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Stability of cylindrical, multicomponent vesicles
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Vesicles are important surrogate structures made up of multiple phospholipids and
cholesterol distributed in the form of a lipid bilayer. Tubular vesicles can undergo pearling
– i.e. formation of beads on the liquid thread akin to the Rayleigh–Plateau instability.
Previous studies have inspected the effects of surface tension on the pearling instabilities
of single-component vesicles. In this study, we perform a linear stability analysis on
a multicomponent cylindrical vesicle. We solve the Stokes equations along with the
Cahn–Hilliard equation to develop the linearized dynamic equations governing the vesicle
shape and surface concentration fields. This helps us to show that multicomponent vesicles
can undergo pearling, buckling and wrinkling even in the absence of surface tension, which
is a significantly different result from studies on single-component vesicles. This behaviour
arises due to the competition between the free energies of phase separation, line tension
and bending for this multi-phospholipid system. We determine the conditions under which
axisymmetric and non-axisymmetric modes are dominant, and supplement our results with
an energy analysis that shows the sources for these instabilities. Lastly, we delve into a
weakly nonlinear analysis where we solve the nonlinear Cahn–Hilliard equation in the
weak deformation limit to understand how mode-mixing alters the late time dynamics of
coarsening. We show that in many situations, the trends from our simulations qualitatively
match recent experiments (Yanagisawa et al., Phys. Rev. E, vol. 82, 2010, p. 051928).

Key words: membranes

1. Introduction

Vesicles are miniature sacs of fluids surrounded by a thin lipid bilayer, which are often
studied to understand the biophysics of cell membranes (Lipowsky & Seifert 1995;
Litschel & Schwille 2021). The lipid bilayer demonstrates elasticity that resists changes in
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area and bending, and these properties make vesicle dynamics different from conventional
fluid droplets (Helfrich 1973; Seifert 1997).

Vesicles that contain a single lipid species are known as single-component vesicles.
Deflated vesicles of this form demonstrate a wide range of behaviours such as tank
treading, tumbling and trembling under shear flow (Vlahovska & Gracia 2007; Deschamps
et al. 2009; Abreu et al. 2014), and stretching instabilities under extensional flow
(Boedec, Jaeger & Leonetti 2014; Narsimhan 2014; Narsimhan, Spann & Shaqfeh
2015). When a tubular vesicle is subject to an external force or perturbation, it may
undergo a Rayleigh–Plateau-like instability known as ‘pearling’ under tension (Bar-Ziv
& Moses 1994; Granek & Olami 1995; Goldstein et al. 1996; Gurin, Lebedev &
Muratov 1996; Bar-Ziv, Moses & Nelson 1998; Powers 2010; Pullarkat et al. 2010;
Agrawal & Steigmann 2011; Boedec et al. 2014) and buckling/wrinkling instabilities
under compression (Narsimhan et al. 2015). The pearling phenomenon has been observed
for liquid drops (Tomotika 1935), jets (Suryo, Doshi & Basaran 2007) and effective
viscoelastic media (Rahimi, DeSimone & Arroyo 2011). Recently, linear stability analyses
have been performed on single-component, tubular vesicles to quantify the onset of
pearling, buckling and wrinkling modes, including the effects of membrane’s bending
rigidity, surface viscosity and applied tension (Narsimhan et al. 2015).

In most biological, pharmaceutical and industrial applications, lipid bilayers contain
multiple phospholipids and cholesterol mixtures. These mixtures form phase-separated
domains – i.e. lipid rafts – that are vitally important in signal transduction and protein
transport across the cell membrane in biology (Simons & Ikonen 1997). This behaviour
arises due to the repulsive interactions between saturated and unsaturated lipids on the
interface, leading to a liquid-ordered (cholesterol rich) phase and a liquid-disordered
(cholesterol poor) phase on the interface (Shimshick & McConnell 1973; Veatch & Keller
2003; Elson et al. 2010). Under these conditions, phase separation on the vesicle surface
causes inhomogeneities in material properties like the bending stiffness (Claessens et al.
2007). These inhomogeneous properties make for interesting physics under flow and is
important in understanding a multitude of physical processes (Baumgart, Hess & Webb
2003; Barthès-Biesel 2016; Gera, Salac & Spagnolie 2022; Bachini et al. 2023a; Yu &
Košmrlj 2023). For example, recent experiments have shown that phase-separated vesicles
can give rise to pearling and buckling instabilities (Yanagisawa, Imai & Taniguchi 2010).

In this paper, we perform a linear stability analysis of a cylindrical thread with multiple
lipids on it, and determine the conditions under which it is unstable under tension or
compression. We will discuss how these results differ from the classical results for a
single-component vesicular thread and perform a qualitative comparison with recent
experimental results on multicomponent threads. Section 2 lays out the mathematical
formulation of the problem and outlines the characteristic time scales and dimensionless
quantities governing the system. This is followed by the linear stability analysis and final
reduced equations in § 3. We refresh the memory of the reader by providing results for
single-component vesicles in § 4. In § 5, we first provide a general set of observations
pertaining to multicomponent vesicles. We then describe the conditions under which
one observes axisymmetric versus non-axisymmetric instabilities, and quantify growth
rates and dominant wavenumbers. Interestingly, we find that under certain situations, one
can observe multimodal instabilities since the growth rates for the axisymmetric and
non-axisymmetric modes are comparable. We also discuss the role of surface viscosity
and Péclet number (comparing coarsening and bending time scales) on the growth rates of
the instability, and provide an energy analysis to describe which energetic contributions
drive the instability. Lastly, in § 6, we perform a weakly nonlinear analysis where we
solve the fully nonlinear Cahn–Hilliard equations in the weak deformation limit. This
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analysis is performed to understand the limits of the linear stability analysis and to improve
our understanding of the long-time dynamics where mode mixing could come into play.
We provide qualitative comparisons to previous experimental studies (Yanagisawa et al.
2010). Conclusions are in § 7.

2. Mathematical formulation

Figure 1 shows an initially cylindrical lipid membrane with Newtonian fluids inside
and outside with viscosities λμ and μ, respectively. The membrane contains multiple
phospholipids that are initially well mixed, but can potentially phase separate into
liquid-ordered (Lo) and liquid-disordered domains (Ld). The membrane is incompressible
and characterized by an isotropic surface tension σ0, a spatially varying bending modulus
κc and a line tension between the domains (characterized by parameter γ described later
in this section). We will perform a linear stability analysis by perturbing the membrane
shape and lipid concentration, and determine how the shape and phase behaviour evolve
over time. In § 6, we will perform a weakly nonlinear analysis.

2.1. Membrane energy
The energy of the lipid membrane is governed by three factors: bending, phase energy
and surface tension. The bending energy is given by the classic Canham–Helfrich model
(Helfrich 1973):

Wbend =
∫

1
2
κcH2 dS +

∫
1
2
κgK dS. (2.1)

In the above equation, H = 1
2∇s · n is the mean curvature of the membrane and K is

the Gaussian curvature (see § A.1), where n is the outward-pointing normal vector and
∇s = (I − nn) · ∇ is the surface gradient operator. The bending modulus κc depends
on the lipid distribution on the membrane. We represent it as κc = ((κlo + κld)/2)+
((κlo − κld)/2)q, where κlo and κld are bending moduli of the Lo and Ld phases, and q is an
order parameter that represents the phase behaviour of the system (q = −1 corresponds
to pure Ld phase, while q = +1 corresponds to pure Lo phase). Going forward, we will
denote k0 = ((κlo + κld)/2) as the average bending rigidity and k1 = ((κlo − κld)/2) as
half the bending difference. Thus, κc = k0 + k1q.

In our paper, we will neglect the effect of Gaussian bending rigidity κG. While some
studies show that the membrane tractions and chemical potentials are altered by a linear
variation κG with respect to the order parameter q (Amazon, Goh & Feigenson 2013;
Barrett, Garcke & Nürnberg 2017), this effect plays no role in the linear stability analysis
as its effect on these quantities is O(ε2), where ε is the magnitude of the perturbation.
A future study can consider its role in the nonlinear coarsening dynamics.

The order parameter q is determined by the thermodynamics of mixing between the
membrane’s phospholipids. There are many thermodynamic models available in the
literature depending on the specific type of lipids involved and the level of accuracy
required (Almeida 2009). However, the simplest model that qualitatively captures the
physics of phase separation is the Landau–Ginzberg equation (Safran 2018). Physically,
when one marches along the coordinate that represents a tie line in a phase diagram,
the free energy will have two local minima with a barrier in-between if phase
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Figure 1. Problem set-up. We examine the stability of a cylindrical vesicle with Newtonian fluid inside and
outside with viscosities λμ and μ, respectively. The membrane has multiple lipids and is characterized by an
order parameter q representing different phase-separated domains, a bending modulus κc depending on q, a
line tension parameter γ , surface viscosity ηs and surface tension σ .

separation occurs. The simplest shape that represents this behaviour is a quartic
polynomial, and hence one can write the free energy as

Wphase =
∫ (

a
2
|q|2 + b

4
|q|4 + γ 2

2
|∇sq|2

)
dS, (2.2)

where q is the order parameter (i.e. coordinate along the tie line for the two phases). The
first two terms in the equation represent a quartic free energy with two minima (i.e. two
phases) when a < 0, and one minima (i.e. one phase) when a > 0. The last term is the free
energy penalty for creating phases that is related to line tension (ξ line) and the interface
width (εwidth):

ξ line = 2
√

2
3b

a3/2γ, (2.3)

εwidth =
√

2γ 2

a
. (2.4)

The Landau–Ginzberg equation has been used to qualitatively model bilayer membranes
(Gera & Salac 2017). Specifically, the symmetric form of the Landau–Ginzberg equation
listed above gives reasonable estimates for the Lo/Ld phase-coexistence for the case of
a 1 : 1 : 1 ratio of DOPC : DPPC : cholesterol membranes – see the appendix of Camley
& Brown (2014) for the estimated dependence of a, b and γ for a specific experimental
system (R ∼ O(nm)).

