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Abstract. For relevant logics, the admissibility of the rule of proof � has played a significant
historical role in the development of relevant logics. For first-order logics, however, there have
been only a handful of �-admissibility proofs for a select few logics. Here we show that, for each
logic L◦t of a wide range of propositional relevant logics for which excluded middle is valid
(with fusion and the Ackermann truth constant), the first-order extensions QL◦t and LQ◦t

admit �. Specifically, these are particular “conventionally normal” extensions of the logic Gg,d ,
which is the least propositional relevant logic (with the usual relational semantics) that admits
� by the method of normal models. We also note the circumstances in which our results apply
to logics without fusion and the Ackermann truth constant.

§1. Introduction. The admissibility of � in relevant logics remains an important
question. With recent interest in quantified (modal) relevant logics, attention is turned
to �-admissibility in these logics. A particular boon in this research is the semantic
framework for the quantified relevant logics QR and RQ introduced by Mares &
Goldblatt [16], which has been extended more generally to first-order and first-order
modal relevant logics sound and complete for ternary relational frames by Ferenz [8].1

Here we employ this Mares–Goldblatt semantics as generalized by Ferenz to investigate
which first-order relevant logics admit � using the method of normal models, which
was introduced by Sylvan (né Routley) and Meyer [25]. This provides a foundation
to explore �-admissibility in first-order modal relevant logics, taking advantage of the
general framework provided by the Mares–Goldblatt interpretation of quantifiers.

Ackermann’s rule �, originally given in [1], is a form of disjunctive syllogism (or,
classically, detachment/modus ponens). In the tradition of relevant logic, � ought to
be rejected when formulated as a rule under which theories are closed. This would
entail that from inconsistent theories anything is derivable, which is anathema to the
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1 Additionally, Tedder & Ferenz [34] have extended this framework to logics sound and
complete for neighbourhood semantics, and the framework has been applied to conditional
logics extending FDE [7].
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2 NICHOLAS FERENZ AND THOMAS MACAULAY FERGUSON

relevantist project. However, it is another story if we take � to close the set of theorems.
Thus, � is presented follows:

¬A ∨ B,A � B.
The symbol ‘�’ here indicates a rule of proof in the sense of Humberstone [14]; Smiley
[33]: That is,A1, ... ,An � B means that if eachAi is a theorem of the logic in question,
then so is B. The rule � is typically not given in the definition of a relevant logic; it is,
however, sometimes an admissible rule. That is, in particular, the addition of the rule
does not result in new theorems. The question of which relevant logics admit � is an
interesting and significant question, and has been in the crosshairs of relevantists since
the beginning.

We present logics as Hilbert-style axiom systems with axiom and rule schemes
defining a set of theorems. We use the usual notion of a proof (of A) in this setting as
a sequence of formulas (ending with A) where each formula is either an instance of an
axiom scheme or follows from previous formulas by application of an instance of a rule
scheme. As our interest is in the set of theorems and not a consequence relation, we
set our focus on rules of proof (defined above). In defining a logic, the rules explicitly
given in the statement of the logic we call the primitive rules of the systems. Similar to
primitive rules are the derived rules, whose form can be captured exactly by a series of
axioms and primitive rule applications. For example, a rule of reiteration of the form
A � A, if not primitive, can be shown to be derivable using modus ponens and the
axiom A → A. Finally, a rule is admissible if there exists a proof of the conclusion of
the rule whenever there are proofs of the premises.2

In this paper we will give all primitive rules using the � notation, but the distinction
between primitive and admissible rules is worth noting. One way to expand relevant
logics is by the addition of proper axioms, with the notion of derivation suitable
altered to include the additional proper axioms. These need not be schematic, and
can allow relevant logic to represent reasoning from theories such as set theory, Peano
Arithmetic, or even just a small set of beliefs. Part and parcel to the relevant approach
is that inconsistent theories do not imply every formula, and so � is not desirable as a
primitive rule in these cases. On the other hand, the rules taken as primitive, although
presented as rules of proof, are taken to apply in these extended cases.3

Meyer et al. [21, p. 120] note, “the cut theorem...is for classical theories simply �
is peculiar notation.” This is emphasized in Urquhart [35], summarizing the history
and importance of �, where he suggests additional similarities. Notably he conjectures
a speed-up theorem for � is relevant logics, in analogy to speedup theorems for the
rule cut in classical logics (as shown in, e.g., Pudlák [23]).4 The admissibility of �,

2 A logic which has an admissible rule that is not derivable lacks the property of being
structurally complete (see Raftery & Świrydowicz [24] for an exploration of structural
completeness in some relevant logics).

3 Note that there is another way to extend relevant logics to deal with theories: taking theories
to be sets of sentences closed under Modus Ponens, Adjunction, and provable implications.
This approach highlights the focus on logics as sets of theorems, and the admissibility of �
on the set of theorems retains its importance.

4 A speedup theorem is essentially a complexity result on the size of proofs. For � this would
mean there are theorems that are relatively small using �, but whose derivations without �
have a much larger lower bound on their size.
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� -ADMISSIBILITY IN FIRST-ORDER RELEVANT LOGICS 3

if Urquhart’s conjecture is proven, has significant consequences for proof-theoretic
presentations of first-order relevant logics.

While some logics admit �, such as R and E, several do not. In particular, several
contraction-less relevant logics extended by Boolean negation do not admit � Meyer
et al. [22]. The naı̈ve set theory of Brady [3] also fails to admit �, but in this case the
failure of � is a feature and not a bug; on the other hand, the proof in Friedman & Meyer
[13] showing the failure of � for Meyer’s relevant arithmetic R� was a catastrophic event
for the development of R�. Meyer & Dunn [20] first showed that R, E, and T—the
favorite children of Anderson and Belnap—admit � using algebraic techniques. Later,
additional techniques were found, such as normal models [26], metavaluations [19],
and reduced frames [32]. Although the technique of normal models is the basis of the
techniques of this paper, metavaluations involve defining valuations mapping formulas
to the values 0 or 1 based on the relationship they bear to a regular theory. For the
interested reader, the method is elegantly described in [6]. Note that the normal models
method is restricted by the requirement of the principle of excluded middle as an axiom.
For relevant logics without this requirement, one turns to the other methods referenced
in this paragraph.

For a detailed account of the history of � in propositional relevant logics, the reader is
directed to Urquhart [35] and the references therein. Many modal propositional logics
have also been shown to admit �; e.g., see Mares & Meyer [17]; Routley & Meyer [25];
Seki [29–31]. The Mares–Goldblatt style semantics of Ferenz [8] for first-order modal
relevant logics combines the Mares-Goldblatt machinery with the general frames of
Seki [28], the latter of which is used to obtain �-admissibility results for a wide class of
modal relevant logics. Thus, Ferenz [8] has laid the groundwork for using the method
of normal models in both the first-order and the first-order modal settings. Here we
pursue the former.

For quantified relevant logics, as far as we know, only a handful have been shown
to admit �. The first, and most relevant to this paper, is the proof of �-admissibility
in RQ in [21, Theorem 6]. The method of proof is by an algebraic semantics for RQ.
The Mares–Goldblatt interpretation of the quantifiers introduces a natural semantics
for RQ, defined as a Hilbert style axiom system. The genesis of such a semantics
was due to the fact that the most straightforward way of defining a constant domain,
ternary relational semantics extending the semantics for R validated formulas which
were not theorems of RQ. This is the incompleteness result of Fine [12].5 The set of
validities of the class of the most straightforward constant domain, ternary relational
models (semantically) determines a logic, and we will call this logic RQ. This properly
contains the theorems of RQ, and was shown by Weiss [36] to admit �. However, giving
an axiomatization (finite or otherwise) of this set of validities is still an open question.

