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Electrohydrodynamic (EHD)-induced droplet emission is an efficient method for the
production of micron- and submicron-sized droplets in technological applications.
Existing studies propose several scaling laws to determine the size of the emitted droplet.
However, they have usually focused on the tip streaming phenomena of a droplet when
subjected to a uniform electric field. In most applications, a non-uniform distribution of
the electric field is created owing to the nozzle-to-plate configuration. Here, we employ an
arbitrary Lagrangian–Eulerian method to demonstrate the mechanism of the first droplet
emission from an electrified liquid meniscus with a fixed volume hanging at the nozzle
tip. The critical condition when tip streaming occurs is determined using our numerical
results. A phase diagram in terms of the electric field and initial liquid volume is presented
to obtain the commonly used jetting mode. The effects of the liquid volume, electric field
strength and electrical conductivity of the liquid on the processes of jet formation and
breakup are further investigated. We find a particularly non-monotonic dependence of the
size of the emitted droplet on the electrical conductivity. These findings could be useful for
generating microdroplets and improving injection frequency in EHD printing technology.

Key words: electrohydrodynamic effects, drops, breakup/coalescence

1. Introduction

When a liquid is subjected to a sufficiently strong electric field, it may deform and then
emit charged droplets via the breakup of a preformed thin jet. The phenomenon of such
jets into charged droplets has been widely used in a number of applications including
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electrospray (Fenn et al. 1989), electrospinning (Wendorff, Agarwal & Greiner 2012) and
electrohydrodynamic (EHD) printing (Park et al. 2007). During the EHD printing process,
a high electric potential is applied between the capillary nozzle and grounded collector,
such that the meniscus of an ink liquid hanging at the nozzle tip will form a Taylor cone
under the electric normal and tangential forces, and may produce mono-dispersed droplets.
One practical advantage of EHD printing is that it allows for sub-micrometre resolution,
which is typically beyond the capability of conventional piezoacoustic inkjet printing
(Basaran, Gao & Bhat 2013; Lohse 2022) in which a typical droplet diameter is 20 μm. The
emitted droplet in EHD printing is more than an order of magnitude smaller than the size of
the nozzle. In the past few decades, EHD printing has been finding application in gradually
increasing numbers of areas. Therefore, understanding this physical phenomenon is of
utmost importance, as well as studying the mechanism of droplet emission.

In this study, we focus on the droplet emission from an electrified liquid meniscus
hanging at the nozzle tip in which there is no liquid supply from the nozzle. Over a century
ago, Zeleny (1917) experimentally reported the appearance of a liquid surface undergoing
disintegration owing to an electric field. Subsequently, numerous efforts have been devoted
to revealing this phenomenon. Taylor (1964) theoretically showed that a conical interface
can be formed with a cone (i.e. Taylor cone) angle of 49.29◦ between two fluids subjected
to an electric field. Melcher & Taylor (1969) first defined electrohydrodynamics as a branch
of fluid mechanics with electric effects. After that, researchers have revealed remarkable
phenomena concerned with the fluid motion in the presence of an electric field such as the
tip streaming (i.e. cone jetting) from liquid cones. Past experimental studies have indicated
that tip streaming is related to interfacial instability. The dynamics of jet breakup and drop
formation are comprehensively discussed in previous works (Gañán-Calvo et al. 1994,
2016; López-Herrera, Herrada & Gañán-Calvo 2023). They developed theoretical models
used to study the scaling laws of the size and the electric current of the droplets emitted
from the liquid. They also focused on the electrospraying technique in the cone-jetting
mode, including the complex charge relaxation and electrokinetic effect (López-Herrera
et al. 2023). Collins et al. (2008) reported simulations and experiments to explain the
mechanisms of cone formation and jet emission from a liquid film of finite conductivity.
They showed that tip streaming cannot be observed if the liquid is perfectly conducting
or insulating. The scaling regime for the size and charge of droplets was determined by
their theory and simulation (Collins et al. 2013). Recently, Vlahovska (2019) reviewed the
electrohydrodynamics of droplets and vesicles in electric fields. The symmetry-breaking
of droplets was discussed due to the Quincke rotation effect, which is quite different from
the tip streaming.