The last contribution to the free energy arises from surface tension,

Wσ =
∫
σ dS. (2.5)

Since the number of lipids per unit area is conserved, the membrane surface is
incompressible. Thus, σ is a Lagrange multiplier used to ensure this constraint. The
surface tension is determined up to an isotropic component σ0, which is specified
beforehand. When σ0 > 0, the membrane is initially under tension, while when σ0 < 0,
the membrane is initially under compression.
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2.2. Dynamical equations
We solve the fluid flow inside and outside the membrane in the limit of vanishing Reynolds
number. The Stokes equations are

μin∇2uin = ∇pin; ∇ · uin = 0, (2.6a)

μout∇2uout = ∇pout; ∇ · uout = 0, (2.6b)

where (u, p) are the velocity and pressure fields, and μin/out are the viscosities inside
and outside the vesicle (μin = λμ, μout = μ). These equations satisfy continuous velocity
across the interface:

[[u]] = 0 x ∈ S, (2.7)

where [[. . .]] represents the jump across the interface (outer minus inner). The membrane
is surface incompressible:

∇s · u = 0 x ∈ S. (2.8)

Lastly, the hydrodynamic tractions on the interface are balanced by the membrane
tractions,

[[n · τ ]] = δW
δx

+ f s−v x ∈ S. (2.9)

In the above equation, τ in/out = −pin/outI + μin/out(∇uin/out + (∇uin/out)T) is the
viscous stress tensor. The term f s−v represents the tractions arising from the surface
viscosity effects in the bilayer. This term is representative of the frictional forces existing
within the bilayer due to phospholipids. The other term on the right side is the first
variation of the membrane energy with respect to position. This term can be broken into
different contributions δW/δx = f phase + f bend + f σ , with expressions for each of them
listed below:

f phase = δWphase

δx
= −γ 2(∇2

s q)∇sq − ∇sg + 2H
(

1
2
γ 2|∇sq|2 + g

)
n, (2.10a)

f bend = δWbend

δx
= −n∇2

s (2Hκc)+ κc(4HK − 4H3)n − 2H2∇sκc, (2.10b)

f σ = δWσ

δx
= 2Hσn − ∇sσ, (2.10c)

f s−v = ∇s · [ηs(P(∇s · u)− P · (∇su + ∇suT) · P)]. (2.10d)

The reader is directed to the following publications for details on how these equations
are derived (Napoli & Vergori 2010; Gera 2017; Sahu, Sauer & Mandadapu 2017).
In the above equations, g = (a/2)q2 + (b/4)q4 is the quartic free energy and P ≡ I − nn.
Additionally, K = det(L) = C1C2 is the Gaussian curvature of the interface, where
L = ∇sn is the surface curvature tensor and C1,C2 denote the principal curvatures. The
surface tension σ is a Lagrange multiplier (up to a specified isotropic constant), which one
determines from the surface incompressibility constraint equation (2.8) listed above.
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Along with the above flow equations, we also solve a convection-diffusion equation
on the vesicle interface for the order parameter q. This equation takes the form of a
Cahn–Hilliard equation, the details of which can be found from Gera (2017),

∂q
∂t

+ u · ∇sq = ν

ζ0
∇2

s (ζ ) x ∈ S. (2.11)

In the above equation, ν is the characteristic mobility of the phospholipids and ζ is the
surface chemical potential with units of energy per unit area. This chemical potential is
the first variation of the membrane energy with respect to the order parameter, while ζ0 is
a reference value provided by Gera (2017),

ζ = δW
δq

= aq + bq3 − γ 2∇2
s q + k1

2
(2H)2. (2.12)

Lastly, the interface satisfies a kinematic boundary condition. If the vesicle’s shape is
characterized by the level set r = f (z, φ, t), this condition is

D
Dt
(r − f (z, φ, t)) = 0,

D
Dt

= ∂

∂t
+ u · ∇. (2.13a,b)

2.3. Physical parameters and dimensionless numbers
Unless otherwise noted, all remaining quantities in the manuscript will be in dimensionless
form. We non-dimensionalize all lengths by cylinder radius R, all times by the bending
time scale tb = μR3/k0 and all velocities by Ub = R/tb = k0/(μR2). All pressures and
stresses are scaled by μUb/R = k0/R3, and the surface tension is scaled by k0/R2.
Energies are scaled by k0 and chemical potential is scaled by k0/R2. Table 1 lists the
set of physical parameters for this problem and their typical experimental values, while
table 2 lists the dimensionless numbers for this problem. These dimensionless groups are
related to the effects of line tension between the phospholipids, the relative magnitudes
of bending stiffness of phospholipids and size of the vesicle – depicting an interplay
between bending, coarsening and flow. The most important ones in particular are the
viscosity ratio λ between the inner and outer fluid, the dimensionless surface tension
Γ = σoR2/k0, the dimensionless bending stiffness difference between the two phases
β = k1/k0 = (κlo − κld)/(κlo + κld), the Cahn number Cn = γ /(R

√
ζ0) (i.e. ratio of line

tension energy to the energy scale of phase separation), the surface Péclet number
Pe = k0/(νμR) (i.e. ratio of coarsening time to bending time from diffusion) and the line
tension parameter α = k0/γ

2 (ratio between bending and line tension energies). Another
important variable to consider is the membrane viscosity ηs (Faizi, Dimova & Vlahovska
2022). This parameter represents the frictional forces that exist between the phospholipids.
On non-dimensionalizing this variable, we get the Boussinesq number Bq = ηs/(μR).
Some studies have reported simple correlations to relate the surface viscosity to the
phospholipid phase concentration, which could be traced to the order parameter q (Sakuma
et al. 2020). We treat the surface viscosity to vary linearly with the order parameter
ηs = η1 + η2q, along similar lines as the bending modulus variation where η1 =
(ηso + ηsd)/2 is the average surface viscosity of the two phases and η2 = (ηso − ηsd)/2
is half the difference of surface viscosities between the two phases. Lastly, we note that for
ζ0 = |a|, as is the case for most studies, the Cahn number has the alternative interpretation
as the ratio of interface width to vesicle radius: Cn = εwidth/(

√
2R). See § A.2 for details.
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Physical governing parameters

Variable Name Order of magnitude Reference

L Length of cylindrical vesicle ∼30 μm Kantsler, Segre & Steinberg
(2008)

R Radius of cylindrical vesicle ∼5 μm Kantsler et al. (2008)
k0 Bending stiffness sum between

phospholipid 1 and 2
O(10−19–10−18) J Amazon et al. (2013)

k1 Bending stiffness difference
between phospholipid 1 and 2

O(10−19) J Amazon et al. (2013)

ν Mobility of phospholipids O(10−11) m2 s−1 Negishi et al. (2008)
γ Line tension parameter O(10−9) J1/2 Luo & Maibaum (2020)
ηs Surface viscosity of phospholipids O(10−9–10−6)Pa m s Sakuma et al. (2020)
κg Gaussian bending rigidity O(10−19–10−18) J Sakuma et al. (2020)
μ Bulk viscosity O(10−3) Pa s Sakuma et al. (2020)

Table 1. Physical parameter ranges and orders of magnitude.

Variable Name Order of magnitude

L/R Length to radius ratio ∼5
ã = a/ζ0 Dimensionless double well potential term −1
b̃ = b/ζ0 Dimensionless double well potential term O(1)
β = k1/k0 Ratio of bending stiffnesses O(0.1–1)
Cn = γ /(R

√
ζ0) = εwidth/(

√
2R) Cahn number O(0.1–1)

α = k0/γ
2 Ratio of bending stiffness to line tension O(1)

λ Viscosity ratio O(1–10)
Pe = k0/(νμR) Péclet number (coarsening time scale/bending

time scale)
O(1)–O(100)

Γ = σ0R2/k0 Dimensionless isotropic membrane tension O(1–10)
Bq = η1/(Rμ) Boussinesq number O(1–1000)

Table 2. Dimensionless parameter ranges and orders of magnitude.

3. Linear stability analysis

3.1. Derivation
We consider a vesicle that has its base state equal to that of a cylinder at rest
(i.e. r0 = 1,uin

0 = uout
0 = 0). The membrane is uniformly mixed as one phase with an

equal amount of stiff and soft lipids (i.e. q0 = 0). The membrane tension is uniform
with a non-dimensional value Γ = σ0R2/k0. The base pressure inside and outside the
cylinder is given by the Young–Laplace law with bending rigidity, which corresponds to
pout

0 = 0, pin
0 = Γ − 1

2 .
We perform a linear stability analysis on this base state. We perturb all geometric and

physical quantities an infinitesimal amount ε � 1, as follows:

r = 1 + εrkn exp(ikz + inφ), (3.1a)

σ = Γ + εσkn exp(ikz + inφ), (3.1b)
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uin/out = εuin/out
kn exp(ikz + inφ), (3.1c)

q = εqkn exp(ikz + inφ), (3.1d)

pin = Γ − 1
2 + εpin

kn exp(ikz + inφ), (3.1e)

pout = εpout
kn exp(ikz + inφ). (3.1f )

We then solve the Stokes equations and Cahn–Hilliard equations, linearized to O(ε),
and determine how the radius r and concentration field q evolve over time. The thread
is considered unstable if a perturbation causes the radius and concentration to grow over
time. Due to the geometric nature of the problem, all perturbations are decomposed into
Fourier modes, where k and n represent axial and azimuthal wavenumbers.

