice of a uniformizing parameter p of
Ah, which gives a class in CH1�XKh ; 1�. In this way, we can de¢ne a specialization
map:

CHi�XK ; j�ÿ!CHi�XKh ; j�ÿ!CHi�Xk�u�; j�:

However, it seems dif¢cult to make a good choice of uniformizing parameter for all
places of K so that the analogue of the reciprocity law (2.2.1) will hold.

3. The Group CH0�X1 � . . .� Xd�=m for Curves X1; . . . ;Xd over a p-adic
Field and m Prime to p

(3.1) In this section we investigate the groups CH0�X1 � . . .� Xd �=m, for X1; . . . ;Xd

smooth, projective geometrically connected curves over a p-adic ¢eld k and m prime
to p, by using the results of the last section. However we only use the fact that there
is a surjection, due to Kahn and valid over any perfect* ¢eld k:

Z�
M

1W nW d

M
1W i1<...<in W d

�Ji1

M

. . .
MJin ��k�ÿ!CH0�X1 � . . .� Xd�; �3:1:1�

where 
M denotes the tensor product of Mackey functors (see [Ka2]). This follows
from Corollary 2.4.1 above, because the tensor product of Mackey functors only
involves the relation (2.1.2) that was used to de¢ne our Milnor K-groups. While
Section 2 describes the kernel of this surjection, we do not need it in this section.

Before stating and proving the main results of this section, we need to recall some
facts about Mackey functors and the Nëron model.

(3.2) Let k be a perfect ¢eld. AMackey functor A is a co- and contravariant functor
from the category of ëtale k-schemes to the category of Abelian groups (i_e_for every
¢nite k-morphism f : X ! Y of ëtale k-schemes, we have maps f� : A�X � ! A�Y �
and f � : A�Y � ! A�X �) such that

A�X1 q X2� � A�X1� � A�X2�: �3:2:1�
*The restriction to perfect fields here is not necessary if one defines Mackey functors as
functors on all finite extensions rather than finite separable extensions. However, in this case,
(3.2.2) has to be replaced by a slightly more complicated axiom. Since we are dealing in the
following with p-adic fields only, we choose to work with the simpler but more restricted
definition.
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(3.2.2) If

X 0 ÿ!g
0

X
f 0 # f #
Y 0 ÿ!g Y

is a Cartesian square, then

A�X 0� ÿ!g
0�

A�X �
f 0� " f � "
A�Y 0� ÿ!g

0�
A�Y �

commutes.
By (3.2.1) we see that A is uniquely determined by its value A�K��defA�Spec K� on

¢nite separable extensions K=k. It is explained in [Ne] (where Mackey functors
are called G-modulations) how one can express (3.2.1), (3.2.2) in terms of ¢elds only.
A Gk-module A gives rise to the Mackey functor K 7!AGK with the natural norm and
restriction maps. If L=K=k are ¢nite separable extensions and j : Spec L! Spec K is
the natural map, we put resL=K � j� and NL=K � j�. The Mackey functors form an
Abelian category with a tensor product (introduced by Kahn [Ka1]), which is de¢ned
as follows: ForMackey functorsA1 . . . ;An, nX 2 and for a ¢nite separable extension
K=k, �A1


M
. . .
M An��K� is the quotient of

L
E=K finite separable A1�E� 
 . . .
 An�E�

modulo the subgroup generated by elements of the form (2.1.2). The image of a
tensor

a1 
 . . .
 an 2 A1�E� 
 . . .
 An�E�

in �A1

M

. . .
M An��K� will be denoted by �a1; . . . ; an�E=K and will be referred to as a

symbol. One can easily verify that . . .
M A is right-exact for any Mackey functor A.

(3.3) We recall some facts about the Nëron model of an Abelian variety A over a
complete discretely valued ¢eld k with valuation ring O and residue ¢eld F . The
basic references are [N] and [BLR]. The Nëron model A of A is a smooth group
scheme over O with A�O k � A, and which represents the functor

Y 7!Homk�Y �O k;A�

on the category of schemes smooth over O ([BLR], Ch. 1, ½½2,3). We have that A=k
has good reduction if and only if the Nëron model is proper over O. Let A0 be
the neutral component of A. The special ¢bre A0

s of A0 is an extension of an Abelian
variety over F by a linear algebraic group, which itself is an extension of a torus by a
unipotent group. We say that A has semi-Abelian reduction if this linear algebraic
group is a torus, and split semi-Abelian reduction if this torus is split over the residue
¢eld F . After a ¢nite extension of the base ¢eld, we can always achieve split
semi-Abelian reduction (see e.g. [BLR], Chapter 7, ½4, Theorem 1).
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Now assume that A is an Abelian variety over a p-adic ¢eld k with semi-Abelian
reduction. The Mackey functor K 7!A�K� on ¢nite extensions of k has a natural
¢ltration A1 � A0 � A which we are going to recall now. First, we introduce some
notation. For a ¢nite extension K=k, let OK be the ring of integers of K and let
kK be the residue ¢eld. The absolute Galois group of kK will be denoted by gK .
We set O � Ok, k � kk and g � gk. Then A0 is given by A0�K� � A0�OK � and
A1�K� is the kernel of the specialization A0�OK � ! A0

s �kK �. This group can be also
described as the OK -valued points of the formal group attached to A, hence it is
a Zp-module.

The quotient A0=A1 has the following description: �A0=A1��K� � A0
s �kK �. If L=K is

a ¢nite extension, then resL=K : �A0=A1��K� ! �A0=A1��L� and NL=K : �A0=A1��L� !
�A0=A1��K� can be identi¢ed with, respectively, reskL=kK : A0

s �kK � ! A0
s �kL� and

eL=KNkL=kK : A0
s �kL� ! A0

s �kK �. Finally, we consider the quotient A=A0. Let G be
a g-lattice, i.e. a discrete g-module which is ö as Abelian group ö free of ¢nite
rank. Let eG � G be a g-invariant sublattice of ¢nite index. We denote by
F � F�G; ~G� the following Mackey functor (eK�defeK=k):

K 7!F�K� � �G=eKeG�gK :
If L=K is a ¢nite extension, de¢ne

resL=K � eL=KreskL=kK : �G=eKeG�gKÿ!�G=eLeG�gL
and

NL=K � NkL=kK : �G=eLeG�gLÿ!�G=eKeG�gK :
According to ([SGA7], Exposë IX, Thëore© me 12.5), we have A=A0 � F�G; ~G�, where G

(resp. eG) is the character group of the maximal torus in A0
s (resp. of the maximal

torus in the special ¢ber of the Nëron model of the dual Abelian variety At).