In Kripke [15], a method of proving �-admissibility for first-order extensions of R
and E using semantic tableaux is stated; however, no proof is given in detail. Kripke,
however, fails to establish which of RQ/RQ and EQ/EQ his proof is applicable to.

The paper is divided as follows. We begin by introducing preliminaries such as
the definitions of languages, logics, semantics, and key notions. Then we tackle
proving �-admissibility by generalizing the normal models method. Here we use the

5 Note that Fine [11] also gives an adequate semantics for RQ, but that many relevantists have
nevertheless been searching for simpler, more natural semantics. The author claims that the
Mares–Goldblatt semantics is exactly what was sought.
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4 NICHOLAS FERENZ AND THOMAS MACAULAY FERGUSON

Mares–Goldblatt style semantics. Finally we make concluding remarks concerning
future directions.

§2. Preliminaries. We jump straight into a presentation of first-order relevant
logics. For the reader not familiar with propositional relevant logics, one may consult
one of Dunn & Restall [6]; Bimbó [2] for an excellent overview. Some familiarity with
propositional relevant logics and ternary relational semantics is assumed, but such
knowledge is not required.

2.1. First-order relevant logics.

2.1.1. Language. A first-order language (with constants and without function
symbols) is built up from a set of symbols divided as follows:

1. A denumerable set of variables Var = {x0, x1, ... }. Here we assume a fixed
but arbitrary ordering of the elements of Var, which is tracked by variable
subscripts.

2. An at most denumerable signature S consisting of
(a) a set of constant symbols ConS = {c0, c1, ... },
(b) a non-empty set of predicate symbols Pred S, where Pn ∈ Pred S is an n-ary

predicate. The set of n-ary predicates shall be written as Predn ⊆ Pred S,
3. A constant symbol t
4. Binary operators ∧,∨,→, ◦
5. Unary operator ¬
6. Quantifier symbols ∀, ∃.

The notion of being a term, relative to a signature, is defined as usual, and we will
use � with decorations varying over terms. A signature will henceforth be assumed
fixed, and we will cease to mention signatures unless such a remark is required.6 Given
a set U of individuals, a variable assignment is a denumerable sequence of individuals,
f ∈ U� , such that the n-th element in the sequence (written as fn) is the individual
assigned to the n-th variable xn given by the assumed fixed ordering. Given a variable
assignment f, an xn-variant of f differs from f in at most the assignment to the variable
xn. We write f ∼n f′ (or f ∼xn f′) to denote that f and f′ are xn variants of one
another. We will writef[j/n] (orf[j/xn]), with j ∈ U to denote the result of replacing
the n-th element of f with the individual j.

Definition 2.1 (The First-Order Relevant Language). The basic first-order relevant
language L, or well-formed formulas (hereby wff ) is defined in Backus-Naur form as
follows:

ϕ ::= Pn(�1, ... , �n)|t |¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|ϕ → ϕ|ϕ ◦ ϕ|∀xnϕ|∃xnϕ.
Implicit is the use of parentheses around each construction with a binary connective.

That is, we assume that all unary operators (including quantifiers) bind more strongly
than binary operators. Moreover, we assume the right arrow binds weaker than fusion,
which itself binds weaker than the extensional conjunction and disjunction.

6 In the canonical model constructions, the signature is assumed to contain sufficiently many
constant symbols.
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� -ADMISSIBILITY IN FIRST-ORDER RELEVANT LOGICS 5

We write A[�/x] to denote the result of substituting every free occurrence of x in A
with the term �. Similarly, we will useA[�0/v0, ... , �n/vn] for the result of simultaneously
replacing v0 through vn with �0 through �n respectively. The usual definitions of bound
and free variables are assumed. A term � is free for x (or freely substitutable for x) in
A if � does not become bound in the resulting formula A[�/x].7

When we write a formula with a variable superscript, such as Ax , this means that x
does not occur free in A.

2.1.2. Axiomatic presentations. Although no propositional language was defined,
we first axiomatize a wide class of propositional relevant logics.8 Although alternative
axiom systems can define several of the logics we present, a singular modular system
extending a base logic is used.

Definition 2.2 (Propositional Logics). The base propositional logic B◦t is defined by
the following axioms and rules:9

(ID) A → A
(∧E ) A ∧ B → A
(∧E ) A ∧ B → B
(∨I ) A → A∨ B
(∨I ) B → A ∨ B
(∧I ) ((A → B) ∧ (A → C)) → (A → (B ∧ C))
(∨E ) ((A → C) ∧ (B → C)) → ((A ∨ B) → C)
(∧-∨) A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)
(DNE) ¬¬A ↔ A
(MP) A,A → B � B
(ADJ) A,B � A ∧ B
(Prefix) A → B � (C → A) → (C → B)
(Suffix) A → B � (B → C) → (A → C)
(RCont) A → B � ¬B → ¬A
(R◦) A → (B → C) �� (A ◦ B) → C
(Rt) t → A �� A

Each of the logics of interest is a first-order extension of some propositional extension
of B◦t . The propositional extensions are defined using the following list of axioms and
rules:

(A1) A ∨ ¬A
(A2) A ∧ (A → B) → B

7 N.b. that we lack function symbols in the signatures with which we are concerned; had the
terms been built up with function symbols, this condition may have required also that no
variable occurring in � becomes bound in A[�/x].

8 A propositional language can be approximated by eliminating the quantifiers and taking
only 0-ary predicates.

9 Note that “DNE” here stands for “double negation equivalence.”
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6 NICHOLAS FERENZ AND THOMAS MACAULAY FERGUSON

(A3) (A → B) ∧ (B → C) → (A → C)
(A4) (A → (A → B)) → (A → B)
(A5) A → ((A → B) → B)
(A6) A → (B → B)
(A7) A → (B → A)
(A8) (A → B) → ((A → C) → (A → B ∧ C))
(A9) A → (A → A)
(A10)A ∨ B → ((A → B) → B)
(A11) (A ∧ B → C) → (A ∧ ¬C → ¬B)
(A12) A → ¬(A → ¬A)
(A13) (A → ¬A) → ¬A
(A14) (A → B) → (¬B → ¬A)
(A15) A → B ∨ ¬B
(A16) A → (¬A → B)
(A17) (A → B) → ((B → C) → (A → C))
(A18) (A → B) → ((C → A) → (C → B))
(A19) (A → (B → C)) → (B → (A → C))
(A20) (A → (B → C)) → ((A → B) → (A → C))
(A21) (A → B) → ((A → (B → C)) → (A → C))
(A22) (A ∧ B → C) → (A → (B → C))

(R1) C ∨ A � C ∨ ¬(A → ¬A)
(R2) C ∨ (¬A → A) � C ∨ A
(R3) C ∨ A, C ∨ (A → B) � C ∨ B
(R4) C ∨ (A → B) � C ∨ (¬B → ¬A)
(R5) A � (A → B) → B
(R6) C ∨ (A → B), C ∨ (D → E) � C ∨ ((B → D) → (A → E))

Some familiar and noteworthy logics are defined as follows:

G◦t =df B◦t+(A1)
Gg◦t =df G◦t+(R1)

Gg,d◦t =df Gg◦t+ (R3) + (R4)
TW◦t =df B◦t+(A14)+(A17)+(A18)

T◦t =df TW◦t+(A4)+(A13)

EW◦t =df TW◦t+(R5)
E◦t =df T◦t+(R5)

RW◦t =df EW◦t+(A5)
R◦t =df RW◦t+ (A4)
RM◦t =df R◦t+ (A9)

Because all of the results given in this paper are for logics with fusion and the
Ackermann truth constant, we save on notation by dropping the superscript. Except
for when otherwise stated, we take L to denote L◦t . Importantly, we have to extend
known �-admissibility results for propositional results to include ◦ and t . We do so in
the appendix, where we drop this notational convention.