The first step we perform is to linearize the Cahn–Hilliard equation (that is, (2.11) and
(2.12)). Doing so yields a differential equation for the order parameter qkn:

Fknq̇kn = Mknrkn + Vknqkn. (3.2)

In the above equation, the right-hand side is equal to the linearized chemical potential
δW/δq, while the left-hand side is a dynamical factor. The coefficients are given by

Fkn = − Pe
Cn2α

1
k2 + n2 , (3.3a)

Mkn = β(k2 + n2 − 1), (3.3b)

Vkn = 1
Cn2α

[ã + Cn2(k2 + n2)]. (3.3c)

To obtain the differential equation for the vesicle shape rkn, we follow a procedure
similar the previous publications for single-component vesicles (see Narsimhan 2014;
Narsimhan et al. 2015). First, we solve the Stokes equations inside and outside the vesicle.
We use the cylindrical harmonics solution given by Happel & Brenner (1973):

ukn exp(ikz + inφ) = ∇ψ + ∇ × (Ω ẑ)+ r
∂

∂r
(∇Π)+ ẑ

∂Π

∂z
, (3.4a)

pkn exp(ikz + inφ) = −2η̃
∂2Π

∂z2 , (3.4b)

where η̃ is the non-dimensional viscosity (η̃ = 1 outside the vesicle and η̃ = λ inside), and
ψ,Ω and Π are scalar harmonic functions:

{ψ,Ω,Π} = {Akn, iBkn,Ckn}Gn(kr) exp(ikz + inφ). (3.5)

In the above equation, the functions Gn(kr) are modified Bessel functions, equal
to In(kr) inside the vesicle and (−1)nKn(kr) outside the vesicle. Writing the velocity
and pressure fields in this form yields seven unknowns for each Fourier mode, which
we solve through appropriate boundary conditions. The unknowns are the coefficients
{Aout

kn ,Bout
kn ,Cout

kn } outside the vesicle, the coefficients {Ain
kn,Bin

kn,Cin
kn} inside the vesicle and

the non-isotropic surface tension σkn that arises from membrane incompressibility.
Below is the structure of the linear equations we solve. The structure is given by

W · y = b, where W is a matrix, y = {Aout
kn ,Bout

kn ,Cout
kn ,Ain

kn,Bin
kn,Cin

kn, σ
M
kn } is the vector

of unknowns where σM
kn = σkn + (β/2)qkn is a modified surface tension, and b is the

right-hand side. We use a modified surface tension for convenience since the linear system
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below becomes exactly the same as in previous literature for single-component vesicles
(Narsimhan et al. 2015):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W11 W12 W13 W14 W15 W16 W17

W21 W22 W23 W24 W25 W26 W27

W31 W32 W33 W34 W35 W36 W37

W41 W42 W43 W44 W45 W46 W47

W51 W52 W53 W54 W55 W56 W57

W61 W62 W63 W64 W65 W66 W67

W71 W72 W73 W74 W75 W76 W77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ain
kn

Bin
kn

Cin
kn

Aout
kn

Bout
kn

Cout
kn

σM
kn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4

b5

b6

b7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.6)

In the above linear system, each row arises from a boundary condition. The entries are
summarized below, where In and Kn are evaluated at wavenumber k and I′

n, I′′
n ,K′

n,K′′
n are

single and double derivatives evaluated at k. The entries below are exactly the same as
those found in the prior literature.

• Row 1: continuity of velocity ([[uz]] = 0 at r = 1)

W11 = −kIn; W12 = 0; W13 = −k2I′
n − kIn; W14 = (−1)nkKn;

W15 = 0; W16 = (−1)nk2K′
n + (−1)nkKn; W17 = 0; b1 = 0

}
, (3.7)

• Row 2: continuity of velocity ([[uφ]] = 0 at r = 1)

W21 = −nIn; W22 = kI′
n; W23 = −nkI′

n + nIn; W24 = (−1)nnKn

W25 = (−1)n+1kK′
n; W26 = (−1)nnkK′

n − (−1)nnKn; W27 = 0; b2 = 0

}
,

(3.8)
• Row 3: kinematic boundary condition (uin

r = dr/dt at r = 1)

W31 = kI′
n; W32 = −nIn; W33 = k2I′′

n ; W34 = 0

W35 = 0; W36 = 0; W37 = 0; b3 = ṙkn

}
, (3.9)

• Row 4: kinematic boundary condition (uout
r = dr/dt at r = 1)

W41 = 0; W42 = 0; W43 = 0; W44 = (−1)nkK′
n

W45 = (−1)n+1nKn; W46 = (−1)nk2K′′
n ; W47 = 0; b4 = ṙkn

}
, (3.10)

• Row 5: surface incompressibility (∇s · uout = 0 at r = 1)

W51 = W52 = W53 = 0; W54 = (−1)n(kK′
n − (n2 + k2)Kn)

W55 = (−1)n(−nKn + knK′
n);

W56 = (−1)n(k2K′′
n − k(n2 + k2)K′

n + (n2 − k2)Kn); W57 = 0; b5 = 0

⎫⎪⎬
⎪⎭ ,

(3.11)
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• Row 6: tangential stress balance ([[τzr]] + ∂σM/∂z − ẑ · f s−v = 0 at r = 1)

W61 = −2λkI′
n−Bq((2k2 + n2)In + n2In); W62 = λnIn−BqnkI′

n;
W63 = −λ(2k2I′′

n + 2kI′
n)−Bq((2k2 + n2)(kI′

n + In)+ n(−nIn + nkI′
n));

W64 = (−1)n2kK′
n; W65 = (−1)n+1nKn; W66 = (−1)n(2k2K′′

n + 2kK′
n);

W67 = 1; b6 = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
,

(3.12)

• Row 7: tangential stress balance ([[τφr]] + (1/r)(∂σM/∂φ)−φ̂ · f s−v = 0 at r = 1)

W71 = −λ(2nkI′
n − 2nIn)− Bqnk2In + Bqk2nIn;

W72 = −λ(−n2In + kI′
n − k2I′′

n )+Bqk3I′
n;

W73 = −λ(2nk2I′′
n − 2nkI′

n + 2nIn)+Bqnk2In;
W74 = (−1)n(2nkK′

n − 2nKn); W75 = (−1)n(−n2Kn + kK′
n − k2K′′

n );
W76 = (−1)n(2nk2K′′

n − 2nkK′
n + 2nKn); W77 = n; b7 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(3.13)

After we solve for the unknowns, we apply the last boundary condition – the normal
stress balance – to obtain the final differential equation for the vesicle shape. The linearized
normal stress boundary condition ((2.9)) is

− [[pkn]] − σM
kn−( f sv · n)kn = Lknrkn + Mknqkn, (3.14)

where the left-hand side comes from the pressure, surface tension and surface viscous
tractions obtained from the unknowns solved above, and the right-hand side comes
from the linearized membrane traction f = δW/δx (minus the modified surface tension
contribution σM

kn ). The expression for Mkn is the same as in (3.3b), while Lkn is

Lkn = Γ (n2 + k2 − 1)+ 3
2 + 2k2 + (n2 + k2)(n2 + k2 − 5

2 ). (3.15)

The expression for the left-hand side in (3.14) in terms of the solved coefficients is

−[[pkn]] − σM
kn−( f sv · n)kn = 2k2(λInCin

kn + (−1)n+1KnCout
kn )− σM

kn

−Bq(2k2InAin
kn + Cin

kn(2k3I′
n + 2k2In)). (3.16)

Since the latter quantities are linear in the rate of interface deformation ṙkn, we can rewrite
the above expression ((3.14)) as

Λknṙkn = Lknrkn + Mknqkn. (3.17)

This (3.17) along with the linearized Cahn–Hilliard equation (3.2) are the dynamical
equations obtained for the linear stability analysis. In general, there is no analytical
solution for the coefficient Λkn – it must be computed numerically by inverting the
system of (3.6). However, for the specific case of axisymmetric modes (n = 0), analytical
expressions are available; details are provided in the Appendix, § A.3.
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Stability of cylindrical, multicomponent vesicles

3.2. Final structure of equations
The final form of the dynamical equations are[

Λkn 0
0 Fkn

]
· d
dt

[
rkn
qkn

]
=
[

Lkn Mkn
Mkn Vkn

]
·
[

rkn
qkn

]
, (3.18)

where entries Λkn, Fkn, Lkn, Mkn and Vkn were described in the previous section (see
(3.3a)–(3.3c), (3.15) and text below (3.15)). A few comments are made here.

(i) The left-hand side entries Λkn and Fkn are purely dynamical quantities that depend
on the hydrodynamics of the surrounding fluid as well as the diffusion characteristics
of the lipids. They are negative definite – i.e. Λkn,Fkn < 0, so they do not alter the
stability of the system, but play a role in the time scale of the instability as well as
mode selection. Here, Λkn depends on the viscosity ratio λ and Boussinesq number
Bq, while Fkn depends on the quantity Pe/(αCn2), which equals the diffusion time
divided by the chemical potential relaxation time.

(ii) The right-hand side entries Lkn,Mkn,Vkn are related to the second variation in the
free energy at the base state rkn, qkn = 0:

[
Lkn Mkn

Mkn Vkn

]
∼

⎡
⎢⎢⎢⎣

∂2W
∂rkn∂rkn

∂2W
∂rkn∂qkn

∂2W
∂rkn∂qkn

∂2W
∂qkn∂qkn

⎤
⎥⎥⎥⎦ . (3.19)

Thus, the matrices are only related to the elastic and mixing energies of the system,
and depend only on quantities related to the bending moduli, surface tension, line
tension and quartic energy potential. Since these matrices are related to the local
curvature of the free energy landscape, the sign of eigenvalues determine the relative
stability of the system. For example, if the energy is concave down, the system is
unstable.

3.3. Modal analysis
We will perform an eigenvalue/eigenvector analysis on the ordinary differential equations
(ODEs) in (3.18). For each set of wavenumbers (k, n), we will write the system
of equations in the form ẏ = M · y, where y = [rkn, qkn], and then obtain the two
eigenvalue/eigenvector pairs for the matrix M . The shape is considered to be unstable
if there is at least one eigenpair that has a positive eigenvalue and a non-zero component
in the rkn direction. The most dangerous of the two eigenpairs is the one that has the largest
eigenvalue.