Tip streaming has been shown to be very advantageous in EHD printing, where the
printed ink is continuously fed by a metallic nozzle. A constant voltage is applied between
the conductive nozzle and the collector. Both printing modes and sizes of the emitted
droplets are important for a high printing resolution in the fabrication process. Cloupeau
& Prunet-Foch (1990, 1994) have reviewed the main functioning modes in EHD spraying,
which can be classified from how the drops are emitted. When the voltage difference is
low and the flow rate is sufficient, a droplet can be detached from the nozzle under the
electric force; this is called the dripping mode. The single droplet has a diameter similar to
that of the capillary nozzle. The formation of droplets from capillary tubes in the presence
of an electric field has been analysed by Notz & Basaran (1999). They classified different
regimes as a function of the electric field and gravitational force. When the electric field
is high enough, a long liquid jet will be emitted from the meniscus hanging from the
nozzle tip and further break up into multiple microdroplets under the Plateau–Rayleigh
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First droplet emission from an electrified liquid meniscus

instability; this is called the jetting mode. The transition from dripping to EHD jetting has
been studied experimentally and numerically by previous researchers. Lee et al. (2013)
systemized six dimensionless numbers to draw a jetting map for an EHD printing system.
A stable cone jet can be obtained by optimizing the experimental parameters. Guan et al.
(2022) numerically studied high-frequency pulsating EHD jet printing and explained the
impacts of voltage on the different printing stages. Additionally, Hijano, Loscertales &
Higuera (2021) suggested that there is a periodic micro-dripping mode apart from the
typical dripping and jetting modes. In this mode, a ligament is detached from the electrified
meniscus and further disintegrates into one or several monodispersed droplets. Beyond
these three modes, extensive studies have been devoted to revealing the other jetting modes
such as the tilted-jet, twin-jet, multi-jet and spindle modes (Lee et al. 2013; Verdoold et al.
2014; Gañán-Calvo et al. 2018; Montanero & Gañán-Calvo 2020; Kong et al. 2022).

In EHD printing, it would be preferable if the printing mode is steady and the emitted
droplets are in the right range of sizes. There are two main problems: the stability of
tip streaming and the breakup of liquid jet. The jet initiation can be affected by many
parameters, including the physical properties of the liquid, the applied electric field, the
geometry of the system and the flow rate (Cisquella-Serra et al. 2019; Gamero-Castaño
& Magnani, 2019; Gallud & Lozano, 2022). Harris & Basaran (1993) determined the
equilibrium shapes and stability of a conducting drop hanging from a nozzle. In their
study, they discussed the effect of the nozzle on the equilibrium shapes of pendant drops
with fixed volume. Beroz, Hart & Bush (2019) determined the stability limit of a droplet
subjected to a uniform electric field. They found a single power law between the droplet
volume and electric field to predict the critical condition for tip streaming. Rubio et al.
(2021) studied the onset of tip streaming in an electrified droplet and pointed out the role of
charge relaxation during the jetting process. In particular, they experimentally determined
the charge of the first-emitted droplet in the cone-jet mode. Despite this, previous studies
have usually focused on the pendant droplet subjected to a uniform electric field, which
is created by plate-to-plate electrodes (i.e. parallel electrodes), while for EHD printing
in a steady cone-jet mode, a nozzle-to-plate configuration is often used for an intense
electric field. The characteristic electric field strength at the nozzle tip can be calculated as
E = 2φ̂/[R0 ln(4H/R0)], where φ̂ is the potential difference between the two electrodes,
R0 is the nozzle radius, and H is the distance between the nozzle tip and the counter
electrode (Marginean, Nemes & Vertes 2006). The critical condition for the occurrence of
tip streaming has not been determined for this case, namely, that of a liquid meniscus (or
pendant droplet) hanging at the nozzle tip subjected to a needle-to-plate electric field.