(3.4) Now we investigate the tensor products �A1=A0
1�


M
. . .
M�An=A0

n�,
�A1=A0

1�

M�A0

2=A
1
2�


M
. . . etc. for Abelian varieties A1; . . . ;An=k with semi-Abelian

reduction.

LEMMA 3.4.1. Let Fi � F�Gi; ~Gi�, i � 1; . . . ; n, nX 2 be Mackey functors attached to

pairs �Gi;eGi� of g-lattices. Then the torsion group �F1

M

. . .
MFn��k� is of the
form

�F1

M

. . .
MFn��k� � F �D;

where F is ¢nite and D is m-divisible for all integers m prime to p.

Proof. We consider here only the case where the Gi's have trivial g-action, and we

show that �F1

M

. . .
MFn��k� is divisible. The general case will be postponed to the
appendix since it is not of great importance for the following and rather involved.
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We take xi 2 Gi for i � 1; . . . ; n, K=k a ¢nite extension and m a nonzero integer. We
choose a totally rami¢ed extension L=K of degree m. Then for the symbol

�x1 � eKeG1; . . . ; xn � eKeGn�K=k 2 �F1

M

. . .
MFn��k�;

we have

�x1 � eKeG1; . . . ; xn � eKeGn�K=k
� �x1 � eKeG1; . . . ; xnÿ1 � eKeGnÿ1;NL=K �xn � eLeGn��K=k
� m�x1 � eLeG1; . . . ; xn � eLeGn�L=k:

Thus �F1

M

. . .
MFn��k� is divisible. &

LEMMA 3.4.2. Let A=k be an Abelian variety with semi-Abelian reduction, and let

Fi � F�Gi;eGi�
, i � 1; . . . ; n, nX 1 be as in Lemma 3.4.1. Then ��A0=A1�
M

F1

M

. . .
MFn��k� is ¢nite.
Proof. Firstly, for every ¢nite unrami¢ed extension L=K , the norm NL=K :

�A0=A1��L� ! �A0=A1��K� is surjective (see [Ka2], p.1040; this is a consequence
of Lang's theorem on connected algebraic groups over ¢nite ¢elds). From the de¢-
nition of the tensor product of Mackey functors given in (3.2), we see that the map

NL=K : ��A0=A1�
MF1

M

. . .
MFn��L� ! ��A0=A1�
MF1

M

. . .
MFn��K�
is also surjective. Therefore, we may assume that all G1; . . . ;Gn have trivial g-action.

If nX 2 then, as seen in the proof of Lemma 3.4.1, �F1

M

. . .
MFn��K� is divisible,
hence �A0=A1��K� 
 �F1


M
. . .
MFn��K� � 0 for all ¢nite extensions K=k. Thus

�A0=A1�
MF1

M

. . .
MFn � 0. If n � 1 then we have for a symbol �a; x� eKeG1�K=k;
x 2 G1; a 2 A0

s �kK �:

�a; x� eKeG1�K=k � �a;NK=Kt �x� eKeG1��Kt=k

� �a; x�eG1�Kt=k � �NKt=k�a�; x�eG1�k=k;

where Kt is the inertia ¢eld of K=k. Consequently, the map �A0=A1��k� 
 F1�k�ÿ!
��A0=A1�
MF1��k� is surjective. &

LEMMA 3.4.2. Let A;B be Abelian varieties with semi-Abelian reduction. Then

�A0=A1�
M�B0=B1� � 0.

Proof. This follows at once from the main result of [Ka2]. Indeed A0
s ;B0s are

semi-Abelian varieties over a ¢nite ¢eld, hence A0
s


MB0s � 0. On the other hand,
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we have a surjectionM
L=K

�A0
s


MB0s ��kL�ÿ!��A0=A1�
M�B0=B1���K�;

where L=K runs through all ¢nite extensions. &

We also need the following lemma:

LEMMA 3.4.4. Let S be a nonempty, multiplicatively closed subset of N.
(a) For an Abelian group M, the following are equivalent:

(i) lim ÿm2S M=m is ¢nite.
(ii) M � F �D for an S-divisible group D and a ¢nite group F.

We call a group with these properties ¢nite-by-S-divisible. This is similar to the notion
of torsion-by-divisible, which has been considered in a similar context by
Colliot-Thële© ne ([CT3], Lemma-De¢nition 3.1).

(b) If M1!M2 !M3! 0 is an exact sequence of Abelian groups, and if M1;M3

are ¢nite-by-S-divisible, then so is M2. Also, if M2 is ¢nite-by-S-divisible, then so is
M3.

Proof. (a) That (ii) implies (i) is clear. We show that (i) implies (ii). Let

j : Mÿ! ÿlim

m2S
M=m

be the natural map and letN be the order of lim ÿm2S M=m. Note thatN 2 S. We claim
that Ker�j� � NM. Indeed, if a 2 NM, then clearly a 2 Ker�j�. Conversely, if
a 2 Ker�j�, then a 2Tm2S mM � NM. This proves the claim. Given a 2 Ker�j�
and n 2 S, we can ¢nd b 2M such that a � nNb. Hence, NM is S-divisible.

Thus M is an extension of a ¢nite group F that is killed by N by a group D that is
S-divisible. Applying the functor ExtZ�F ;ÿ� to the exact sequence 0!N D!
D! D! 0 gives a long exact sequence:

. . .ÿ!Ext1Z�F ;D�ÿ!Ext1Z�F ;D�ÿ!Ext2Z�F ;N D�ÿ! . . .

Now for any twoZ-modulesA and B, we have ExtiZ�A;B� � 0 for iX 2 (see, e.g., [W]
3.3.1), and hence Ext2Z�F ;N D� � 0. From the exact sequence, we then see that the
group Ext1Z�F ;D� isN-divisible. On the other hand, this group is killed byN (because
F is) and, hence, it is trivial. Thus M is the direct sum of F and D, as claimed.

(b) is left to the reader. &

The main result of this section is

THEOREM 3.5. Let A1; . . . ;An be Abelian varieties with semi-Abelian reduction.
Then,

K�k;A1; . . . ;An� � F �D;
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where F is a ¢nite group and D is m-divisible for all integers m which are prime to p. If
for at least two different indices i, Ai has good reduction, then F � 0.

Proof. Let S � fm 2N j �p;m� � 1g. We have to show that K�k;A1; . . . ;An�
is ¢nite-by-S-divisible. Because we have the surjection �A1


M
. . .
MAn��k� ! K�k;

A1; . . . ;An�, it is enough to check this for �A1

M

. . .
MAn��k�. Let us denote by
0 � F 0

i � F 1
i � F 2

i � F 3
i � Ai the ¢ltrations 0 � A1

i � A0
i � Ai for i � 1; . . . ; n. Since


M is right exact they induce an increasing ¢ltration Fj of �A1

M

. . .
MAn��k� such that

the successive quotients Fj�1=F j are quotients of certain ��Fj1�1=F j1 �
M . . .
M
�Fjn�1=F jn ���k�. By Lemmas 3.4.1^3.4.4(b), we conclude that F j�1=Fj is ¢nite-

by-S-divisible. Therefore, again by Lemma 3.4.4(b), �A1

M

. . .
MAn��k� is ¢nite-
by-S-divisible.