We denote the growth rate s for a given wavenumber (k, n) as the largest eigenvalue:

s = max eig(M). (3.20)

We will determine the range of wavenumbers that lead to instability by obtaining the set
of (k, n) that lead to a positive growth rate. The most dangerous mode (kmax, nmax) is
determined by finding (k, n) that maximize the growth rate. Unlike the single-component
vesicle case where only the axisymmetric (n = 0) modes are unstable under tension, the
multicomponent case can have non-axisymmetric modes (n > 1) being unstable; thus, we
will examine a wide range of values (n, k) in this paper and comment on the type of
instabilities formed.
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4. Single-component analysis

In this section, we review prior literature on single-component vesicles and validate our
equations against published results.

For single-component lipid threads, the formation of instabilities depends on one control
parameter, the non-dimensionalized surface tension Γ = σ0R2/k0. Figure 2 shows pictures
of what the instabilities look like. For this paper, we will coin n = 0 modes pearling, n = 1
modes as buckling and n > 1 modes as wrinkling.

Figures 3(a) and 3(b) compare the growth rates for the pearling and buckling modes
from our theory against published results in the literature for single-component vesicles
(Boedec et al. 2014; Narsimhan et al. 2015). We obtain single-component results by setting
β = 0, i.e. both phases have the same bending rigidities; Cn = 0, which corresponds
to zero line tension between the phases; and the double-well potential parameter ã = 0,
which ensures that no phase separation occurs. We find the growth rates from our analysis
coincide with those published previously.

Figure 4 presents the most unstable growth rates for the three modes n = 0, 1, 2 for
different values of the isotropic membrane tension Γ . If the vesicle is under tension
(Γ > 0), the vesicle is stable to all perturbations for tension values 0 < Γ < 3/2. When
the tension is above a critical value Γ > 3/2, axisymmetric pearling modes (n = 0)
are unstable (i.e. s > 0) and non-axisymmetric modes n > 0 are stable. When the
thread is under compression (Γ < 0), both axisymmetric n = 0 and non-axisymmetric
n > 0 modes can become unstable. The axisymmetric (pearling) mode is unstable for
Γ < −(3 + 4

√
2)/2, the n = 1 (buckling) mode is unstable for Γ < −3/2, and n > 1

(wrinkling) modes are unstable for Γ < −(n2 − 3/2) (Boedec et al. 2014; Narsimhan et al.
2015).

On inspecting the effect of surface viscosity via Bq, we observe that the buckling and
pearling modes are suppressed as Bq increases (see figure 5). For n ≥ 2 modes, the effect
of Bq is not seen largely. This is consistent with previous observations (Narsimhan et al.
2015) where the authors attributed this to increased viscous dissipation on the surface.

5. Multicomponent analysis

5.1. General observations and choice of parameter space
Unlike the single-component system that showed only pearling beyond a particular
membrane tension (Boedec et al. 2014; Narsimhan et al. 2015), multicomponent vesicles
can exhibit richer dynamics. The existence of phase separation, line tension and bending
rigidity inhomogeneities can give rise to a combination of pearling, buckling or wrinkling
modes at zero or positive membrane tension. We visualize the shape of some of these
modes in figure 6. The blue colour indicates the cholesterol-rich ordered Lo phase whereas
the yellow phase indicates the cholesterol-less disordered Ld phase.

In the following subsections, we will explore these instabilities in greater detail. We will
choose the following parameters in our simulations. We will examine equiviscous vesicles
(λ = 1) as experiments typically inspect this value (Yanagisawa et al. 2010). Unless
otherwise noted, we will choose a bending difference parameter β = (κlo − κld)/(κl0 +
κld) = 0.5, since we find that β in the range listed in table 2 does not qualitatively alter
results. We will also choose the Péclet number 1 ≤ Pe ≤ 100 consistent with experimental
studies (Negishi et al. 2008; Luo & Maibaum 2020).

The structure of the remaining sections are as follows. Section 5.2 characterizes which
modes are the most dominant and provides a discussion when multimodal instabilities can
be present. Section 5.3 quantifies the most unstable wavenumbers. Section 5.4 discusses
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4 3 2 1 –10 –2 –3 –4

(b)(a) (c)

Figure 2. Snapshots of (a) pearling (n = 0), (b) buckling (n = 1) and (c) wrinkling (n = 2) modes for
single-component vesicles.

0 0.5
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Γ = 0

Γ = 5

1.5

–0.4

–0.2

0

0.2

0 0.5 1.0

–0.4
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0

0.2
Single (Boedec 2014)

Multi

Γ = 5

Γ = 0

(b)(a)

Figure 3. Growth rate versus wavenumber for an equiviscous (λ = 1), single-component vesicle with no
surface viscosity (Bq = 0) at Γ = 0 and Γ = 5 for (a) pearling mode (n = 0) and (b) buckling mode (n = 1).
Results are validated against published results (Boedec et al. 2014).

0.5

0

–0.5
–4 –2 0 2 4

α = 0

β = 0

Cn = 0

s

Γ

Figure 4. Most unstable growth rates with respect to the isotropic membrane tension Γ for single-component
vesicles. The red circles represent n = 0 pearling modes, black circles represent n = 1 buckling modes and
blue circles represent n = 2 wrinkling modes. In the plot, λ = 1,Bq = 0.
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Figure 5. Most unstable growth rates with respect to the isotropic membrane tension Γ for single component
vesicles for different values of Bq = 0.1, 1, 100. In this plot, λ = 1. (a) n = 0, (b) n = 1 and (c) n = 2.

(b)(a)

(d )(c)

Figure 6. Different unstable modes for multicomponent vesicle: (a) pearling (n = 0); (b) buckling (n = 1);
(c) wrinkling (n = 2) and (d) wrinkling (n = 3).
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Stability of cylindrical, multicomponent vesicles

the role of Péclet number on the instability, while § 5.5 discusses the role of surface
viscosity and provides an analytic expression for when instability occurs. Section 5.6
performs an energy analysis to understand the mechanism of these instabilities. Lastly,
we make a side note for the special case of Pe � 1, where analytical solutions to the
eigenvalues and eigenvectors are available. While we believe this case is not physically
relevant (see table 2), § A.4 provides details of this analysis for those who are interested.

5.2. Which modes are most dominant?
Here, we delineate the conditions under which the axisymmetric (n = 0) instability has
the largest growth rate, and the conditions under which the non-axisymmetric instabilities
(n ≥ 1) have the largest growth rate. We will examine the n = 0, 1, 2, 3 modes here since
we find that n > 3 does not dominate for the parameter ranges simulated. When calculating
the most dangerous mode, we explore the wavenumber range 0 < k < 3.

Figure 7 plots which mode has the largest growth rate for different values of the
non-dimensional surface tension (Γ ), Cahn number (Cn) and line tension parameter (α).
Figure 7(a) shows results for a highly compressed vesicle (Γ = −4), figure 7(b) for
a moderately compressed vesicle (Γ = −2), figure 7(c) for a vesicle under no tension
(Γ = 0) and figure 7(d) for a vesicle under strong tension (Γ = 30). Under strong
compression (Γ = −4, figure 7a), we see that only the non-axisymmetric modes are
dominant (n /= 0). This observation is similar to what is seen for single-component
vesicles, although we note that for this value of tension Γ = −4, only the n = 1 and n = 2
modes are unstable for the single-component case, while n = 2 and n = 3 mostly dominate
for the multicomponent case. For very small values of the Cahn number (sharp interface),
the dominant modes become more non-axisymmetric, a trend that is seen in all four plots
here.

When the vesicle is under moderate compression (Γ = −2, figure 7b) or no
compression (Γ = 0, figure 7c), all modes n = 0, 1, 2, 3 can be unstable depending on
the value of Cahn number (Cn) and line tension parameter (α). These results are very
different than what is seen for single-component vesicles where no modes are unstable
at zero tension (Γ = 0) and only the n = 1 mode is unstable at moderate compression
(Γ = −2). It also appears that α plays a more significant role in the mode selection than
the highly compressed vesicle case (Γ = −4, figure 7a).

When the vesicle is under large tension (Γ = 30, figure 7d), the phase plot looks similar
to the zero-tension case, except that a larger portion of the phase space shows axisymmetric
modes (n = 0) being dominant. When the tension becomes very large (Γ → ∞), one will
only observe pearling modes, recovering the results from the single-component case.

We note that while this analysis shows phase plots for the most unstable modes, it does
not comment on the magnitude of these growth rates compared with other modes. Below,
we will see that in many situations, the growth rates of different modes can be comparable.
When this is the case, mode mixing can arise in nonlinear simulations (discussed in § 6).

Figure 8 presents the magnitude of the most unstable growth rates for the three
modes n = 0, 1, 2 with respect to the isotropic membrane tension Γ . The dimensionless
parameters λ = 1, α = 1, β = 0.5 and Pe = 10 are chosen to be representative of the
experimental values of Yanagisawa et al. (2010) (see § 6.2 for more details). Based on the
interface width between the ordered and disordered phases, we could have different values
of the Cahn number. We pick two values here: Cn = 0.65, 1. We observe that for lower
Cahn numbers (Cn = 0.65), the buckling and wrinkling modes dominate over pearling
modes at compressive values of membrane tension. As the tension increases, the growth
rates become comparable for pearling and buckling. As the Cahn number increases to 1
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Comparison of modes for Γ = –4
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Comparison of modes for Γ = –2
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Figure 7. Phase plots for the most dominant mode. The black circles represent the case where n = 0 dominates,
the blue squares where n = 1 dominates, the red diamonds where n = 2 dominates and the green diamonds
where n = 3 dominates. The simulation parameters are λ = 1,Pe = 1, β = 0.5,Bq = 0.
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Figure 8. Most unstable growth rates with respect to the isotropic membrane tension Γ for multicomponent
vesicles. The red circles represent n = 0 pearling modes, black circles represent n = 1 buckling modes and
blue circles represent n = 2 wrinkling modes. The dimensionless parameters are (a) λ = 1,Pe = 10, α = 1,
β = 0.5,Cn = 0.65,Bq = 0 and (b) λ = 1,Pe = 10, α = 1, β = 0.5,Cn = 1,Bq = 0.
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4

Increasing Cn
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Figure 9. Growth rate (s) versus wavenumber (k) for pearling (n = 0) mode. (a) Dependence on Cahn number
(Cn = 0.3, 0.6, 1) for α = 1, β = 0.5,Pe = 1. (b) Dependence on line tension parameter (α = 0.1, 10, 20)
for Cn = 0.5, β = 0.5,Pe = 1. In both graphs, the multicomponent (black) results are compared against
single-component (red) results for Γ = 0, λ = 1,Bq = 0. (a) Variation with Cn and (b) variation with α.