Note that the base logic for the paper is Gg,d◦t , which contains the two disjunctive
rules (R3) and (R4). It is pointed out in Seki [29] that these two rules are required for
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� -ADMISSIBILITY IN FIRST-ORDER RELEVANT LOGICS 7

the normal models method to work for logics with both fusion and left implication.
These logics, in Seki’s terminology are L3 logics. As far as the authors can tell, both
rules are required for each of fusion and left implication.

Proposition 2.3 (Conventionally Normal Propositional Logics). The propositional
relevant logic Gg , any extension of Gg by axioms and rules with frame postulates being
conjunctions of R and N statements (or implications with a single R statement in the
antecedent), and several extensions of Gg with implicational frame conditions with two
R statements in which (R3) and (R1) are derivable admit � [27, Section 5.6]. (See Seki
[29] for the refinement from G to Gg .)

Such logics are also called Conventionally Normal in Routley et al. [27].

Theorem 2.4. For any conventionally normal logic L with (R3) and (R4) admitting �,
the logic L◦t also admits �.

Proof. See the appendix.

This last theorem is needed because we include both fusion and little t in our
first-order formulations. We will say more about this fact later.

Definition 2.5 (First-Order Logics). Let L be a propositional relevant logic (with fusion
and t) defined above. The logic LQ is defined by adding the following axioms and rule
schemes, in the first-order language:10

(∀E ) ∀xA → A[�/x], where � is free for x in A
(∃I ) A[�/x] → ∃xA, where � is free for x in A
(EC ) ∀x(A ∨ Bx) → ∀xA ∨ Bx
(dEC ) Ax ∧ ∃xB → ∃x(Ax ∧ B)
(A∃E ) ∀x(A → Bx) → (∃xA → Bx)
(R∀I ) Ax → B � Ax → ∀xB
(R∃E ) A → Bx � ∃xA → Bx

Moreover, the logic QL is defined similarly, but without (EC ) and (dEC ).

The principle (EC) is often desribed as the extensional confinement axiom; together
with (dEC), we consider these both to be the extensional confinement axioms.

An important restriction for us is primitive inclusion of ◦ in each of the defined
logics. In some first-order logics, an extension with either ◦ or even ← (the inclusion
of which makes (A∃E) derivable) is not a conservative extension [34]. With fusion, the
following formula become a theorem (scheme):

(A∀I) ∀x(Ax → B) → (Ax → ∀xB).

Moreover, with (EC) and (dEC) as the only ‘toggle’ considered in this paper, there are
many first-order relevant logics that we do not consider. In a neighbourhood setting,
e.g., we can drop (A∃E) and (A∀I). We may also be able, though not in this paper, to

10 The reader is reminded that a super-scripted x means that x does not occur free is the
decorated (sub)formula.
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8 NICHOLAS FERENZ AND THOMAS MACAULAY FERGUSON

define and explore �-admissibility in additional first-order relevant logics. We briefly
discuss some of this freedom.

The following is a list of further rules and meta-rules to consider.

(dR∀G) Cx ∨ B � Cx ∨ ∀xB
(dR∃G) Cx ∨ B � Cx ∨ ∃xB
(dR∀I) Cx ∨ (Ax → B) � Cx ∨ (Ax → ∀xB)
(dR∃E) Cx ∨ (A → Bx) � Cx ∨ (∃xA → Bx)
MR1 If A � B, then C ∨ A � C ∨ B, where universal generalization (here, (R∀I)11)

is not used on a free variable in A to obtain B.
MR2 If A � B, then ∃xA � ∃xB, where universal generalization is not used on a

free variable in A to obtain B.

It is easy to show that (dR∀G) is a derivable rule in every first order logic LQ, due to
the presence of (EC). (A quick proof uses (EC), (MP), and the derivable (R∀G).) In a
logic QL, it remains an open question whether or not this rule is derivable/admissible.
The rule (dR∃G) is derivable in every first-order logic, due to (∃I). Moreover, since
∀x(Ax → B) → (Ax → ∀xB) is a theorem of any first-order logic (as defined in this
paper), it is easy to show that (dR∀I) is also a derivable rule with (R3). The case is
similar for (dR∃E), requiring (R3) again. Note, however, that (EC) and (dEC) are not
needed for (dR∀I) and (dR∃E).

We therefore know then that LQ will have each of the four disjunctive rules above,
and that QL sometimes has some of these rules. In 3, we show �-admissibility for QL
and LQ, provided that L admits � by normal models.

Finally, note that, as shown in Ferenz [8], (A∃E) and (A∀I) are valid in the Mares-
Goldblatt semantics for relational semantics. In contrast, in Brady’s presentation of
the content semantics of Brady [4], the base first-order relevant logics do not include
these axioms (but do include the extensional confinement axiom(s)), although the
later presentation in Brady [5] incorporates (A∃E) and (A∀I) into the setting of
content semantics. While we get (A∀I) for free using fusion, (A∃E) is nonetheless
valid on the Mares–Goldblatt semantics. (This also means that fusion does not
conservatively extend Brady’s base system.) This contrast shows that the Mares–
Goldbatt semantics and Brady’s content semantics diverge for first-order logics based
on weak propositional relevant logics (at least for those captured by a relational
semantics).

2.2. Mares–Goldblatt semantics. The target semantics is based on ternary rela-
tional semantics.

Definition 2.6 (Ternary Relational Frames). A ternary relational frame for B is a tuple
F = 〈W,N,R, ∗〉 where ∅ �= N ⊆W , R ⊆W 3, ∗ :W −→W , and we further define,
for each a, b ∈W , a ≤ b =df ∃x ∈ N (Rxab). Moreover, the following conditions are
satisfied:

11 Brady [4, 5] has the restriction using the typical universal generalization rule A � ∀xA. We
use (R∀I) because it is equivalent in the presence of t . MR1 and MR2 are used to define
extensions of Brady’s BBQ, where Brady’s BBQ is strictly weaker than what we here would
call BBQ. Notably, (A∃E) and (A∀I) are not included.
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� -ADMISSIBILITY IN FIRST-ORDER RELEVANT LOGICS 9

(c1) ≤ is a preorder on W;
(c2) N is an (≤-)upset;12

(c3) If a ≤ a′, b ≤ b′, c′ ≤ c, and Ra′b′c′, then Rabc (R ↓↓↑)
(c4) b ≤ c implies c∗ ≤ b∗;
(c5) a∗∗ = a.