Now assume that for two different indices, say i � 1; 2, Ai has good reduction.
Then F1 � F2 � 0. So

��F j1�1=Fj1 �
M . . .
M�F jn�1=Fjn ���k� � 0 if �j1; j2� � �1; 1�; �2; 1�; �1; 2�:
By Lemma (3.4.3) it is also � 0 for j1 � j2 � 2. In the remaining cases at least one
factor is isomorphic to A1

1 or A1
2, hence is S-divisible. This implies that

�A1

M

. . .
MAn��k� is S-divisible, too. &

From Theorem 3.5 and Corollary 2.4.1, we obtain:

COROLLARY 3.5.1. Let X1; . . . ;Xd be smooth, projective, geometrically connected
curves over k with Jacobians J1; . . . ; Jd such that Xi�k� 6� ; for each i. Let
A0�X1 � . . .� Xd � � Ker�CH0�X1 � . . .� Xd �ÿ!

deg
Z�.

(a) If all J1; . . . ; Jd have semi-Abelian reduction, then

A0�X1 � . . .� Xd� � F �D;

where F is ¢nite and D is m-divisible for all m which are prime to p. In particular,
CH0�X1 � . . .� Xd�=m is ¢nite for such m.

(b) If J1; . . . ; Jd have good reduction, then the kernel of the Albanese map

A0�X1 � . . .� Xd� ! J1�k� � . . .� Jd �k�
is m-divisible for all integers m prime to p.

In the case d � 2 we can weaken our hypotheses.

COROLLARY 3.5.2. Let X1;X2 be smooth, projective, geometrically connected
curves over k. Then,

A0�X1 � X2� � F �D;

where F is ¢nite and D is m-divisible for all m prime to p.
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Proof. Let K=k be a ¢nite extension such that J1; J2 have semi-Abelian reduction,
Xi�K� 6� ; for i � 1; 2 and gK operates trivially on G1;G2. Write �K : k� � mpr with
�m; p� � 1 and let Q � Coker�NK=k : A0��X1 � X2�K � ! A0�X1 � X2��. Then
�K : k�Q � 0. On the other hand, we know that nCH0�X1 � X2� is ¢nite for any
nonzero integer n (see [CT1], Thëore© me 8.1). The exact sequence

A0��X1 � X2�K �ÿ!A0�X1 � X2�ÿ!Qÿ!0

together with Corollary 3.5.1 show that mQ is ¢nite. Now the assertion follows from
Lemma 3.4.4(b). &

Remarks 3.5.3. (a) For a smooth, projective, geometrically integral variety X of
dimension X 3 over a p-adic ¢eld, it is unknown at present whether the group
nCH0�X � is ¢nite for any positive integer n. This is the basic reason why we are
unable to deal with the case where the Jacobian of one of the curves has some addi-
tive reduction (this means that the linear part of the special ¢bre of the Nëron model
has a nontrivial unipotent part). Perhaps there is a way to handle additive reduction
directly, rather than by trying to pass to a ¢nite extension where the special ¢bre of
the Nëron model becomes semi-Abelian.
(b) Let Ker�alb� denote the kernel of the Albanese map A0�X � ! AlbX �k�. We
expect the following:

CONJECTURE 3.5.4*. Let X be a smooth, projective, geometrically connected var-
iety over a p-adic ¢eld k. Then

Ker�alb� � F � V ;

where F is a ¢nite group and V is a uniquely divisible group. If X has good reduction
with special ¢ber Y=k then

F �non-p� � Ker�A0�Y � ! AlbY �k���non-p�:

In particular, CH0�X �=m should be ¢nite for all nonzero m. If X is a surface and m is
prime to p, this ¢niteness statement was proved by Saito and Sujatha ([SaSu],
Theorem 2.5). For surfaces X with the property that the Albanese mapping is
an isomorphism for X , this ¢niteness was proved by Colliot-Thële© ne ([CT1],
Thëore© me 8.5; see also Remark 4.5.8). Corollary 3.5.1 provides us with other
examples.

In general, the group V should be very large. For a surface, one should expect
(according to Mumford's Theorem and Bloch's conjecture; see, e.g., ([Ja], sect. 1)):

V � 0()H2�X ;OX � � 0:

(c) In (b), if we take instead of a p-adic ¢eld the Henselization of an algebraic
number ¢eld at a prime ideal, then the Albanese kernel should have the same struc-

*This is formulated as a question in ([CT4], 1.4.(d),(e),(f))
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ture of the direct sum of a ¢nite group F and a uniquely divisible group V . However,
in this case the Beilinson^Bloch conjecture [Be], [Bl1] predicts that the Albanese
kernel should be a torsion group, and hence we expect that the groupV above should
be zero.

4. The Group CH0�X1 � . . .� Xd� Modulo pm

(4.1) We keep the notation and hypotheses of the last section. Now we are going to
study the groups K�k;A1; . . . ;Ad�=pn for Abelian varieties A1; . . . ;Ad over k. We
can prove ¢niteness of K�k;A1; . . . ;Ad�=pn in the case where A1; . . . ;Ad have split
semi-ordinary reduction (see (4.4)). The result is based on the fact that in this case

the groups �A1

M

. . .
MAd ��k�=pn are related to the Milnor K-groups KM
� �k�=pn.

To illustrate our method, consider the case of two Tate curves E1;E2 with periods

q1; q2. The uniformizations Gm=qZi ÿ!Ei induce a surjection �Gm

M
Gm��k�=pn!

�E1

M
E2��k�=pn! K�k;E1;E2�=pn, and it is easy to see that �Gm


M
Gm��k�=pn �

KM
2 �k�=pn (see Remark 4.2.5 below). The group KM

2 �k�=pn, being a quotient of
�k� 
 k��=pn, is easily seen to be ¢nite and, hence, K�k;E1;E2�=pn is ¢nite.

(4.2) To begin with, we investigate tensor products of the Mackey functors
U : K 7!U�K� � UK (UK are the units in OK ), Gm: K 7!K� and Z : K 7!Z, where
for ¢nite extensions L=K=k, the norm is multiplication by eL=K , and resL=K is given
by multiplication by fL=K .