(figure 8b), the wrinkling and buckling modes dominate for highly compressive tensions
(Γ < −2), but become stabilized for small compressive and positive values of Γ , where
the pearling modes become dominant. This leads to pure pearling instabilities that will be
discussed in detail in § 6.2.

5.3. Wavenumber dependence of growth rates
Figures 9–11 plot the wavenumber dependence of the growth rates for different instabilities
– the pearling mode (n = 0, figure 9), buckling mode (n = 1, figure 10) and wrinkling
mode (n = 2, figure 11). In these plots, the membrane tension is Γ = 0. Generally, we
observe the following trends: as the Cahn number Cn increases and the line tension
parameter α decreases, the maximum growth rate decreases and the most dangerous
wavenumber decreases (i.e. the wavenumber k corresponding to the maximum growth
rate). These trends occur because large Cn and small α values correspond to large line
tensions, which suppresses growth rates and disfavours short wavelength (i.e. large k)
instabilities. We note that the extent to which the growth rates are altered depends greatly
on the mode number (n) – this is why for certain values of (α,Cn), the pearling modes
have the largest growth rate, but for other values, the non-axisymmetric modes have the
largest growth rate. We also see that while large Cn and small α values suppress short
wavelength (i.e. k > 1) instabilities, Cn plays a more significant role in altering the low
wavenumber (k < 1) growth rates compared with α.

Some of our trends seem consistent with previous simulations of non-tubular vesicles
(Gera 2017). Specifically, the cited study found that increasing α forms shorter wavelength
(larger k) stripes on the vesicle, consistent with our study. However, Gera finds that as
α rises, it appears that the time slows down to reach the observed behaviour, which
is opposite of the growth rate trends observed here (see figures 9b–11b). We point the
reader to several caveats: first, the study by Gera inspects non-tubular vesicles, which is
different than the geometry considered here. Second, the study examines the full nonlinear
dynamics, whereas this section inspects the linearized dynamics and hence the onset
of instabilities. Section 6 will provide some results for a weakly nonlinear analysis and
compare the results to the linear theory.

Lastly, we inspect the variation of the most unstable wavenumber with respect to the
membrane tension Γ for different modes n = 0, 1, 2 at the experimentally realizable
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Figure 10. Growth rate (s) versus wavenumber (k) for buckling (n = 1) mode. (a) Dependence on Cahn
number (Cn = 0.3, 0.6, 1) for α = 1, β = 0.5,Pe = 1,Bq = 0. (b) Dependence on line tension parameter
(α = 0.1, 10, 20) for Cn = 0.5, β = 0.5,Pe = 1,Bq = 0. In both graphs, the multicomponent (black) results
are compared against single-component (red) results for Γ = 0, λ = 1. (a) Variation with Cn and (b) variation
with α.
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Figure 11. Growth rate (s) versus wavenumber (k) for wrinkling (n = 2) mode. (a) Dependence on Cahn
number (Cn = 0.2, 0.3, 0.6) for α = 1, β = 0.5,Pe = 1,Bq = 0. (b) Dependence on line tension parameter
(α = 0.1, 10, 20) for Cn = 0.2, β = 0.5,Pe = 1,Bq = 0. In both graphs, the multicomponent (black) results
are compared against single-component (red) results for Γ = 0, λ = 1. (a) Variation with Cn and (b) variation
with α.

ranges of parameters. Since this variation is not large, we have added these plots to the
Appendix (see § A.5).

5.4. Effect of Péclet number on instability
In figure 12, we explore the effect of Pe on the growth rates of instabilities. From
(3.18), we can see that the Pe does not alter the onset of instability (determined by
the right-hand side of that equation). However, it heavily influences the growth rate
of the most unstable mode. We choose a particular set of values α = 1,Cn = 0.65,
Bq = 1, Γ = 2, λ = 1 and vary the Pe over a wide range since it is governed by the average
bending stiffness (k0), viscosity (μ), mobility of phospholipids (ν) and the size (R). From
previous experiments (Yanagisawa et al. 2010), we see that R ∼ O(1−10) μm. This sets
the Pe ∼ O(10−100),Cn ∼ O(0.1−1), α ∼ O(1). At experimentally relevant conditions,
as discussed in § 6.2, Pe ∼ O(100) and the bending time scale is tb = μR3/k0 ∼ 0.01 s,

1003 A18-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
20

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1120


Stability of cylindrical, multicomponent vesicles

100

10–2

10–2 100

Pe
102 104

s m
ax

Figure 12. Dependence of the most unstable growth rate on Péclet number Pe = k0/νμR. The other values
are α = 1, β = 0.5,Cn = 0.65,Bq = 1, Γ = 2, λ = 1.
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Figure 13. Pearling mode (n = 0) eigenvalues corresponding to (3.18) at the most dangerous wavevector kmax.
The parameters are α = 1, β = 0.5,Pe = 0.1,Cn = 0.65, a = −1, b = 1. We choose Bq = 0.1, 1, 1000.

which implies that the coarsening time scale tcoarsen = R2/ν ∼ 1 s. At these Pe values,
the coarsening dynamics decides the magnitude of growth rate, which gives rise to the
smax ∼ Pe−1 scaling in figure 12.

5.5. Effect of surface viscosity and general condition for instability
Surface viscosity is a fundamental parameter that affects dynamics of vesicles
significantly. One study is worth mentioning here since it pertains to the effect of surface
viscosity on the dynamics of vesicles and curved surfaces (Ambruş et al. 2019). The
authors considered inertial dynamics driven by convective coarsening in the system.

To understand the effect of Bq, we did the following. For a given value of planar
wavenumber n (n = 0, 1), we found the most dangerous wavenumber kmax that yields the
largest growth rate. For this wavenumber kmax, there are two eigenvalues and eigenvectors
associated with the 2 × 2 linear system in (3.18) – one that corresponds to the most
dangerous mode (λ1) and another that is subdominant (λ2). We plot the eigenvalues
(λ1, λ2) corresponding to n = 0 and n = 1 in figures 13 and 14, respectively. The main
observation that can be made is that λ2 is largely suppressed as Bq increases, whereas
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Figure 14. Buckling mode (n = 1) eigenvalues corresponding to (3.18) at the most dangerous
wavevector kmax. The parameters are α = 1, β = 0.5,Pe = 0.1,Cn = 0.65, a = −1, b = 1. We choose Bq =
0.1, 1, 1000.

the most dangerous mode λ1 is largely unaffected. The behaviour of the subdominant
eigenvalue λ2 is similar to the behaviour seen in single-component vesicles. We believe
the reason for these observations is the following: the eigenvector [rkn, qkn] corresponding
to λ2 tends to have a larger component in the shape (rkn) direction compared with the
concentration (qkn) direction. The Boussinesq number Bq primarily affects the shape
dynamics rkn as it appears in the term Λkn in (3.18), but plays a smaller role in the qkn
dynamics.

A limit often relevant in the case of two-dimensional (2-D) hydrodynamics corresponds
to Bq → ∞. This case has been explored by Bachini et al. (2023b), where they considered
the Saffman–Delbruck length to be lSD → ∞. In this limit, we expect that the dynamics
would be governed by the mixing terms Mkn,Vkn in (3.17). This would be very similar to
the surface Cahn–Hilliard equation on curved surfaces as explored by the authors.

To conclude this discussion, we leave the reader with a more general condition for
stability. From (3.18), we can evaluate the condition for instability to be

det
[

Lkn Mkn
Mkn Vkn

]
< 0. (5.1)

This gives us[
Γ (n2 + k2 − 1)+ 3

2
+ 2k2 + (n2 + k2)

(
n2 + k2 − 5

2

)]
[ã + Cn2(n2 + k2)]

< αβCn2(n2 + k2 − 1)2. (5.2)

Based on the choice of ã,Cn, Γ, α, β, we can generate the set of unstable pairs of n, k. Note
that from the above analysis, there are situations where a vesicle that would otherwise be
stable in the absence of coupling (i.e. β = 0, Lkn,Vkn > 0) is unstable when coupling is
present (β /= 0). Figure 22 in § A.6 gives an example of this situation.

5.6. Energy analysis
There are three energetic contributions to the instability: bending energy, phase energy
and surface tension energy (see § 2.1). To understand which contributions play the largest
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Figure 15. Energetic contributions to the pearling mode (n = 0) for different values of Cn and Γ . The
red circles represent phase energy (�Ep), blue circles represent the bending energy (�Eb) and the black
circles represent the surface tension energy (�Eσ ). The parameters are λ = 1,Pe = 3, α = 1, ε = 0.1,Bq = 0.
(a) Γ = −4 and (b) Γ = 5.

role, we perform the following analysis. We take the base state of the cylindrical vesicle
(r0 = 1, q0 = 0), and perturb the radius and concentration as follows:

r = 1 + εrkn cos (kz + nφ)− 1
4ε

2r2
kn, (5.3)

q = εqkn cos (kz + nφ)− 1
2ε

2qknrkn. (5.4)

The higher order terms are present to conserve the volume and order parameter to O(ε2):
i.e. V = V0 and

∫
qdS = 0. We then compute the change in energy between the perturbed

and base states, and break them into the bending (b), phase (p) and surface tension (σ )
contributions:

�E = E(rkn, qkn)− −E(rkn = 0, qkn = 0) (5.5)

= �Eb +�Ep +�Eσ . (5.6)

If �E < 0, the perturbation has a lower energy than the base state, which leads to
instability. If�E > 0, the perturbation has a higher energy than the base state, and thus the
base state is locally stable. Below are the bending, phase and surface tension contributions
to the energy change per unit length of the vesicle. The algebraic details are given in § A.7.