A ternary relational model for B is a frame with a valuation function ||–|| that assigns
an upset ||p|| ⊆W to each propositional variable p. This assignment is extended to all
formulas by the following:13

||t || = N

||A ∧ B|| = ||A|| ∩ ||B||
||A → B|| = |A|| → ||B||

||¬A|| = ¬||A||
||A ∨ B|| = ||A|| ∪ ||B||
||A ◦ B|| = ||A|| ◦ ||B||

For models for logics extending B: we provide the following list of frame conditions
(saving space by writing an axiom’s name instead of the entire axiom):

(cA1) a ∈ N ⇒ a∗ ≤ a
(cA2) Raaa
(cA3) Rabc ⇒ ∃x ∈W (Rabx & Raxc)
(cA4) Rabc ⇒ ∃x ∈W (Rabx & Rxbc)
(cA5) Rabc ⇒ Rbac

(cA6) Rabc ⇒ b ≤ c
(cA7) Rabc ⇒ a ≤ c
(cA8) Rabc & Rcdf ⇒ Radf & Rbdf
(cA9) Rabc ⇒ a ≤ c or b ≤ c
(cA10) Rabc ⇒ Rbac & a ≤ c
(cA11) Rabc ⇒ ∃x ∈W (b ≤ x & c∗ ≤ x & Raxb∗)
(cA12) Ra∗aa∗

(cA13) Raa∗a
(cA14) Rabc ⇒ Rac∗b∗

(cA15) a∗ ≤ a
(cA16) Rabc ⇒ a ≤ b∗
(cA17) Rabc & Rcdf ⇒ ∃x ∈W (Radx & Rbxf)
(cA18) Rabc & Rcdf ⇒ ∃x ∈W (Rbdx & Raxf)

12 We define the ‘upsets’ as ℘(W )↑ = {X ∈ ℘(W ) : ∀a, b,∈W (a ∈ X & a ≤ b) ⇒ b ∈ X}.
13 The operations ¬,→, and ◦ on subsets of W, on the right-hand side, are defined as follows:

1. ¬X =df {a ∈W : α∗ 	∈ X}
2. X → Y =df {a ∈W : ∀b, c ∈W (Rabc & b ∈ X ⇒ c ∈ Y )}
3. X ◦ Y =df {a ∈W : ∃b, c ∈W (Rbca & b ∈ X & c ∈ Y )}.
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10 NICHOLAS FERENZ AND THOMAS MACAULAY FERGUSON

(cA19) Rabc & Rcdf ⇒ ∃x ∈W (Radx & Rxbf)
(cA20) Rabc & Rcdf ⇒ ∃x, y ∈W (Radx & Rbdy & Rxyf)
(cA21) Rabc & Rcdf ⇒ ∃x, y ∈W (Radx & Rbdy & Ryxf)
(cA22) Rabc & Rcdf ⇒ ∃x ∈W (b ≤ x & d ≤ x & Raxf)
(cR1) a ∈ N ⇒ Ra∗aa∗
(cR2) a ∈ N ⇒ Raa∗a
(cR3) a ∈ N ⇒ Raaa

(cR4) a ∈ N & Rabc ⇒ Rac∗b∗

(cR5) ∃x ∈ N (Raxa)
(cR6) a ∈ N & Rabc & Rcdf ⇒ ∃x, y ∈W (Radx & Rbxy & Rayf)

(This list is to be read as (cX ) is the frame condition corresponding to the axiom of rule
scheme (X).)

Definition 2.7 (Models for LQ). A Mares–Goldblatt frame for LQ (an LQ-frame),
for a propositional relevant logic L is a tuple F = 〈W,N,R, ∗, U, Prop, PropFun〉, where
〈W,N,R, ∗〉 is an L-frame, U is a non-empty set, and we have that Prop ⊆ ℘(W )↑,
PropFun ⊆ {ϕ : U� −→ Prop}. Moreover, the following conditions are satisfied:

(cq1) Prop contains N, and is closed under ∩,∪,¬,→, ◦;
(cq2) PropFun contains a constant function ϕN (ϕNf = N ), and is closed under

∩,∪,¬ →, ◦,∀n and ∃n, for every n ∈ �, where
(a) (¬ϕ)f = ¬(ϕf)
(b) (ϕ ⊗ 	)f = ϕf ⊗ 	f, for each ⊗ ∈ {∩,∪,→, ◦}
(c) (∀nϕ)f =

�
g∼xnf

ϕg =
⋃
{X ∈ Prop | X ⊆

⋂
g∼xnf

ϕg}

(d) (∃nϕ)f =
⊔
g∼xnf

ϕg =
⋂
{X ∈ Prop |

⋃
g∼xnf

ϕg ⊆ X}.

(cq3) For every ϕ ∈ PropFun, X,Y ∈ Prop, n ∈ �, and f ∈ U�14

(cEC ) X – Y ⊆
⋂
j∈U
ϕ(f[j/n]) only if X – Y ⊆ (∀nϕ)f

(cdEC )
⋃
j∈U
ϕ(f[j/n]) ⊆ X ∪ Y only if (∃nϕ)f ⊆ X ∪ Y.

A pre-model for LQ is a tuple M = 〈F, |–|〉 such that F is a Mares–Goldblatt frame
for LQ and |–| is a valuation function that assigns:

1. an individual |c| ∈ U to each constant symbol c;
2. a function |Pn| : Un −→ ℘(W ) to each n-ary predicate symbol Pn; and
3. a propositional function |A| : U� −→ ℘(W ) to each formula A such that, when

A is atomic, for every f ∈ U� :

|Pn�1, ... , �n|f = |Pn|(|�1|f, ... |�n|f)

14 Note that X – Y and Y are defined in the usual set-theoretic sense, but that Prop is not
necessarily closed under either of these operations.
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� -ADMISSIBILITY IN FIRST-ORDER RELEVANT LOGICS 11

where “|�|f” is fn when � is the variable xn, and |c| when � is constant symbol c.
Moreover, when A is not atomic (or t), the valuation is extended as follows:

|t | = φN
|A ∧ B| = |A| ∩ |B|
|A ∨ B| = |A| ∪ |B|
|∀xnA| = ∀n|A|

|¬A| = ¬|A|
|A ◦ B| = |A| ◦ |B|

|A → B| = |A| → |B|
|∃xnA| = ∃n|A|

A model for LQ is a pre-model for LQ that assigns an element of Prop to each atomic
formula.

A formula A is satisfied by a variable assignment f in a model M, written M, f � A,
whenN ⊆ |A|f. A formula is valid in a model M (M � A) when it is satisfied by every
variable assignment in that model; valid in a frame F (F � A) when it is valid in every
model based on that frame; valid in a class of frames C (C � A) when it is valid in every
frame in that class. Admissibility of a rule in the semantic context is understood as the
preservation of validity.

Proposition 2.8 (Soundness and Completeness for LQ). For a wide class of logics
including B and its usual extensions, Ferenz [8] has shown that LQ is sound and complete
w.r.t. the class of LQ-frames.

To prepare the reader for the proof of �-admissibility, we will briefly sketch the
technique of normalization and describe its history. Although the problem of �-
admissibility was tackled by Meyer & Dunn [20], the algebraic techniques employed
there are relatively involved. Routley & Meyer [26] offered a new technique of
normalization as a simpler and more elegant form of argument of �-admissibility
whose development would continue in Routley & Meyer [25] and Routley et al. [27].
The shape of the technique is straightforward: A Routley–Meyer model is described
as normal if for some normal point a, a = a∗, i.e., some normal point is its own star
point.15

Not all R models are normal (and a fortiori for weaker relevant logics), but
surprisingly Routley & Meyer [26] describe a recipe through which one can pick
an arbitrary point o ∈ N and normalize a model to include a point 0 ∈ N such that
o∗ ≤ 0 = 0∗ ≤ o. In particular, the condition for the excluded middle entails that
o∗ ≤ o, and we ensure that the new 0 is a negation–consistent point. We may think of
0 as a consistentized version of o. If the logic is sound and complete with respect to
normal models with appropriate frame conditions, then, if¬A ∨ B andA are theorems,
they will be true in 0. Since 0 = 0∗, we can conclude that A is not true at 0, whence by
the truth conditions for disjunction,B will be true at 0 and also at o. As o was arbitrarily
selected, this means that B is semantically valid and thus a theorem by completeness.

This sketch, of course, has a great many subtleties and nuances. It is the task of the
next section to fill in the gaps and transform this sketch into a proof.

15 N.b. that the definition in Routley & Meyer [26] is that this property holds for a distinguished
point but the effect is the same.
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12 NICHOLAS FERENZ AND THOMAS MACAULAY FERGUSON

§3. �-Admissibility for QL and LQ logics. While explicitly stated in some
definitions and lemmata, in this section we assume L to denote a propositional relevant
logic that admits � via the normal models method and contains (R3) and (R4): that is,
a conventionally normal L3 extension of Gg,d . The keystone of this paper is the method
of normal models, so we present the crucial definition.