LEMMA 4.2.1. Let i; j; l be nonnegative integers such that i � j � lX 2. Then,

�U

M

i
MG

M

j

m 

MZ


M
l �=p �

H2�. . . ; m
2p �; if i � j � 2; l � 0;eZ=p; if i � 0; j � 1 � l;
0; otherwise:

8<:
Here H2�. . . ; m
2p � denotes the Mackey functor K 7!H2�K; m
2p �, and eZ is K 7!Z, but
with all norms equal to the identity.

Proof. We will show only that �U=p�
M�U=p� � H2�. . . ; m
2p �. The proofs of

�U=p�
M�Gm=p� � H2�. . . ; m
2p � and Gm=p

M
Gm=p � H2�. . . ; m
2p �

are analogous. All other cases can either be proved directly by simple calculations or
can be easily deduced from the ¢rst case.

The maps

�UK=p� 
 �UK=p� ! H1�K; mp� 
H1�K; mp�!
[
H2�K; m
2p �

for ¢nite extensions K=k induce by the universal property of the tensor product for
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Mackey functors a map

eh : �U=p�
M�U=p�ÿ!H2�. . . ; m
2p �:

We will show thateh is an isomorphism by modifying Tate's proof of the bijectivity of
the Galois symbol for a local ¢eld ([Ta], Corollary to Prop. 4.5). By a transfer
argument, we may assume that k contains the pth roots of unity. Then
H2�K; m
2p � is a cyclic group of order p, and the norm maps H2�L; m
2p � !
H2�K; m
2p � are isomorphisms for all ¢nite extensions L=K=k. For a ¢nite extension
K=k and a; b 2 UK , we set

�a; b�0K �eh��a; b�K=k� 2 H2�K; m
2p � �a �def a mod Up
K �

We have with L � K� ���
ap
p �,

�a; b�0K � 0()b 2 NL=K �UL�()�a; b�K=k � 0:

In particular, if L=K is totally rami¢ed of degree p and b =2 NL=K �UL�, then �a; b�0K is a
generator of H2�K; m
2p �. Hence,eh is surjective. As in the proof of ([Ta], Prop.4.5),
one can show that the symbol �a; b�0K satis¢es the properties (i), (ii) of ([Ta], Corollary
to Theorem 4.4), and consequently, the mapehK restricted to the subgroup SK , gen-
erated by the symbols �a; b�K=K , a; b 2 UK , is bijective. It remains to prove that

SK � �U=p

M
U=p��K�. Let L=K be a ¢nite extension. We will show by induction

on ordp�eL=K �öthe exponent of p in eL=K öthat any symbol �a; b�L=K , a; b 2 UL,
lies in SK . In the case p j= eL=K , NL=K : UL=p! UK=p is surjective. So there are
c 2 UK=p and d 2 UL=p such that �c;NL=K �d��0K is a generator of H2�K; m
2p �. Thus
�resL=K �c�; d�0L generates H2�L; m
2p � and the bijectivity of ehL jSL yields �a; b�L=L �
�resL=K �c�; di�L=L for some i. Therefore �a; b�L=K � �c;NL=K �di��K=K 2 SK .

Now assume ordp�eL=K �X 1. There exists a ¢nite extension M=L of degree prime
to p and an intermediate ¢eld M1 of M=K such that M=M1 is a cyclic and totally
rami¢ed extension of degree p (this can be seen by considering the extension
LKp=Kp where Kp is the ¢xed ¢eld of a p-Sylow group of GK ). The surjectivity
of NM=L : UM=p! UL=p allows us to write �a; b�L=K � �resM=L�a�; b1�M=K for some
b1 2 UM . Let c 2 UM1 be such that S �M1�

���
cp
p � is a totally rami¢ed nontrivial exten-

sion ofM1 and S 6�M (such a c obviously exists if we chooseM large enough). Then
NS=M1�US� �NM=M1�UM� � UM1 , so there is a d 2 UM such that �c;NM=M1�d��0M1

gen-
erates H2�M1; m
2p �. As before, we have �a; b1�M=M � �resM=M1 �c�; di�M=M for some i.
Thus

�a; b�L=K � �resM=L�a�; b1�M=K � �resM=M1�c�; di�M=K � �c;NM=M1�di��M1=K ;

and since ordp�eM1=K � < ordp�eL=K �, the latter symbol lies in SK by the induction
hypothesis. &
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Let ek=k be the maximal unrami¢ed extension of k and let n0 X 0 be the largest
integer such that mpn0 �k� �ek.
LEMMA 4.2.2. Let i; j; l; n be nonnegative integers such that i� j � lX 2. Then,

�U

M
i
MG


M
j

m 

MZ


M
l ��k�=pn �

Z=pn1 for some n1 W n0; if i � j � 2; l � 0;
Z=pn; if i � 0; j � 1 � l;
0; otherwise:

8<:
Proof. Again, we will give the proof only for �U
MU ��k�=pn. The products

�U
MGm��k�=pn and �Gm

M
Gm��k�=pn can be handled similarly. All other assertions

follow from (4.2.1) or by simple computations.

We may assume that k contains the pth roots of unity, since otherwise we have

�U
MU ��k�=p � 0 by Lemma 4.2.1, hence �U
MU ��k�=pn � 0. Since for a ¢nite

unrami¢ed extension K=k, the norm �U
MU ��K� ! �U
MU ��k� is surjective, we
can replace k by K and thus may assume from the beginning that k (not only ek)
contains the pn0 -roots of unity. Under this hypothesis we show by induction that

ehk: �U
MU ��k�=pnÿ!H2�k; m
2pn � �4:2:3�
is an isomorphism. By Tate local duality ([Mi2], Chapter 1, ½2, Corollary 2.3), the
latter group is isomorphic to the dual of Hom�mpn ;Z=pn�Gk , i.e. to mpn �k�, hence
is cyclic of order at most pn0 . This yields the assertion. For n � 1, ehk is an
isomorphism by Lemma 4.2.1. For arbitrary n, we have a commutative diagram

with exact rows except possibly at �U
MU ��k�=pn:

Uk 
 mp ÿ! �U
MU ��k�=pn ÿ! �U
MU ��k�=pn�1 ÿ! �U
MU ��k�=p ÿ! 0??y ??y1 ??y2 ??y3
H1�k; m
2p � ÿ! H2�k;m
2pn � ÿ! H2�k;m
2pn�1 � ÿ! H2�k;m
2p � ÿ! 0

The maps 1 and 3 are isomorphisms (the latter by the induction hypothesis). A dia-
gram chase shows that the map 2 is an isomorphism if