�Eb = πε2rkn
2

2

(
2k2 + (k2 + n2)

(
k2 + n2 − 5

2

)
+ 3

2

)

+βπε2rknqkn(k2 + n2 − 1), (5.7)

�Ep = πε2q2
kn

2αCn2 [ã + Cn2(n2 + k2)], (5.8)

�Eσ = Γπε2r2
kn

2
(n2 + k2 − 1). (5.9)

In figure 15, we examine the energetic contributions to the pearling (n = 0) mode at
λ = 1,Pe = 3, α = 1. Here, we use the linear stability theory to compute the dominant
eigenvector [rkn, qkn] at the most unstable wavenumber k, and then compute the energetic
contributions (�Eb,�Ep,�Eσ ) as stated above for perturbation value ε = 0.1. We vary
the value of Cn while keeping Γ fixed at −4 and 5, both representing extremes of
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Figure 16. Energetic contributions to the buckling mode (n = 1) for different values of Cn and Γ . The
red circles represent phase energy (�Ep), blue circles represent the bending energy (�Eb) and the black
circles represent the surface tension energy (�Eσ ). The parameters are λ = 1,Pe = 3,Bq = 0, α = 1, ε = 0.1.
(a) Γ = −4 and (b) Γ = 5.

compression and tension, respectively. It can be seen that for experimentally relevant
values of the Cahn number Cn, the phase energy is the primary driver for the
destabilization of the vesicle shape for highly compressive values of Γ (figure 15a). The
bending energy seems to have a stabilizing effect on the vesicle pearling whereas the
tension has a weakly destabilizing effect. When the value of Γ is largely positive, as the Cn
increases, the tension energy begins destabilizing the vesicle more than the phase energy
whereas the bending energy is always stabilizing (figure 15b).

In figure 16, we examine the energetic contributions to the buckling (n = 1) mode at
λ = 1,Pe = 3, α = 1. We vary the value of Cn while keeping Γ fixed at −4 and 5, both
representing extremes of compression and tension, respectively. It can be seen that for
experimentally relevant values of the Cahn number Cn, for highly compressive values
of Γ , the tension energy causes the largest destabilization of the vesicle shape as the
Cn increases whereas the phase energy contributes less (figure 16a). The bending energy
seems to have a stabilizing effect on the buckling. When the value of Γ is largely positive
(figure 16b), we see that the phase energy is the primary driver for the destabilization of
the vesicle shape.

6. Weakly nonlinear analysis

6.1. Solving nonlinear equations
We perform a weakly nonlinear stability analysis on the base state mentioned in § 3.1.
We perturb all geometric and physical quantities an infinitesimal amount ε � 1 as shown
below:

r = 1 + ε
∑
kn

rkn exp(ikz + inφ), (6.1a)

σ = Γ + ε
∑
kn

σkn exp(ikz + inφ), (6.1b)

uin/out = ε
∑
kn

uin/out
kn exp(ikz + inφ), (6.1c)
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q = ε
∑
kn

qkn exp(ikz + inφ), (6.1d)

pin = Γ − 1
2

+ ε
∑
kn

pin
kn exp(ikz + inφ), (6.1e)

pout = ε
∑
kn

pout
kn exp(ikz + inφ). (6.1f )

To understand the coarsening dynamics more quantitatively, we solve the linearized shape
equation ((3.17)) along with the Cahn–Hilliard equation given by

dqkn

dt
= −F (u · ∇sq)

Pe
− (n2 + k2)

Pe
[ã + Cn2(n2 + k2)]qkn − b̃(n2 + k2)

Pe
F (q3)

− αβCn2(n2 + k2)(n2 + k2 − 1)rkn. (6.2)

The equation above is the same as (3.2), except that two nonlinearities are added: a
convective term −F (u · ∇sq)/Pe and the chemical potential from the quartic portion of
the free energy −(b̃(n2 + k2)/Pe)F (q3), where F (· · · ) represents a Fourier transform.
Keeping the entire quartic potential in the Cahn–Hilliard equation allows the concentration
and shape fields to evolve to an equilibrium state. We emphasize that we solve the
full Cahn–Hilliard equations in the small deformation limit by retaining the nonlinear
convective and quartic potential terms. The numerical procedure is mentioned in § A.8.

In figure 17, we perform a one-to-one comparison of linear and nonlinear simulations
from the same initial condition, to understand when these two simulations start deviating
from each other. In this figure, based on the parameters mentioned in the caption, the
linear stability analysis predicts most unstable growth rates to be smax = 0.04152 for
n = 0, smax = 0.04237 for n = 1, smax = 0.02977 for n = 2. According to these values,
at early times, there should be a mix of buckling, pearling and wrinkling, whereas at
longer times, buckling should dominate with some pearling effects. The corresponding
nonlinear simulations predict similar dynamics up to t ∼ 250, which can translate to
12–25 s, beyond which we see buckling dominating with spiral order parameter patterns
due to mode-mixing. The time window of matching between the linear and nonlinear
dynamics is experimentally relevant and depends heavily on the Pe value. As discussed
previously, for higher Pe values, the linear growth rates reduce in magnitude thereby
delaying the nonlinear effects. For larger Cn values, the dynamics become comparable
over an even longer time window. This comparison is done in figure 18 where we can see
that the patterns look similar up to t ∼ 1000, which corresponds to t ∼ 50−100 s. This is
an example of the linear theory working well at experimental time scales. Generally, linear
and nonlinear dynamics show qualitatively similar shapes and concentration profiles at
long times when only one mode is considered to be dominant (e.g. figure 18 where only
pearling is the dominant mode for Cn ≥ 0.8 with the other parameters kept the same as
figure 17).

6.2. Experimental comparison
In this section, we compare our nonlinear dynamical simulations with experimental
observations from (Yanagisawa et al. 2010). In this paper, the authors explored periodic
modulations in cylindrical, multicomponent vesicles containing DOPC/DPPC/cholesterol
at 1 : 1 DOPC : : DPPC and different amounts of cholesterol. The vesicles were created
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Figure 17. Linear versus nonlinear simulations for α = 1, β = 0.5, Γ = 2, a = −1, b = 1,Cn = 0.45,
Pe = 30,Bq = 1. The initial condition is r = 1, q = ε(2 × rand − 1) on a 32 × 32 grid where z ∈ [−10, 10],
φ ∈ [0, 2π], with both simulations using the same seed in random number generation. The time step size
is �t = 0.01 and ε = 0.001. The colourbar represents the value of q/|q|. The nonlinear simulation video
(figure 17a) is given in Movie 4 of the supplementary movies at https://doi.org/10.1017/jfm.2024.1120.

by taking spherical giant unilamellar vesicles (GUVs) with these lipids, and osmotically
deflating them to create tubular shapes of radius R ≈ 0.5−3 μm with aspect ratios
between L = 5 and 20. The modulations observed arose due to the phase separation into
liquid-ordered (Lo) and liquid-disordered (Ld) phases, similar to what is seen in our
theories. The interior and exterior fluids were the same (up to the sugars used for osmotic
deflation), yielding a viscosity ratio λ ≈ 1. Based on the ratios of DOPC : DPPC : Chol
in their studies, the average bending stiffness was estimated to be k0 ≈ 10−19 J and the
difference in bending stiffness between domains varied in the range β = 0.1−0.5. The
line tension was estimated to be roughly 1 pN, yielding a line tension parameter α ≈
1. Examining the interface width yields a Cahn number Cn = εwidth/(

√
2R) ≈ 0.3−1.

We find that results are highly sensitive to this parameter as shown below. The
Péclet number was estimated to be Pe = O(10)−O(100) based on limited data of lipid
diffusivities (Negishi et al. 2008).

The only non-dimensional number we were not able to infer from experimental data
was the dimensionless surface tension Γ = σ0R2/k0, since the surface tension σ0 was not
provided. In principle, one could obtain σ0 by performing an equilibrium simulation of
vesicle shape since this quantity arises as a Lagrange multiplier that enforces the constant
area of the membrane. However, this simulation is quite difficult to do for highly deflated,
multicomponent vesicles (and to our knowledge has yet to be performed). Instead, we make
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Figure 18. Linear versus nonlinear simulations for α = 1, β = 0.5, Γ = 2, a = −1, b = 1,Cn = 0.8,
Pe = 30,Bq = 1. The initial condition is r = 1, q = ε(2 × rand − 1) on a 32 × 32 grid where z ∈ [−10, 10],
φ ∈ [0, 2π], with both simulations using the same seed in random number generation. The time step size is
�t = 0.01 and ε = 0.001. The colourbar represents the value q/|q|. The nonlinear simulation video (figure 18a)
is given in Movie 3 of the supplementary movies.

a note that σ0 is likely to be very small since the vesicles are under no external force, and
for values σ0 = 10−7 N m−1, this yields Γ ∼ O(1). Thus, we will perform simulations
for several different values of Γ and see how they compare against experimental data.
We will also vary Cn since the results are sensitive to this value. For the other parameters,
we set λ = 1,Pe = 10, α = 1, β = 0.5,Bq = 1 consistent with estimated values listed
above. The characteristic time scale using the parameters chosen above corresponds to
the bending scale tb = ηR3/k0 ≈ 0.01 s. In the following results (figures 19 and 20), we
simulate the dynamics up to t ∼ 1000 bending times, which would correspond to ∼10 s.
From the experimental paper in discussion (Yanagisawa et al. 2010), the dynamics are
observed over ∼45 s. This seems comparable but not exactly accurate. We note that the
choice of Pe plays a very important role here. We have assumed the lipid diffusivity to
be ν = 10−11 m2 s−1, but there have been recent studies that have shown this value to be
potentially even lower O(10−12 m2 s−1) (Pöhnl, Trollmann & Böckmann 2023). In these
cases, the Pe could go to 100 for the same set of experimental parameters chosen by us.
If this happens, the dynamics would be governed by the coarsening time scale and not the
bending time scale. This would reduce the growth rate of our instabilities and could cause
the simulation time scale to be comparable to the experimental time scale.