Definition 3.9 (Normal Models). For any logic LQ or QL (based on a propositional
relevant logic L with (R3) and (R4) admitting � by the normal models method ) defined
above, an LQ-(QL-)model (-frame) is normal if it satisfies the following:

(Norm) a = a∗, for some a ∈ N .

Definition 3.10 (Normalization of a frame F). Where L is a conventionally normal
L3 logic, 0 �∈W and o ∈ N , the normalization of a QL-frame or LQ-frame F =
〈W,N,R, ∗, U, Prop, PropFun〉 is a frame 〈W ′, N ′, R′, ∗′, U, Prop′, PropFun′〉, defined
by:16

1. W ′ =W ∪ {0};
2. N ′ = N ∪ {0};
3. R′ is given by R′abc iff Rabc, whenever a, b, c ∈W , and when a, b ∈W , R′

satisfies the following
(a) R′000;
(b) R′00a iff R′ooa;
(c) R′0a0 iff R′oao∗;
(d) R′a00 iff R′aoo∗;
(e) R′0ab iff R′oab;
(f) R′a0b iff R′aob;
(g) R′ab0 iff R′abo∗;

4. ∗′ is defined by:
(a) a∗

′
= a∗ when a ∈W ;

(b) 0∗
′

= 0;
5. For each X ∈ Prop, add X ∈ Prop′ when o∗ �∈ X and, when o ∈ X , X ∪ {0} ∈
Prop′;

6. For each ϕ ∈ PropFun, add ϕ and ϕ′ to PropFun′, where ϕ′ is defined by:17

∀f ∈ U�, o ∈ ϕf implies ϕ′f = ϕf ∪ {0}.
We called this normalized frame the normalization of F at 0 for o ∈ N .

The proof of the following Lemma and Corollary are standard. That is, note
that their statement and proof (as in, e.g., Seki [29]) relies only on the propositional
machinery of a frame: U,Prop, and PropFun are irrelevant.

Lemma 3.11. If F is an QL- or LQ-frame ( for conventionally normal L3 L) and F′ is
a normalization of F at 0 for o:

16 The o and 0 are used as in Seki [29], and correspond to T and T ′ of Routley et al. [27, p. 387].
17 The reader is to especially note that PropFun′ is not that much of an extension of PropFun.

That is, the reader is to note the scope of the universal quantifier in the definition. There is
no ‘mixing’ in the image of a propositional function — that is, a propositional function in
PropFun′ either returns the new elements of Prop′ with 0, or else the old elements of Prop
that do not contain 0.
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� -ADMISSIBILITY IN FIRST-ORDER RELEVANT LOGICS 13

1. the relation R′ is well-defined;
2. the ordering ≤′ is such that, for all a, b ∈W :

(a) a ≤′ b iff a ≤ b;
(b) 0 ≤′ b iff o ≤ b;
(c) a ≤′ 0 if a ≤ o∗.

Corallary 3.12. If F is an QL- or LQ-frame ( for conventionally normal L3 L) and
F′ is a normalization of F at 0 for o, then o∗ ≤ 0 ≤ o.

The next lemma does require extra verification of the first-order machinery. Of
course, U is unaffected, but we must show that Prop and PropFun are well-defined
and closed under the required operations.

Lemma 3.13. Suppose that L is a propositional relevant logic (extending Gg,d ) which
admits � (by the method of normalizing models). Let F be a QL- or LQ-frame and

F′ = 〈W ′, N ′, R′, ∗′, U, Prop′, PropFun′〉,
the normalization of F at 0 for o. Then F′ is also a QL- or LQ-frame, respectively.

Proof. Here we must check every frame postulate. By the supposition that L admits
� by the method of normalization (see the appendix), we can use the arguments of
Routley et al. [27, pp. 389–390] Seki [29, pp. 214–216] to cover to show that the frame
postulates corresponding to L (including those of Gg,d ) are satisfied (with respect to
W ′, N ′, R′ and ∗′).

What remains to show is that Prop′ and PropFun′ and well defined and that
conditions (cq1) and (cq2) hold for QL, and additionally that (cq3) holds for LQ.
Prop′ is well-defined: We need to check that each element of Prop′ is an ≤-upset.

For each such X not containing 0, we need to show that o∗ �∈ X , but this is so by
definition. Suppose that 0 ∈ X ′ ∈ Prop′, and that ∃y ∈ X ′(y ≤ z & z �∈ X ′). As X ′

comes from an element, say X, of Prop, such a y cannot exist in X ′. So let y = 0. This
means that 0 ≤ z and z �∈ X ′. However, by Lemma 3.11(2).(b), o ≤ z and thus z ∈ X ,
a contradiction. Hence Prop is well-defined.
PropFun′ is well-defined: It is easy to see that each element ϕ ∈ PropFun′ is a

function that produces a unique element of Prop′ as output, given a particular input.
(cq1): Suppose that X ′, Y ′ ∈ Prop′ (and that X ′ = X ∪ {0}, if 0 ∈ X ′, for some

X ∈ Prop, a similarly for Y/Y ′). We give the cases as follows:

∩ If 0 �∈ X ′, Y ′, then 0 �∈ X ′ ∩ Y ′ ∈ Prop, and hence in Prop′. If 0 ∈ X ′ but 0 �∈ Y ′,
thenX ′ ∩ Y ′ = X ∩ Y ∈ Prop′. If 0 ∈ X ′, Y ′, thenX ′ ∩ Y ′ = {0} ∪ (X ∩ Y ), and
X ∩ Y ∈ Prop. (The remaining sub-cases are symmetrical to the second sub-case.)

∪ This case is similar to the previous case. One sub-case is shown. Suppose that
0 ∈ X ′, Y ′. Then X ′ ∪ Y ′ = {0} ∪ (X ∪ Y ), where X ∪ Y ∈ Prop.

¬ Either 0 = 0∗ ∈ X ′ or not. If it is, then o ∈ X . Then o∗ �∈ ¬X , and o �∈ ¬X . From
the latter,¬X ′ = ¬X ∈ Prop. On the other hand, the assumption that 0 �∈ X ′(= X )
implies that o �∈ X . Thus o∗ ∈ ¬X , and by Lemma 3.12 we have o ∈ ¬X , and so
0 ∈ ¬X ′ = {0} ∪ ¬X .

→The case whereX ′ = X andY ′ = Y is trivial. Suppose thatX ′ = X ∪ {0} andY ′ =
Y . We know that Ra0c iff Raoc, and X ′ → Y = {a ∈W ′ : ∀b, c((Rabc & b ∈
X ′) ⇒ c ∈ Y )}, which means that a ∈ X ′ → Y iff a ∈ X → Y , which means that
X ′ → Y = X → Y ∈ Prop′.
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14 NICHOLAS FERENZ AND THOMAS MACAULAY FERGUSON

On the other hand, if X ′ = X and Y ′ = Y ∪ {0}, then we note that R′ab0 iff
Rabo∗. So X ′ → Y ′ = X → Y ′. If a ∈ X → Y ′ and R′ab0, then R′abo∗, and so
a ∈ X → Y .Finally, suppose that X ′ = X ∪ {0} and Y ′ = Y ∪ {0}. We combine
the reasoning of the previous two cases to showX ′ → Y ′ = X → Y . (UsingR′a00
iff R′aoo∗ where needed.)

◦ Similar to the → case.