Uk 
 mpÿ!H1�k; m
2p � ÿ!Ker�H2�k; m
2pn �ÿ!H2�k; m
2pn�1 �� �4:2:4�

is surjective. If n� 1W n0, i.e. mpn�1 �k� � k, then the computation of H2�k; m
2pn � done
above using Tate duality shows that Ker�H2�k; m
2pn �ÿ!H2�k; m
2pn�1�� � 0, so (4.2.4) is
surjective. If nX n0, then Ker�H2�k; m
2pn �ÿ!H2�k; m
2pn�1 �� is a cyclic group of order p,
so we only need to verify that the map (4.2.4) is not trivial. If we identifyH2�k; m
2pn �
with mpn0 , then the map

Uk 
 mpÿ!H1�k; m
2p � ÿ!H2�k; m
2pn � � mpn0

is just given by the Hilbert symbol u
 z 7! u; z=p� � 2 mpn0 . Let z be a primitive p-th
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root of unity. Then k� ���
zpn0
p �=k is a rami¢ed extension of degree p (since

���
zpn0
p
=2ek). It

follows from the de¢nition of the Hilbert symbol that there exists u 2 Uk such that
u; z=p� � is non-trivial. Therefore (4.2.4) is surjective and so (4.2.3) is an isomorphism
for all n. &

Remarks 4.2.5. (a) The above proof for �U
MGm�=pn and �Gm

M
Gm�=pn instead of

�U
MU �=pn also yields

�U
MGm�=pn � H2�. . . ; m
2pn � � �Gm

M
Gm�=pn:

(b) In an unpublished work, Kahn has shown that for any ¢eld k and any positive
integer n prime to the characteristic of k, the natural map:

�Gm

M
Gm��k�=nÿ!KM

2 �k�=n

is an isomorphism. The proof requires a lot of calculation with symbols. Note,
however, that using an argument similar to ([Ta], Proposition 3.1), one can easily
show the following:

LEMMA 4.2.6. Let k be a ¢eld and let F be any Mackey functor over k. Let

f : Gm

M
Gmÿ!F be a homomorphism of Mackey functors. Then for any positive

integer n prime to the characteristic of k, f induces a homomorphism:
KM

2 �k�=nÿ!F �k�=n:
The basic idea of the proof is that the image of the subgroup of k� 
 k� generated by
tensors of the form a
 �1ÿ a� is n-divisible in F �k�.
(4.3) Let G be a commutative ¢nite £at group scheme over Spec O. Such a G rep-
resents a sheaf for the fppf topology on Spec �O�, which we also denote by G.

LEMMA 4.3.1. Let G be a commutative ¢nite £at group scheme over Spec O.
(a) There exists an exact sequence (for the fppf topology) of £at group schemes

0 ÿ!G ÿ!A ÿ!f B ÿ!0

where A;B are Abelian schemes over O. Let A;B be their generic ¢bers. For every
¢nite extension K=k, we have

H1
fl�OK ;G� � Coker�f : A�K�ÿ!B�K��

(b) The assignment K 7!H1
fl�OK ;G� de¢nes in a natural way a Mackey functor,

which we denote by H1
fl�O ;G�. It is isomorphic to Coker�f : A! B� (viewed as a

Mackey functor). Consequently, for an unrami¢ed extension L=K, the norm map
NL=K: H1

fl�OL;G� ! H1
fl�OK ;G� is surjective.
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Proof. We note ¢rst that for any smooth commutative group scheme G over O, we
have a canonical isomorphism

H1
fl�OK ;G� � H1

�et�kK ;Gs� �4:3:2�
where Gs denotes the special ¢ber of G. Indeed it is known (see, e.g., [Mi1], Chapter
III, Theorem 3.9) that for a smooth group scheme over OK , £at and ëtale
cohomology coincide, i.e. H1

fl�OK ;G� � H1
�et�OK ;G�. On the other hand, as a conse-

quence of the proper base change theorem, the latter group is isomorphic to
H1

�et�kK ;Gs� (see e.g. [Mi1], Chapter VI, Corollary 2.7).
(a) For the existence of the sequence 0! G!A! B ! 0 see, e.g., ([Mi2],

Appendix, Remark A7). The associated long exact sequence of fppf cohomology

0ÿ!G�OK �ÿ!A�OK �ÿ!B�OK �ÿ!H1
fl�OK ;G�ÿ!H1

fl�OK ;A�
yields the assertion since A�OK � � A�K�;B�OK � � B�K� and since we have by (4.3.2)
and by Lang's theorem (see, e.g., [Se], VI.6)

H1
fl�OK ;A� � H1�kK ;As� � 0:

(b) By ([Mi2], Chapter III, Lemma 1.1 (a)) the natural morphism H1
fl�OK ;G� !

H1
�et�K;GK � is injective. Therefore, to see that K 7!H1

fl�OK ;G� de¢nes a Mackey
functor, it is enough to show that for ¢nite extensions L=K=k, the corestriction
H1

�et�L;GL� ! H1
�et�K;GK � maps H1

fl�OL;G� into H1
fl�OK ;G�. Consider the com-

mutative diagram with exact rows

0 ÿ! G�OK � ÿ! A�OK � ÿ! B�OK � ÿ! H1
fl�OK ;G� ÿ! 0??y � ??y � ??y � ??y

0 ÿ! G�K� ÿ! A�K� ÿ! B�K� ÿ! H1
�et�K;GK � ÿ! . . .

It shows that

Im�H1
fl�OK ;G� ! H1

�et�K;GK �� �
Im�B�K� ! H1

�et�K;GK �� � Coker�f : A�K� ! B�K��:
Since the lower row is natural with respect to corestrictions, the assertion follows
immediately. For the last statement it is enough to remark that NL=K :

B�L� ! B�K� is surjective (see [Maz], Corollary 4.4). &

LEMMA 4.3.3. (a) Let Gi �i � 1; 2; 3� be commutative ¢nite £at group schemes over
O, and assume that 0! G1! G2 ! G3! 0 is a short exact sequence of sheaves
for the fppf topology. Then the sequence

H1
fl�O ;G1�ÿ!H1

fl�O ;G2�ÿ!H1
fl�O ;G3�ÿ!0

is exact.
(b) H1

fl�O ;Z=pn� � Z=pn and H1
fl�O ; mpn � � U=pn.
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(c) Let A be an Abelian scheme over Spec O with generic ¢ber A. Then,
H1

fl�O ;A�pn�� � A=pn.