In figure 19, we show one snapshot of an experimental image where the vesicle forms
a straight line with pearls. The bright regions represent the disordered Ld phase and the
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t = 530.05 t = 790.05

Figure 19. Pearling visual qualitative comparison with experiments (Yanagisawa et al. 2010) where the
yellow domains represent the cholesterol rich Lo phase (black in experiments) and the blue domains (white
in experiments) represent the cholesterol-lacking Ld phase. The parameters for the simulation are λ = 1,
Pe = 10, α = 1, β = 0.5,Bq = 1,Cn = 0.8, and Γ = 0 corresponding to a vesicle radius R ≈ 1 μm. The
system is simulated up to time t = 1000, which translates to a physical time of 10 s. The initial condition
is q = ε(2 ∗ rand − 1) on a 64 × 64 grid with z ∈ [−10, 10], φ ∈ [0, 2π], where ε = 0.01. The scale bar
represents a length of 5 μm. The mole fraction ratio of DOPC : DPPC : Chol is 9 : 9 : 22. The colourbar
represents the value of q/|q|. The nonlinear simulation video is given in Movie 2 of supplementary movies.
Experimental image is reproduced with permission from Yanagisawa et al. (2010).

dark regions represent the ordered Lo phase. The interface width is fairly diffuse, leading
to Cn ≈ 0.8. If we perform nonlinear simulations with no tension Γ = 0, we observe
qualitatively similar behaviour to experiments. These snapshots are shown at various time
steps, with similar behaviour also seen for Γ > 0 (not shown). For the simulated case,
the linear stability analysis also predicts pearling shapes like the nonlinear analysis, albeit
with a more aggressive growth rate (s = 0.039 for linear result, corresponding to time scale
t = 1/s ≈ 25 as opposed to t ∼ O(100) for nonlinear simulations). However, if Pe ≥ 50
(which could be realistic based on the uncertainty for lipid diffusivities), the growth rates
from the linear analysis could be comparable to the experimentally relevant time scales
t ∼ O(100) s.

In the experiments, vesicles occasionally exhibited buckling in addition to pearling.
In these situations, the interface width appears sharper than the case when pearls form.
Figure 20 shows a snapshot of such an example using nonlinear simulations with a sharper
interface Cn = 0.3 and slightly positive tension Γ = 2. The nonlinear simulations at
intermediate times show pearling and buckling modes (the corresponding linear stability
analysis shows that s = 0.1802 for n = 0, s = 0.24 for n = 1 and s = 0.28 for n = 2,
thereby showing buckling, wrinkling and pearling), but at long time, the nonlinear analysis
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t = 0.01
(a)

(b)

t = 50.01 t = 270.01

t = 390.01 t = 770.01

–0.5 0 0.5 1.0

t = 990.01

Figure 20. Mixed mode instability found in experiments (Yanagisawa et al. 2010) and simulations.
The pearling mode (n = 0) can have a larger wavenumber compared with the buckling mode (n = 1).
The parameters for the simulation are λ = 1,Pe = 10, α = 1,Bq = 1, β = 0.5,Cn = 0.3 and Γ = 2
corresponding to R = 1 μm. The system is simulated up to time t = 1000, which translates to a physical
time of 10 s. The initial condition is q = ε(2 ∗ rand − 1) on a 32 × 32 grid where z ∈ [−10, 10], φ ∈ [0, 2π],
where ε = 0.01. The inset scale bar represents a length of 2 μm. The mole fraction ratio DOPC : DPPC : Chol
is 3 : 3 : 4. The colourbar represents the value of q/|q| ∈ [−1, 1]. The nonlinear simulation video is given in
Movie 1 of supplementary files. Experimental image is reproduced with permission from Yanagisawa et al.
(2010).

shows buckling with a diagonal concentration stripe. The long-wavelength buckling shape
appears similar to the experiment, but the short wavelength pearls are not observed.
This may be due to the fact that the simulations assume small deformations, which are
clearly not followed in experiments. We note that the shape observed in our simulations is
sensitive to the initial condition in the simulation. Just like the pearling case, we believe
that based on the Pe, the linear dynamics could get delayed thereby giving accurate
dynamics at experimentally relevant time scales.

7. Conclusions

We performed linear and nonlinear stability analyses on a tubular vesicle containing
multiple components in its bilayer structure. We observed that the vesicle could exhibit
pearling, buckling and wrinkling behaviour in multiple regimes of membrane (surface)
tension Γ , even at moderate compressive or extensive values, a result that is not seen in
single-component vesicles. For the linear stability analysis, we determined the conditions
under which axisymmetric and non-axisymmetric modes experience the largest growth
rate, as well as characterized the growth rates and the wavenumber selection for each
mode. We discussed the role of Péclet number (comparing coarsening and bending time
scales), as well as the role of surface viscosity on the instability. Interestingly, in many
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situations, the axisymmetric pearling mode (n = 0) can have a similar growth rate as the
buckling mode (n = 1), giving rise to mixed mode dynamics where nonlinear effects could
come into play. Lastly, we provided an energy phase diagram to explain the driving forces
behind this instability. We saw that there is an interplay between the bending energy, phase
energy and the membrane tension energy, and the dominant contribution depends on the
surface tension, line tension and bending moduli of the domains.

To understand the nonlinear dynamics more closely, we performed a weakly nonlinear
stability analysis where we solve the linear shape dynamics and the fully nonlinear
Cahn–Hilliard equation in the weak deformation limit. We observed that the weakly
nonlinear dynamics shows similar spatial characteristics as the linear dynamics when one
mode is dominant, but vary in the temporal characteristics, primarily due to the nonlinear
stabilizing terms in the Cahn–Hilliard equation. When mode-mixing occurs, the linear and
nonlinear simulations are comparable for times t ∼ O(100) for Pe ∼ O(10), but deviate
afterwards.

This study brings to light the importance of understanding flow dynamics being coupled
with line tension and bending inhomogeneity effects, which opens up a large phase space
to be studied. We also note that while the thermodynamic model (Ginzburg–Landau) helps
us qualitatively understand some physical phenomena, a detailed use of more complicated
models and their dependence on membrane tension and other physical parameters is
needed (Wolff, Marques & Thalmann 2011).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.1120.

Funding. The authors would like to acknowledge support from National Science Foundation (grant
2147559-CBET).

Declaration of interests. The authors report no conflict of interest.

Author ORCID.
Vivek Narsimhan https://orcid.org/0000-0001-7448-4202.

Appendix

A.1. Differential geometry basics
Let us consider a cylindrical tube with coordinates given by

x = [a(z, φ) cosφ, a(z, φ) sinφ, z]. (A1)

Here, the tube radius r = a(z, φ) is written as follows:

a(z, φ) = 1 + εf (z, φ)+ ε2g, ε � 1, (A2)

where f (z, φ) is a small, spatially varying perturbation and g is a constant that ensures
conservation of volume to O(ε2).

Let us define the tangent vectors xφ = ∂x/∂φ and xz = ∂x/∂z, as well as the
normal vector n = xφ × xz/|xφ × xz|. The double derivatives are also defined as
xφφ = ∂2x/∂φ∂φ, xφz = ∂2x/∂φ∂z and xzz = ∂2x/∂z∂z. After performing these
operations, we evaluate the metric tensor g and curvature tensor B below:

g =
[

xφ · xφ xφ · xz
xz · xφ xz · xz

]
B = −

[
n · xφφ n · xφz
n · xzφ n · xzz

]
. (A3a,b)

The mean and Gaussian curvatures are obtained by the following formulae:

2H = Tr(g−1 · B) K = det(g−1 · B), (A4a,b)
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Stability of cylindrical, multicomponent vesicles

while the area element for the surface is given below, where J is the surface Jacobian:

dS = J dφ dz; J =
√

det(g). (A5)

Up to O(ε2), the mean curvature and surface Jacobian are

2H = 1 − ε

(
f + ∂2f

∂φ2 + ∂2f
∂z2

)
+ ε2

[
f 2 − 1

2

(
∂f
∂z

)2

+ 1
2

(
∂f
∂φ

)2

+ 2f
∂2f
∂φ2 − g

]
,

(A6)

J = 1 + εf + ε2

[
g + 1

2

(
∂f
∂z

)2

+ 1
2

(
∂f
∂φ

)2
]
. (A7)

Up to O(ε), the Gaussian curvature is

K = −ε ∂
2f
∂z2 . (A8)

A.2. Rationale behind dimensionless numbers
In this section, we try to clear the air about multiple dimensionless parameters used
in previous studies (Camley & Brown 2014; Safran 2018). According to the mentioned
studies, the three experimentally measurable parameters that determine the dimensionless
variables are the equilibrium concentration split (φ0), line tension (ξ line) and interface
width (εwidth). These dependencies are listed in (2.3) and (2.4).