(cq2): Suppose that ϕ′, 	′ ∈ PropFun: The cases are as follows:

ϕ′
N ′ It is easy to check that (ϕN )′ is our desired ϕ′

N ′ .
∩ For the remaining cases, we show only the subcases where one of ϕ′ or 	′ is not

in PropFun. It is easy to check that, for each f ∈ U� , ϕ′f ∩ 	′f = (ϕ ∩ 	)′f,
which shows that PropFun′ is closed under (the lifted operator) ∩.

∪ Similar to the previous case.
¬ We show that ¬(ϕ′f) = (¬ϕ)′f, for each f ∈ U� . If 0 �∈ ¬(ϕ′f) ∪ (¬ϕ)′f,

then ¬(ϕ′f) = ¬(ϕf) = (¬ϕ)f = (¬ϕ)′f. On the other hand, 0(0∗) ∈ ¬(ϕ′f)
iff 0∗(0) �∈ (ϕ′f) iff o∗ �∈ (ϕ)f iff o ∈ ¬(ϕf) = (¬ϕ)f iff 0 ∈ (¬ϕ)′f.

→ Fixing an f, we must show that (ϕ′ → 	′)f = (ϕ → 	)′f. To handle multiple
cases in parallel, let the notation �a/0� denote a in case a �= 0 and 0 otherwise.
Then for left-to-right, we prove the contrapositive. If �a/0� /∈ (ϕ → 	)′f then
�a/o� /∈ (ϕ → 	)f, meaning that there exist b, c ∈W such that R�a/o�bc and
b ∈ ϕf and c /∈ 	f, i.e., there is a counterexample. Counterexamples will lift to
the new model, i.e.,R′�a/0�bc will hold. Also as ϕf ⊆ ϕ′f, b ∈ ϕ′f and as 	′f ∩
W = 	f, that c /∈ 	f entails that c /∈ 	′f. Together, �a/0� /∈ (ϕ′f → 	′f). For
right-to-left, if �a/0� ∈ (ϕ → 	)′f then �a/o� ∈ (ϕ → 	)f, meaning that in the
original model for all b, c ∈W such thatR�a/o�bc, if b ∈ ϕf then c ∈ 	f. Suppose
for contradiction that �a/0� /∈ (ϕ′f → 	′f). Then there are d, e,∈W ′ for which
R′�a/0�de while d ∈ ϕ′f and e /∈ 	′f. But (using the same notation) this means
that in the original model R�a/o��d/o��e/o∗� with �d/o� ∈ ϕf and �e/o∗� /∈ 	f.
But since this takes place in the original model, �e/o∗� would be forced to be a
member of 	f. Consequently, �a/0� ∈ (ϕ′f → 	′f).

◦ Similar to the → case.
∀n We show that (∀nϕ′)f = (∀nϕ)′f, for every f ∈ U� . Fix an arbitrary f ∈ U� .

There are two distinct cases to consider 0 ∈ (∀nϕ)′f and 0 �∈ (∀nϕ)′f.For the latter,
that is 0 �∈ (∀nϕ)′f, this entails that o �∈ (∀nϕ)f. That is, for all X ∈ Prop, X ⊆⋂
g∼xf(ϕg) entails o �∈ X . By definition, it follows that each ϕ′g ∈

⋂
g∼xf(ϕ′g)

does not contain 0. And so, 0 �∈
�
g∼xf(ϕ′g) = (∀nϕ′)f. That (∀nϕ′)f = (∀nϕ)′f

follows from the fact that each set belongs to the original model, where the identity
holds.

Now suppose that 0 ∈ (∀nϕ)′f. Then o ∈ (∀nϕ)f and thus o ∈ X ⊆
⋂
g∼xf(ϕg)

for some X ∈ Prop. Then o ∈ ϕg for every g. Let us denote X ∪ {0} by X ′. Then
X ′ ⊆

⋂
g∼xf(ϕ′g), as by definition ϕ′g must include 0. But then 0 ∈ (∀nϕ′)f.

Using the fact that 0 ∈ (∀nϕ′)f iff 0 ∈ (∀nϕ)′f, we now show the identity
(∀nϕ′)f = (∀nϕ)′f. The a = 0 case is covered by what we have already shown.
If a �= 0, then the corresponding identity of the original model is sufficient.

∃n Similar but dual to the previous case.
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� -ADMISSIBILITY IN FIRST-ORDER RELEVANT LOGICS 15

This completes the QL portion of the lemma. The remaining case concerns LQ.
(cq3): We show only the sub-case for (cEC). Assume that X ′, Y ′ ∈ Prop′, ϕ′ ∈

PropFun′, n ∈ �, andf ∈ U� . Further suppose thatX ′ – Y ′ ⊆
⋂
j∈U
ϕ′(f[j/n]). There

are two cases.

Case 1:0 ∈ X ′ – Y ′, which is 0 ∈ X ′ and 0 �∈ Y ′. Then 0 ∈
⋂
j∈U
ϕ′(f[j/n]). Thus, 0 ∈

ϕ′(f[j/n]) for each j ∈ U . We want to show that there is anX ∈ Prop′ such
that 0 ∈ X ⊆ ϕ′(f[j/n]) for each j ∈ U . Consider the set∀nϕ′f ∪ {0}. This
is indeed an element of Prop′: 0 ∈ ϕ′(f[j/n]) entails o ∈ ϕ′(f[j/n]), which
forces in turn both o ∈ ∀nϕ′f and 0 ∈ ∀nϕ′f ∪ {0} ∈ Prop′. This completes
the case with X = ∀nϕ′f ∪ {0}. Because the original frame satisfied (cEC),
we have shown that every element of X ′ – Y ′ is an element of (∀nϕ′)f, as
required.

Case 2:0 �∈ X ′ – Y ′. We assume that X ′ – Y ′ ⊆
⋂
j∈U
ϕ′(f[j/n]). As 0 �∈ X ′ – Y ′, the

result follows from the original model satisfying (cEC) and the fact that both⋂
j∈U
ϕ′(f[j/n]) and (∀nϕ′)f are either equal to their corresponding sets in

the original model, or additionally contain 0.

As each normalized frame is a frame of the right kind, soundness for the
corresponding logic is straightforward. We record this fact.

Lemma 3.14 (Normal Soundness). For any formula A, if A is a theorem of QL or
LQ on L3 L, then A is valid in every normal QL-frame or LQ-frame, respectively.

Given a LQ-model’s valuation, we define the standard valuation for the normaliza-
tion of the model’s frame in the following definition. Note that other valuations are
possible, but that this standard normalization valuation plays a key role in what’s to
come.

Definition 3.15. If M = 〈F, |–|〉 is an QL- or LQ-model ( for conventionally normal L3
logic L), we take as the standard normalization of model M at 0 ( for 0 ∈ N ) to be
the tuple M′ = 〈F′, |–|′〉, where F′ is the normalization of F (at o), and |–|′ is defined as
follows:18

1. |c|′ = |c|;
2. for all �j ∈ Un: |Pn|′(�j) = |Pn|(�j), if o �∈ |Pn|(�j), and (|Pn|(�j)) ∪ {0} if
o ∈ |Pn|(�j);

3. A propositional function |A|′ is given to each formula in the usual way, given the
previous two clauses.

Lemma 3.16. Let L be a conventionally normal L3 propositional relevant logic. Given
a QL- or LQ-model M = 〈F, |–|〉, the standard normalization M′ = 〈F′, |–|′〉 of M is a
QL- or LQ-model, respectively.

Proof. The underlying frame is an QL- or LQ-frame, as per Lemma 3.13. It remains
to be shown that the valuation assigns an element of PropFun′ to each atomic

18 Note that this terminology is new, but reflects the usual method of normalization.
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proposition. That every formula is assigned an element of PropFun′ follows from
each atomic formula being assigned an element of PropFun′ together with the fact
that PropFun′ is closed under the required operations.