Proof. We have H2�OK ;G� � 0 for any commutative ¢nite £at group-scheme G
over OK (see, e.g., ([Mi2], Ch.III, Lemma 1.1(a))). This and the long exact sequence
of fppf cohomology prove (a). The ¢rst assertion of (b) is a consequence of

H1
fl�OK ;Z=pn� � H1�kK ;Z=pn� � Z=pn:

The ¢rst isomorphism is (4.3.2). The second isomorphism is given by evaluating a
cocycle inH1�kK ;Z=pm� at the Frobenius automorphism in gK . The second assertion
of (b) follows from H1

fl�OK ;Gm� � Pic�OK � � 0 by using the Kummer sequence.
Finally (c) is a special case of Lemma 4.3.1(b) above. &

LEMMA 4.3.4. Let G be a commutative ¢nite ëtale group scheme over Spec O. Then
the natural map

k� 
H1�k;Gs� � k� 
H1
fl�O;G�ÿ!�Gm


M
H1

fl�O ;G���k�

is surjective.

Proof. By (4.3.2), we can identifyH1
fl�OK ;G�withH1

�et�kK ;Gs�. It is an easy exercise
to verify that under this identi¢cation the norm and the restrictions maps for ¢nite
extensions are given as eL=K corkL=kK : H1

�et�kL;Gs� ! H1
�et�kK ;Gs� and reskL=kK :

H1
�et�kK ;Gs� ! H1

�et�kL;Gs�. In particular, we note that if L=K is totally rami¢ed, then
resL=K is an isomorphism, and for every x 2 H1

fl�OK ;G�, there exists a ¢nite
unrami¢ed extension M=K such that resM=K �x� � 0.

Let K=k be a ¢nite extension with inertia ¢eld Kt � K and let �a; b�K=k 2
�Gm


M
H1

fl�O ;G���k� be a symbol. Then there is a b0 2 H1
fl�OKt ;G� with

resK=Kt �b0� � b, hence �a; b�K=k � �NK=Kt �a�; b0�Kt=k. Let p 2 k� be a prime element
and write NK=Kt �a� � pm u for u 2 UKt . Then

�a; b�K=k � m �p; b0�Kt=k � �u; b0�Kt=k � m �p;NKt=k�b0��k=k � �u; b0�Kt=k:

To ¢nish the proof it is enough to show that �u; b0�Kt=k � 0. Choose a ¢nite unrami¢ed
extension M=Kt with resM=Kt �b0� � 0. Let u0 2 UM with NM=Kt �u0� � u. We obtain
�u; b0�Kt=k � �NM=Kt �u0�; b0�Kt=k � �u0; resM=Kt �b0��M=k � 0: &

(4.4) Recall that an Abelian variety of dimension d over a ¢eld F of characteristic
p > 0 is said to be ordinary if it has pd points of order p over an algebraic closure
F of F . Equivalently, this can be also characterized by saying that the connected
component of its group scheme of p-division points over F is isomorphic to mdp .
We will say that A=k has semi-ordinary reduction if A has semi-Abelian reduction
and A0

s �p�0 � mdimA
p over F (here the second 0 denotes the connected component

of the neutral element of a ¢nite group scheme). The second condition is equivalent
to requiring that the maximal Abelian quotient of A0

s is ordinary. If, furthermore,
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the maximal torus of A0
s splits over the residue ¢eld F , we say that A has split

semi-ordinary reduction. Finally, A is said to have potentially semi-ordinary
reduction if it has semi-ordinary reduction after base change by a ¢nite extension
K=k.

Now let A be an Abelian variety over a p-adic ¢eld k. Then we have the following
generalization of Tate's p-adic uniformization theorem for elliptic curves with
multiplicative reduction (due to Raynaud and Faltings/Chai):

THEOREM 4.4.1 (See [SGA VII], Part I, Exposë IX, ½½2, 5, 7 or [FaCh], Ch.II and
III for (i)-(iii); (iv) is proved in [FaCh], III.8.1). Assume that A has semi-Abelian
reduction. Let K=k be a ¢nite unrami¢ed extension such that the maximal torus
ofA0

s 
k kK splits. Then there exists an exact sequence of commutative smooth group
schemes over Spec O

0ÿ!T ÿ!A]ÿ!Bÿ!0 �4:4:2�

and a subgroup G � A]�K� such that

(i) T OK � Gr
m is a split torus.

(ii) B is an Abelian scheme.
(iii) The special ¢bers of A] 
O OK and A0 
O OK coincide.
(iv) G is a free-Abelian group of rank r. For every ¢nite extension L=K there is an

isomorphism A]�L�=G � A�L�
The semi-Abelian scheme A] is called the Raynaud extension associated to A=k.

THEOREM 4.5. Let nX 2 and let A1; . . . ;An=k be Abelian varieties with split
semi-ordinary reduction. Then K�k;A1; . . . ;An� � F �D; where F is a ¢nite group
and D is divisible.

Proof. Let A]i ; T i � Gri
m;Bi be as in (4.4.1) for Ai and K � k. Let A]i and Bi be the

generic ¢bers of A]i and Bi respectively. According to Theorem 3.5, Theorem

4.4.1(iv) and Lemma 3.4.4, it is enough to prove that �A]1

M

. . .
MA]n��k�=pn is ¢nite

and of order bounded independently of n. By Theorem 4.4.1 we have exact sequences

of Mackey functors

0ÿ!Gri
mÿ!A]iÿ!Biÿ!0:

They yield a ¢ltration on A]1

M

. . .
MA]n whose successive quotients are quotients ofNM
i2I Bi


MNM
i2J G

ri
m for I _[J � f1; . . . ; ng. Therefore it is enough to show that

�NM
i2I Bi


M
G


M
j

m ��k�=pn is ¢nite and of order bounded independently of n for every
subset I � f1; . . . ; ng and j � nÿ #�I�.
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Denote by Bti the dual Abelian scheme of Bi. Let

0ÿ!Bi�pn�0ÿ!Bi�pn�ÿ!Bi�pn��etÿ!0

0ÿ!Bti �pn�0ÿ!Bti �pn�ÿ!Bti �pn��etÿ!0

be the `decomposition' of Bi�pm�, Bti �pn� into a connected and an ëtale O-scheme (see
e.g., [Sh], ½3, Proposition on p. 43). By Lemma 4.3.3(c), we obtain an exact sequence
of Mackey functors

H1
fl�O ;Bi�pn�0�ÿ!Bi=pnÿ!H1

fl�O ;Bi�pn��et�ÿ!0:

Again we obtain ¢ltrations on
NM

i2I Bi

M
G


M
j

m =p
n which show that it is enough to prove

that the following holds for every pair of disjoint subsets I1; I2 � f1; . . . ; ng and
j � nÿ #�I1 [ I2�:

(4.5.1) The group

OM

i2I1
H1

fl�O ;Bi�pn��et�
M
OM

i2I2
H1

fl�O ;Bi�pn�0�

M
G


M
j

m =p
n

" #
�k�

is ¢nite and of order bounded independently of n.