Moreover,

φ0 =
√

−b
a
. (A9)

These equations give us

γ 2a = 9φ4
0(ξ

line)2

8
(A10)

and

γ 2 = a(εwidth)2

2
. (A11)

This gives

a = 3φ2
0(ξ

line)

2εwidth , (A12)

γ =
√

3φ2
0ξ

lineεwidth

4
. (A13)

Using these equations and the definition of Cahn number,

Cn = γ

R
√
ζ0
, (A14)

assuming that ζ0 ≈ |a|, we get

Cn = εwidth
√

2R
. (A15)

1003 A18-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
20

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1120


A. Venkatesh, A. Bhargava and V. Narsimhan

A.3. Coefficients for axisymmetric modes
The linear equations in (3.6) admit an analytical solution for axisymmetric modes (n = 0).
We obtain

Ain
k0 = ṙk0(k2 + 1)I1

kΨ
, Bin

k0 = 0, Cin
k0 = − ṙk0(kI0 − I1)

kΨ
, (A16a–c)

Aout
k0 = − ṙk0(k2 + 1)K1

kΞ
, Bout

k0 = 0, Cout
k0 = − ṙk0(kK0 + K1)

kΞ
, (A17a–c)

where Ψ = I2
1k2 − I2

0k2 + 2I0I1k and Ξ = K2
1k2 − K2

0k2 − 2K0K1k.
These equations give rise to

Λk0 = 2(k2 + 1)

[
K2

1
Ξ

− λ I2
1
Ψ

]
−4Bq. (A18)

A.4. Dispersion relationship, low-Péclet-number limit (Pe � 1)
When Pe � 1, the coarsening time is much smaller than the bending time scale
(tcoarsening � tbending). In this case, a psuedo-steady approximation can be applied where
the vesicle at any instance of time has a fixed, inhomogeneous phospholipid distribution on
the surface. Mathematically, the term Fkn in (3.18) is zero, which yields the concentration
distribution qkn = −(Mkn/Vkn)rkn. Since Λknṙkn = Lknrkn + Mknqkn, one obtains the
dispersion relation

ṙkn = rkn

Λkn

[
Lkn − M2

kn
Vkn

]
. (A19)

To find the marginal wavenumber at which the growth rate is zero, we equate the term
in brackets in (A19) to zero, which yields

Γ (n2 + k2 − 1)+ 3/2 + 2k2 + (n2 + k2)(n2 + k2 − 5/2)− αCn2β2(n2 + k2 − 1)2

Cn2(n2 + k2)+ ã
= 0.

(A20)

We can obtain the marginal wavenumber for each mode n = 0, 1, 2 . . .. If we ignore
the bending inhomogeneity and line tension by setting Cn = β = 0, this recovers the
single-component vesicle result of Boedec et al. (2014). Lastly, if we consider the case
where ã = −1 (see table 2), we find that when Cn2 > 1/k2, the growth rate is greater for
a multicomponent vesicle compared with a single-component vesicle at the same surface
tension conditions.

A.5. Most unstable wavenumber dependence on membrane tension
In figure 21, we inspect the variation of the most unstable wavenumber with respect
to the isotropic membrane tension. We can see that the most unstable wavenumber
follows a gradual change with the membrane tension Γ . The pearling (n = 0) and
buckling modes (n = 1) show a gradual drop in the wavenumber as the membrane tension
increases, while the wrinkling wavenumbers show a slight increase with an increase in
the membrane tension. The wavenumber behaviour for n = 0, n = 1 is consistent with the
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2.5

2.0

α = 1.0
β = 0.5

Cn = 0.3

Pe = 31.5

k

Γ

1.0
–4 –2 0 2 4

Figure 21. Most unstable wavenumbers with respect to the isotropic membrane tension Γ for
single-component vesicles. The red dots represent n = 0 pearling modes, black dots represent n = 1 buckling
modes and blue dots represent n = 2 wrinkling modes. In the plot, λ = 1.

6 n = 0

(×10–6)

4

2

0

s

–2

–4
0 0.05

a = 1, α = 5,

β = 0.5, Cn = 0.5

β = 1.2, Pe = 0.1

Bq = 0.1

k
0.10

Figure 22. Growth rate variation with wavenumber indicating instability due to coupling (β /= 0).

trend for single-component vesicles, albeit a much smaller decline in the magnitude. This
indicates that the compressive membrane tension drives a shorter wavelength instability
as compared with positive tension values.

A.6. Example when coupling gives rise to instabilities
In figure 22, we can clearly see a case where the coupling between the shape and
composition drives the instability on the vesicle surface. With the particular choice of
Γ = 1.2, we know that the n = 0 mode is stable for single-component vesicles, whereas
a = 1 tells us that the Cahn–Hilliard equation would not predict phase separation.
However, when β /= 0, we see that the growth rate is positive, indicating a coupled
instability.
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A.7. Derivation of energy change expressions for a deformed cylindrical vesicle
We calculate the energy change of a perturbed vesicle from its unperturbed state, i.e.
�E = E − E[rkn, qkn = 0]. Without loss in generality, let us write the radius and
concentration of the perturbed vesicle as

r = 1 + εrkn cos (kz + nφ)− 1
4ε

2r2
kn, (A21)

q = εqkn cos (kz + nφ)− 1
2ε

2qknrkn. (A22)

The ε2 term is added to the radius so that to O(ε2), the volume of the vesicle
V = ∫ ∫ 1

2 r2 dφ dz is equal to its original volume V0 = 1
2

∫ ∫
dφ dz. The ε2 term is

added to the concentration field so that the order parameter is conserved to O(ε2) –
i.e.

∫
q dS = 0. Using (A5) and (A7), the surface element along the vesicle is given by

dS = J dφ dz, with the surface Jacobian given by

J = 1 + εrkn cos (kz + nφ)+ ε2r2
kn

4
[n2 + k2 − 1 − (n2 + k2) cos (2kz + 2nφ)]. (A23)

The energy contribution from surface tension is

Eσ = Γ

∫
dS. (A24)

We perform the above integration, noting that only the zeroth-order harmonics (i.e.
constant terms) contribute to the integral. This yields an energy change per unit length

�Eσ = Γπε2r2
kn

2
(n2 + k2 − 1). (A25)

The energy contribution from the phase behaviour is given by the Landau–Ginzberg
model. In dimensionless form, it is

Ep = 1
Cn2α

∫
ã
2
|q|2 + b̃

4
|q|4 + Cn2

2
|∇sq|2 dS. (A26)

We drop the middle term since it is O(ε4) while

|∇sq|2 = (n2 + k2)ε2q2
kn

2
[1 − cos (2kn + 2nφ)]. (A27)

The energy change per unit length in this case is

�Ep = πε2q2
kn

2αCn2 [ã + Cn2(n2 + k2)]. (A28)

The Canham–Helfrich bending energy is given by

Eb =
∫

2(1 + βq)|H|2 dS =
∫

2|H|2 dS +
∫

2βq|H|2 dS. (A29)
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The first integral in (A29) is the same as that for a single-component cylindrical vesicle
(Narsimhan 2014), while the second integral gives a coupled energy term. The expressions
are

�Eb = πε2rkn
2

2

(
2k2 + (k2 + n2)

(
k2 + n2 − 5

2

)
+ 3

2

)
+ βπε2rknqkn(k2 + n2 − 1).

(A30)

Lastly, we make a comment on the total change in free energy. If we examine
(A25), (A28) and (A30), we see that the total change in energy takes a quadratic form
�Etot = 1

2 yT · E · y, where y = ε[rkn, qkn]T and E is

E = 1
ε2

⎡
⎢⎢⎢⎣
∂2�Etot

∂rkn∂rkn

∂2�Etot

∂rkn∂qkn

∂2�Etot

∂qkn∂rkn

∂2�Etot

∂qkn∂qkn

⎤
⎥⎥⎥⎦ = π

[
Lkn Mkn

Mkn Vkn

]
. (A31)

Thus, the matrices Lkn, Mkn and Vkn in the linear stability analysis are related to
the second variation in the free energy. The quantity, (1/π)(∂�Etot/∂εrkn) gives the
linearized, normal tractions on the interface (see (2.9)), while the (1/π)(∂�Etot/∂εqkn)
gives the chemical potential on the interface (see (2.12)). Thus, the energy analysis is
consistent with the linear stability analysis, although the energy analysis cannot give
information on the time scale of instability or the most dangerous wavenumber.

A.8. Numerical procedure for weakly nonlinear analysis
From (3.17) and (A33), we have the following:

Λknṙkn = Lknrkn + Mknqkn, (A32)

dqkn

dt
= −F (u · ∇sq)

Pe
− (n2 + k2)

Pe
[ã + Cn2(n2 + k2)]qkn − b̃(n2 + k2)

Pe
F (q3)

− αβCn2(n2 + k2)(n2 + k2 − 1)rkn. (A33)

For (3.17), we use a first-order Euler method with an implicit scheme for the shape term
and an explicit scheme for the order parameter term to provide additional stability. If we
pick the ith time step along with �t as the step size, we get

Λkn

(
ri+1

kn − ri
kn

�t

)
= Lknri+1

kn + Mknqi
kn, (A34)

ri+1
kn =

(
ri

kn +�t
Mkn

Λkn
qi

kn

)
1 −�tΛkn

. (A35)

Using this information of the shape deformation at the (i + 1)th time step, we discretize
the Cahn–Hilliard equation using a splitting scheme mentioned by Yoon et al. (2020),

qi+1
kn − qi

kn
�t

= −Fi
kn

Pe
− (n2 + k2)

Pe
Ci

kn − 2(n2 + k2)

Pe
qi+1

kn − Cn2(n2 + k2)2

Pe
qi+1

kn

− αβCn2(n2 + k2)(n2 + k2 − 1)ri+1
kn , (A36)
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where Fi
kn ≡ F (ui · ∇sqi) and Ci

kn ≡ F ((ã − 2)qi + b̃(qi)3)

qi+1
kn =

qi
kn − �t

Pe
Fi

kn − �t(n2 + k2)

Pe
Ci

kn − �tαCn2β(n2 + k2)(n2 + k2 − 1)
Pe

ri+1
kn

1 + �t
Pe
(2(n2 + k2)+ Cn2(n2 + k2)2)

.

(A37)
By solving for ri+1

kn , qi+1
kn , we can evolve in time to obtain the shape and order parameter

evolution.
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