It is straightforward to check that each atomic formula is mapped to an element of
PropFun′. As PropFun′ is closed under the appropriate operators, it follows in the
usual way that each formula is mapped to an element of PropFun′.

Lemma 3.17. Let M be a QL- or LQ-model with set W ( for conventionally normal L3
logic L). Further let M′ be the standard normalization of M. For all a ∈W , for every
formula A and f ∈ U� , a ∈ |A|f iff a ∈ |A|′f.

Proof. The proof is by induction on the complexity of A. If A is the atomic
P�1, ... , �n, then |P�1, ... , �n|′f = |P|′(|�1|′f, ... , |�n|f). For each |�i |′f, |�i |′f = |�i |f.
Thus, by definition, |P�1, ... , �n|′f restricted to W is |P�1, ... , �n|f, as required. The
case for t is straightforward. For the inductive cases, we only show a couple.

Case A = B ∨ C: Suppose that a ∈W and f ∈ U� . If a ∈ |B ∨ C|f, then by (a
couple suppressed steps) the inductive hypothesis either a ∈ |B|′f or a ∈ |C|′f, which
entails that a ∈ |B ∨ C|′f, as required. The other direction is similarly straightforward.

Case A = B → C: Right-to-left is trivial as R′ and R agree on all arguments from
W. For left-to-right, suppose that a ∈ |B → C|f. Then for all b, c ∈W such thatRabc
and b ∈ |B|f, also c ∈ |C|f. By induction hypothesis, this entails that for all b, c ∈W
such that R′abc and b ∈ |B|′f, also c ∈ |C|′f. This is nearly sufficient to establish
that a ∈ |B → C|f; it could go away only in case R′ab′c′, b′ ∈ |B|′f, and c′ ∈ |C|′f
when either b′ = 0 or c′ = 0. But in such cases, one could select appropriate b′′ = o
or c′′ = o∗ such that R′ab′′c′′ while b′′ ∈ |B|′f and c′′ /∈ |C|′f. As a, b′′, c′′ ∈W ,
though, this is impossible, as it would entail that c′′ ∈ |C|′f. Thus a ∈ |B → C|′f, as
required.

Case A = ∀xnB: Suppose that a ∈W , f ∈ U� and that a ∈ |∀xnB|f. Then
a ∈ X ∈ Prop and X ⊆

⋂
g∼xnf |B|g. Then a ∈ |B|g, for each g ∼xn f. By the

induction hypothesis, for all b ∈W , b ∈ |B|′g iff b ∈ |B|′g, for each such g. Thus (i)
a ∈

⋂
g∼xnf |B|

′g and (ii)X ⊆
⋂
g∼xnf |B|

′g (becauseX ⊆W ). Then a ∈ X ∈ Prop′
and X ⊆

⋂
g∼xnf |B|g, which is that a ∈ |∀xnB|′f, as required.

For the other direction, assume that a ∈W , f ∈ U� and that a ∈ |∀xnB|′f. Then
a ∈ X ′ ∈ Prop′ and X ′ ⊆

⋂
g∼xn f |B|

′g. Consider X, which is equal to X ′ if X ′ ⊆W ,
and is X ′ – {0} otherwise. Clearly X ∈ Prop. Moreover, by the transitivity of the
subset relation, X ⊆

⋂
g∼xnf |B|

′g, and also we have a ∈ X . Now, by the induction
hypothesis, for every b ∈W , b ∈ |B|′g iff b ∈ |B|′g, for each such g. Thus we infer that
X ⊆

⋂
g∼xnf |B|g, and so a ∈ |∀xnB|f.

Theorem 3.18. For any formula A and any L3 logic L admitting � by normal models, A
is a theorem of LQ (QL) iff A is valid in every normal LQ-frame (QL-frame).

Proof. The only if direction is soundness, and is covered by Lemma 3.14. For the
if direction, suppose that A is not a theorem of LQ (QL). Then there is a canonical
LQ-model (QL-model) with frame F = 〈W,N,R, 0, U, Prop, PropFun〉, (canonical)
valuation |–|, and o ∈ N such that o �∈ |A|f, for some f ∈ U� .

For a new 0, take the standard normalization of M (at 0 for o), denoted M′ =
〈F′, |–|′〉. By Lemma 3.16, this M′ is a LQ-model (QL-model). By Lemma 3.17,
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o �∈ |A|′f. But 0 ≤ o then entails that 0 �∈ |A|′f, and since 0 ∈ N ′, we have that A is
not valid on F.

In particular, this proof shows that, for every invalid formula A, there is a normal
point 0 = 0∗ in a normal model at which the invalidity of A is witnessed. In the proof
we took at arbitrary oinN at whichA fails and introduced a new point 0 which, because
of the excluded middle axiom and out construction, is such that o∗ ≤ 0 ≤ o. The latter
entails that 0 is also a point at which A fails.

Corallary 3.19. For the logics LQ and QL, where L3 logic L admits � by normal
models, the rule � is admissible.

Proof. Suppose that ¬A ∨ B and A are both theorems of LQ. Then by Theorem
3.18, these formulas are valid on every normal model. Consider an arbitrary normal
model M = 〈W,N,R, ∗, U, Prop, PropFun, |–|〉 with normal point 0 (0 = 0∗). Since
0 ∈ N , 0 ∈ |¬A ∨ B|f ∩ |A|f for every f ∈ U� . Since 0 ∈ |A|f and 0 = 0∗, we have
that 0 �∈ |¬A|f. But then given the definition of |¬A ∨ B|f, 0 ∈ |B|f, as required.

We reintroduce the ◦ and t notation in a logic’s name for the next corollary, which
gives a sufficient condition for �-admissibility in logics without ◦ and t .

Corallary 3.20. For every conventionally normal propositional logic L, if LQ◦t

admits � and conservatively extends LQ, then LQ admits �.

Proof. Suppose that�LQ A and�LQ ¬A ∨ B and thatA andB do not contain fusion
or t . Then we have �LQ◦t B since LQ◦t admits �. Moreover, since B is in the language
of LQ, by the conservative extension assumption we have �LQ B.

As a result, whenever we can show the conservative extension by ◦ and t in the
first-order case, we can extend our admissibility results to the weaker logics.

§4. Concluding remarks. We have shown � is admissible in a wide range of first-
order relevant logics. A major upshot is that we can conceive of many logics QL and
LQ as having a well-behaved semantics. Well behaved, that is, in the sense that the
machinery for interpreting quantified formulas is sufficiently independent from the
propositional machinery required for �-admissibility. Thus, we have essentially shown
that the QL and LQ extensions of L conserve the property of �-admissibility (w.r.t.
the normal models method).19 From this point of view, and from the fact that �-
admissibility ensures the set of theorems of a logic is negation consistent (and that the
logic contains the set of theorems of classical first-order logic in ¬,∨,∀), we can take
the logics that we have shown to admit � as well-behaved in yet another sense: that
the constant domain extensions QL and LQ preserve normal models �-admissiblity,
negation consistency of the set of theorems, and the containment of (the theorems of)
their classical counterparts.

There are, however, many other ways to axiomatize first-order extensions of
relevant logics. From this work, we plan to extend these results to first-order modal
relevant logics and first-order logics that require neighbourhood semantics. (The
neighbourhood semantics given in Tedder & Ferenz [34] is apt for a normal model

19 We thank an anonymous reviewer for the viewpoint that our results are a kind of conservative
extension result.
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approach, as negation is treated in a similar way using a star function. Similarly, the
framework of Ferenz & Tedder [10] may be used for weaker modal relevant logics.) For
the modal cases, the work of Seki [29] will again be invaluable. In the neighbourhood
cases, we are able to better model axiomatizations of first-order logics that, e.g., drop
the axiom forms of universal introduction and existential elimination.