If I1 � ; � I2, then j � nX 2 and (4.5.1) follows from Lemma 4.2.2 in this case.
Now assume I1 [ I2 6� ;. If K=k is an unrami¢ed extension the norm
NK=k: H1

fl�OL;Bi�pn��� ! H1
fl�OK ;Bi�pn��� (with � � 0 or �et) is surjective for every

i according to Lemma 4.3.1. Therefore

NK=k:
OM
i2I1

H1
fl�O ;Bi�pn��et�
M

OM

i2I2
H1

fl�O ;Bi�pn�0�

M
G


M
j

m =p
n

" #
�K�ÿ!

OM
i2I1

H1
fl�O ;Bi�pn��et�
M

OM

i2I1
H1

fl�O ;Bi�pn�0�

M
G


M
j

m =p
n

" #
�k�

is also surjective. Hence we can replace k by a ¢nite unrami¢ed extension if
necessary. The assumption that each Bi has ordinary reduction is equivalent to
the following fact about the Cartier duals (see, e.g., [Mu], ½15, p. 147)

�Bi�pn��et�D � Bti �pn�0; �Bti �pn��et�D � Bi�pn�0: �4:5:2�

We choose a ¢nite unrami¢ed extension K=k such that all Bi�pn��et 
O OK ;

Bti �pn��et 
O OK are constant group schemes, hence� �Z=pn�dim�Bi�. The isomorphisms
in (4.5.2) show then that Bi�pn�0 
O OK � �mpn�dim�Bi� for every i. From Lemma
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(4.3.3), we get

OM

i2I1
H1

fl�O ;Bi�pn��et�
M
OM
i2I2

H1
fl�O ;Bi�pn�0�


M
G


M
j

m =p
n

" #
�K�

�
OM

i2I1
Z
M

OM

i2I2
U
MG


M
j

m

" #
�K�=pn:

According to Lemma 4.2.2, the latter group is ¢nite and of bounded order
(independently of n) as long as we are not in the case #�I1� � 1;#�I2� � 0 and j � 1.

This case of 4.5.1 has to be treated separately. We may assume I1 � f1g and set
B � B1 for simplicity. According to Lemma 4.3.4, the natural map

k� 
H1�k;B�pn��et
s � � k� 
H1

fl�O;B�pn��et�ÿ!�Gm

M
H1

fl�O ;B�pn��et���k� �4:5:3�
is surjective. Since #�H1�k;B�pn��et

s �� � #�Bs�pn��et�k��W#�Bs�k��we obtain a bound for
the left hand side of (4.5.3) which is independent of n. This completes the proof of
(4.5.1) and of the theorem. &

Remark 4.4.5. Under the assumptions of Theorem 4.5, the proofs of Theorems 3.5
and 4.5 show that K�k;A1; . . . ;Ad � is divisible for dX 3.

Theorem 4.5, Corollary 3.5.1 and Corollary 2.4.1 imply:

COROLLARY 4.5.6. Let X1; . . . ;Xd be smooth, projective, geometrically connected
curves over k with Jacobians J1; . . . ; Jd such that Xi�k� 6� ; for each i.

(a) Assume that J1; . . . ; Jd have split semi-ordinary reduction. Then the kernel of
the Albanese map A0�X1 � . . .� Xd� ! J1�k� � . . .� Jd�k� is of the form F �D
for a ¢nite group F and a divisible group D. In particular, CH0�X1 � . . .� Xd�=m
is ¢nite for every positive integer m.

(b) If J1; . . . ; Jd have good ordinary reduction then F is a p-group.

Again in the case d � 2, we can weaken the hypotheses:

COROLLARY 4.5.7. Let X1;X2=k be smooth, projective, geometrically connected
curves. Assume that J1; J2 have potentially semi-ordinary reduction. Then,

Ker�alb : A0�X1 � X2�ÿ!J1�k� � J2�k�� � F �D;

where F is ¢nite and D is divisible.

This is proved in the same way as Corollary 3.5.2 by using the ¢niteness of the
p-torsion of CH0�X1 � X2�.

Remarks 4.5.8. (a) For m a postive integer and iX 2, there are as yet very few
¢niteness results for the group CHi�X �=m for varieties X over number ¢elds or local
¢elds (but see [CT2], Sect. 4.3 and [SaSu]). In the case of a smooth projective surface
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X over a p-adic ¢eld k, the only result concerning the mod pn-part of the Chow group
of zero cycles is due to Colliot-Thële© ne ([CT1], Thëore© me 8.5), who has shown that
CH0�X �=pn is ¢nite if the Albanese mapping is injective for X over k.* The same
result was obtained by Saito and Sujatha ([SaSu], Theorem 2.5) under the
assumptions H2�X ;OX � � 0 and X is not of general type (in fact these assumptions
imply that the Albanese map is injective). Since for a product of curves
X � X1 � X2 of genus X 1, we have H2�X ;OX � 6� 0, these results do not cover
Corollary (4.5.7).

(b) Let k be a ¢eld and let A1; . . . ;An be Abelian varieties over k. Somekawa has
constructed a natural map

c : K�k;A1; . . . ;Ad�=mÿ!Hn�k;A1�m� 
 . . .
 Ad �m�� �4:5:9�

for every nonzero integer m prime to the characteristic of k ([So], Prop. 1.5) and has
conjectured that it is always injective. This would imply the ¢niteness of the groups
K�k;A1; . . . ;An�=m (hence also of CH0�X1 � . . .� Xd�=m for a product
X1 � . . .� Xd of curves) if k is a local or global ¢eld. Indeed, in the latter case
one can show that c factors through the ¢nite group Hn�GS;A1�m� 
 . . .

Ad �m��, where S is a ¢nite set of primes of k including all in¢nite primes, all primes
dividing m and all primes where at least one of the Ai's has bad reduction and where
GS denotes the Galois group of the maximal extension of k which is unrami¢ed
outside of S . In the situation considered in Theorem 4.5, one can show that (4.5.9)
is injective if all m-division points of A1; . . . ;An are k-rational.

(c) Let k=Qp be a ¢nite extension. We will give now an example which shows that
it is really necessary to restrict the second assertion of Conjecture 3.5.4 to the prime
to p part. Let E1;E2=k be elliptic curves with good ordinary reduction, and assume
that their p-division points are k-rational. Let X � E1 � E2 and let Y � eE1 �eE2

be its special ¢ber. Here eEi=k denotes the special ¢ber of Ei, i � 1; 2. By (4.5.7)
we have

K�k;E1;E2� � Ker�alb : A0�X � ! E1�k� � E2�k�� � F �D

for a ¢nite group F and a divisible group D (which should be uniquely divisible
according to Conjecture 3.5.4). By analyzing the proof of Theorem 4.5, one can
show that the composition

�E1

M
E2��k�=pÿ!! K�k;E1;E2�=pÿ!c H2�k;E1�p� 
 E2�p��

is injective and its image is cyclic of order p. This implies F 6� 0. On the other hand,

*Note that in [CT1], TheÂ oreÁ me 8.5 it is also assumed that H2�X ;OX � � 0. This is implied by
the assumption that the Albanese mapping is injective over k, as follows from the main result
of [Ro].
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we have

Ker�alb : A0�Y � ! eE1�k� �eE2�k�� � K�k;eE1;eE2� � 0

by (see [KS] or [Ka2]).
(d) The reason why we cannot say anything at the moment about the case where

the Jacobian of one of the curves does not have semi-ordinary reduction is that
the formal group of the Jacobian will then not be of multiplicative type, hence
we cannot relate the corresponding K-group to a Milnor K-group of a ¢eld.