A further avenue for future work is to extend the investigation in the paper Ferenz
& Ferguson [9] in which � admissibility holds in the case of the varying-domain
version of QR described in Mares [18] to examine varying-domain analogues of
the weaker relevant logics considered in this paper. Notably, Mares’ system includes
an existence predicate that requires some additional consideration when effecting
a normalization. The present paper’s emphasis on considering the consequences of
additional connectives—like fusion and t—for the technique of normal models makes
this an especially attractive area to explore.

Finally, as a referee has kindly suggested to us, there appears to be some kinship
between Slaney’s work on reduced models for weak relevant logics in Slaney [32] and
the techniques employed in this paper. Slaney’s method does not require that a logic
has the principle of excluded middle, and so extending his results to first-order relevant
logics is a natural step to expand on the results of this paper. We plan on revisiting
the connections between normalization and Slaney’s results, as well as exploring the
metavaluation method, for first-order relevant logics in future work.

§5. Appendix: �-Admissibility for propositional logics with fusion and t . In this
appendix, we prove Theorem 2.4 which states that, for any conventionally normal
logic L admitting �, the logic L◦t also admits �. The proof will largely follow Seki’s
presentation in Seki [29] (minus modalities but tending to the cases of ◦ and t).

Lemma 5.21. The normalization of an L◦t frame is an L◦t frame.

Proof. Let F′ = 〈W ′, N ′, R′, ∗′〉 be the normalization of an L◦t frame F =
〈W,N,R, ∗〉. That ∗′ is a well-defined unary function is immediate; that R′ is a well-
defined ternary relation follows from a similar argument to that found in Routley et al.
[27, p. 387].

In particular, we note the following corollaries follow from Lemma 5.21

Corallary 5.22. In a normalization F′ based on F, the following hold for all a, b ∈W

a ≤′ b iff a ≤ b 0 ≤′ b iff o ≤ b.

Corallary 5.23. Let F′ = 〈W ′, N ′, R′, ∗′〉 be the normalization of an L◦t frame
F = 〈W,N,R, ∗〉 at 0 for o ∈W . Then o∗

′ ≤′ 0 ≤′ o.

From the soundness of L◦t , the following follows immediately.

Lemma 5.24. If A is provable in L◦t then A is valid in every normal L◦t frame.

At this point, we lift the notion of normalization of a frame to define the
normalization of a model.
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Definition 5.25. Let 〈F, ‖–‖〉 be an L◦t model. Then let its normalization be 〈F′, ‖–‖′〉
where F′ is the normalization of F and ‖–‖′ is defined so that for atoms p,:

‖p‖′ =

{
‖p‖ if o /∈ ‖p‖
‖p‖ ∪ {0} if o ∈ ‖p‖.

Now, we introduce two lemmata establishing that the normalization of a model will
enjoy appropriate properties.

Lemma 5.26. In a normalized L◦t model, ‖p‖′ is an upset with respect to ≤′ for every
atom p.

Proof. By appeal to the model of which the model is a normalization. If o /∈ ‖p‖,
then this follows. Otherwise, ‖p‖′ = ‖p‖ ∪ {0}. Take an arbitrary a ∈ ‖p‖′ and b such
that a ≤′ b. We prove that b ∈ ‖p‖′.

Note again that both o ∈ ‖p‖ and 0 ∈ ‖p‖′. If b = 0, the result is immediate, so
assume that b ∈W . Now, if a = 0, because 0 ≤′ b holds precisely when o ≤ b holds in
the original model. If a �= 0, then because b �= 0, a ≤′ b holds when a ≤ b holds in the
original model. In both cases, as ‖p‖ is an upset, b ∈ ‖p‖ and a fortiori b ∈ ‖p‖′

Lemma 5.27. In a normalized L◦t model, ‖A‖′ is an upset with respect to ≤′ for every
formula A.

Proof. As 〈F, ‖–‖′〉 is a model, closure of propositions from the basis of Lemma 5.26
follows through a standard inductive argument.

This brings us to the key fact, namely, that a normalized model will agree with the
model from which it was constructed. We ensure especially that the semantic clauses
for ◦ and t do not somehow prove problematic.

Lemma 5.28. In a normalized L◦t model and point a ∈W , a ∈ ‖A‖ iff a ∈ ‖A‖′.
Proof. By induction on complexity of A. The basis step is provided by definition

of the normalized model and most cases are covered as in Routley et al. [27, p. 391].
Given our interest in t and ◦, we provide these steps:

• If A = t then ‖t‖′ =‖t‖ ∪ {0}, so this holds for every a ∈W .
• If A = B ◦ C then to show left-to-right, pick an a ∈ ‖B ◦ C‖; this holds precisely

when b ∈ ‖B‖ and c ∈ ‖C‖ such that Rbca. By induction hypothesis, this entails that
b ∈ ‖B‖′ and c ∈ ‖C‖′. Additionally, by construction of the normalized frame, R′bca
holds, whence a ∈ ‖B ◦ C‖′. For right-to-left, on the other hand, pick an a ∈ ‖B ◦ C‖′
such that a ∈W . Then there are b ∈ ‖B‖′ and c ∈ ‖C‖′ such that R′bca. Now, fix the
following:

b′ =

{
b if b �= 0
o if b = 0

and c′ =

{
c if c �= 0
o if c = 0.

Notably, b′ and c′ are elements of W. Then either trivially or by construction of
R′, we have that Rb′c′a and either trivially or by construction of ≤′, also b ≤ b′ and
c ≤ c′, whence by Corollary 5.27, b′ ∈ ‖B‖′ and c′ ∈ ‖C‖′. In other words, there are
b′ ∈ ‖B‖ and c′ ∈ ‖C‖ such that Rb′c′a, i.e., a ∈ ‖B ◦ C‖.

One final lemma will suffice to prove Theorem 2.4

Lemma 5.29. L◦t proves A iff A is valid in every normal L◦t frame.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020324000261
Downloaded from https://www.cambridge.org/core. IP address: 18.226.104.166, on 28 Jan 2025 at 02:14:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020324000261
https://www.cambridge.org/core


20 NICHOLAS FERENZ AND THOMAS MACAULAY FERGUSON

Proof. We prove the right-to-left direction via contraposition. Suppose that A is not
provable in L◦t . Then there exists a model 〈F, ‖–‖〉 and a normal point o ∈ N such
that o /∈ ‖A‖. By Lemma 5.28, in the normalization 〈F, ‖–‖′〉, o /∈ ‖A‖′. By Corollary
5.23, 0 ≤′ 0, entailing that 0 /∈ ‖A‖′. Because 0 ∈ N ′, F′ witnesses that A is not valid
in every normal L◦t frame.

This brings us to the main theorem concerning L◦t .

Theorem 2.4. � is admissible for L◦t .

Proof. Suppose for contradiction that � fails, i.e., that there are L◦t theorems¬A ∨ B
and A such that B is not provable. By Lemma 5.29, there exists an L◦t model 〈F′, ‖–‖′〉
with F′ normal such that 0 /∈ ‖B‖′. As 0 ∈ N ′, however, 0 ∈ ‖¬A ∨ B‖′ and 0 ∈ ‖A‖′.
Consequently, either 0 ∈ ‖¬A‖′ or 0 ∈ ‖B‖′. Because 0 = 0∗

′
, the requirement of the

former case that 0∗
′
/∈ ‖A‖′ translates to 0 /∈ ‖A‖′, contradicting the hypothesis that

0 ∈ ‖A‖′. The latter case is ruled out insofar as 0 was assumed not to be a member of
‖B‖′. As both disjuncts lead to contradiction, we conclude that � holds.
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