Appendix

We now ¢nish the proof of Lemma 3.4.1. For a torsion group A and a prime number
`, denote by Af`g the `-primary component A. We have to show:

(A 1) �F1

M

. . .
MFn��k�f`g is divisible for almost all `.

(A 2) �F1

M

. . .
MFn��k�f`g is ¢nite-by-(N-)divisible for all primes ` 6� p.

To see (A 1), let K=k be a ¢nite unrami¢ed extension such that gK operates trivially

on each Gi. We have already shown that �F1

M

. . .
MFn��K� is divisible. For a prime `

not dividing �K : k�, the norm NK=k: �F1

M

. . .
MFn��K�f`g ! �F1

M

. . .
MFn��k�f`g is
surjective. Thus (A 1) holds.

Now ¢x a prime ` 6� p and let K � k` be the ¢xed ¢eld of an `-Sylow group of Gk.

Then

resK=k: ÿlim

m2N
�F1


M
. . .
MFn��k�=`m ! ÿlim

m2N
�F1


M
. . .
MFn��K�=`m

is injective, so by Lemma 3.4.4, it is enough to show (A 2) forK instead of k. Since we

are only interested in the `-primary part of �F1

M

. . .
MFn��K�, we may replace Fi by
Fi 
Z` for i � 1; . . . ; n or assume from the beginning that we are dealing with
gK -Z`-lattices Gi;eGi. For mX 0 let Km=K be the unrami¢ed extension of degree
`m. We choose m minimal with the property that gK operates trivially on

G1; . . . ;Gn, and we will show by induction on m and n that �F1

M

. . .
MFn��K� is
¢nite-by-divisible.

The case m � 0; n arbitrary was done in the part of Lemma 3.4.1 we have already
proved. Therefore let m > 0; nX 2. Let f be a generator of gK � Z`. We put

G�1�i � Gfÿ1
i ; eG�1�i � eGi \ G�1�i ; G�2�i � Gi=G

�1�
i ;

eG�2�i � eGi � G�1�i =G
�1�
i :

Note that G�2�i ;eG�2�i are again gK -Z`-lattices and that we have exact sequences

0ÿ!F�1�i ÿ!Fiÿ!F�2�i
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for i � 1; . . . ; n, where we have set F�1�i � F�G�1�i ;eG�1�i �;F�2�i � F�G�2�i ;eG�2�i �. Let Ci be the

image of Fi in F�2�i . We need the following fact:

(A 3) For each i � 1; . . . n there is a constant c � ci > 0 such that for every ¢nite
totally rami¢ed extension L=K, we have #�Ci�L��W c.

Proof. Since Ci � F�2�i , it is enough to verify this for F�2�i . We have for a ¢nite
totally rami¢ed extension L=K ,

#�F�2�i �L�� � #�G�2�i =eL=K �eG�2�i �gL � #�G�2�i =�L : K � �eG�2�i �fÿ1
� #�G�2�i =�L : K � �eG�2�i ��fÿ1�W#�G�2�i ��fÿ1� �defc

Note that �G�2�i ��fÿ1� is ¢nite because ö by de¢nition of G�1�i ö 1 is not an eigenvalue
of f : G�2�i 
Q` ! G�2�i 
Q`. &

The short exact sequences 0! F�1�i ! Fi ! Ci ! 0 induce a ¢ltration on

�F1

M

. . .
MFn��K� whose successive quotients are quotients of �NM
i2I F�1�i 


MNM
i2J Ci��K� for partitions I _[J � f1; . . . ; ng, and it remains to prove that the latter

groups are ¢nite-by divisible. For I � f1; . . . ; ng, NM
i2J F

�1�
i �K� is divisible, since

gK -operates trivially on each G�1�i .
Now assume J 6� ;, say n 2 J. By using the surjection

OM

i2I
F�1�i 


MOM
i2J

Fi

" #
�K1� !

OM

i2I
F�1�i 


MOM

i2J
Ci

" #
�K1�

and the induction hypothesis, we see that �NM
i2I F�1�i 


MNM
i2I Ci��K1� is ¢nite-by-

divisible. If we put eF �NM
i2I F�1�i 


MNM
i2J Ci and C � Cn, it remains to show that

C � Coker�NK1=K : �eF
MC��K1� ! �eF
MC��K�� is ¢nite. It is generated by the images
of the symbols �x; y�L=K ; x 2 eF�L�; y 2 C�L� for L=K ¢nite and totally rami¢ed.
By (A 3) we know that the groups C�L� for such L are bounded. On the other hand,
for every tower of ¢nite extensionsM=L=K withM=L totally rami¢ed, the restriction
F�2�n �L� ! F�2�n �M� is injective, henceC�L� ! C�M� is injective. Note also thatC�L�
depends only on eL=K and fL=K . Putting these facts together, we get

(A 4) There is an integer N (a power of `) such that for all totally rami¢ed ¢nite
extensions M=L=K with �L : K�XN, the restriction C�L� ! C�M� is an
isomorphism.

Since GK is solvable, any totally rami¢ed extensionM=K of degree> N contains a
subextension L=K of degree N. Therefore any symbol �x; y�M=K ; x 2 eF�M�;
y 2 C�M� can be written in the form �x0; y0�L=K with �L : K �WN, i.e. the natural
map

L
L=K

eF�L� 
C�L�ÿ!C is surjective, where L=K runs through the totally
rami¢ed ¢nite extensions of K of degree WN. By the induction hypotheses,eF�L� is ¢nite-by-divisible (eF is a quotient of

NM
i2I F�1�i 


MNM
i2Jÿfng Fi, which has only
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nÿ 1 factors), hence eF�L� 
C�L� is ¢nite. Since there are only ¢nitely many such
extensions L=K (here we use the hypothesis ` 6� p), we conclude that C is ¢nite. This
completes the proof of (A 2) and of Lemma (3.4.1).
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(3) 21, Springer-Verlag, Berlin, 1990.
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