In this work, we focus on the mechanism of tip streaming using a numerical method.
The difficulty in modelling this phenomenon arises from the charge transport along
the liquid–air interface. In previous numerical studies, the liquid is usually treated as a
Taylor–Melcher leaky dielectric, where the charge is zero in the bulk and charge relaxation
only occurs at the liquid interface (Saville 1997). The surface charge density satisfies
the conservation equation including the flow-induced charge convection and Ohmic
conduction caused by the movement of free electrons. Using the leaky dielectric model,
the electrohydrodynamic tip streaming has been numerically simulated using distinct
approaches such as the volume of fluid (VOF) method (Gawande, Mayya & Thaokar
2019), level set (LS) method (Nie et al. 2021a), phase field (PF) method (Zhong et al.
2023), boundary element method (BEM) (Gamero-Castaño & Magnani 2018; Hijano et al.
2021) and arbitrary Lagrangian–Eulerian (ALE) algorithm (Wagoner et al. 2021). Here
we employed the ALE algorithm to model the jet emission and breakup that occur during
the tip streaming. This is similar to the work developed by Collins et al. (2008, 2013),
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except that now the electric field is created by the nozzle electrode and collector electrode.
This sharp interface method (Anthony et al. 2023) has been used extensively to model
EHD problems since it allows a complete formulation of the charge conservation across
the interface. In this paper, we focus on the nozzle-to-plate configuration, where a liquid
meniscus is hanging at the nozzle tip with no liquid supply. The critical condition when
tip streaming occurs is determined using our numerical results. We then exhibit a simple
phase diagram delineating the non-jetting to jetting transition in terms of the electric field
and initial liquid volume. Finally, the effects of fundamental variables, namely the liquid
volume, the electric field strength and the electrical conductivity of liquid on the processes
of jet formation and breakup are further investigated.

2. Problem formulation

Figure 1(a) shows the sketch of the two-dimensional axisymmetric computational domain
used in our simulation. A liquid meniscus of density ρl, viscosity μl, electrical permittivity
εl and electrical conductivity σl hangs from a metallic nozzle of length R0, inner radius aR0
and outer radius bR0, where a ≤ 1 and b ≥ 1. In this study, the meniscus is numerically
pinned to the nozzle tip at a fixed contact radius R0; therefore, a = 1 and b = 1 represent
that the meniscus is pinned to the sharp edge of the inner and outer nozzle wall,
respectively. To avoid the numerical difficulty in modelling the two limiting cases, we
choose a = 0.9 and b = 1.1, indicating that the contact line is pinned to the middle
of the nozzle tip. For the initial condition (t = 0), a static liquid meniscus of volume
V = πR3

0(1 − cos θ0)
2(2 + cos θ0)/3 sin3 θ0 hangs from the nozzle tip. Here, θ0 represents

both the contact angle and the opening half-angle of the meniscus shape. Likewise, the
liquid meniscus is surrounded by the air of density ρa, viscosity μa, electrical conductivity
σa and electrical permittivity εa equal to that of vacuum ε0 = 8.85 × 10−12 F m−1. The
surface tension γ of the liquid–air interface and the physical properties of the two fluids
are taken to be constant and uniform.

Two-phase Navier–Stokes equations are solved for the two fluids in a cylindrical region
(r, z) with a radius of W and a height of H + L; see figure 1(a). Here, r and z stand for
the radial and axial coordinates, respectively. The electric field is created by applying
different electric potentials φ on the metallic nozzle (φ = φ0) and the circular collector
(φ = 0). Thus, the electric field points from the nozzle to the collector. The length of the
nozzle and its distance to the collector are taken to be L and H, respectively. We note that in
actual experiments, the length of the nozzle and the radius of the collector are always much
larger than the radius of the nozzle, e.g. L = 20 mm, W = 31.5 mm and R0 = 0.25 mm
in the experiments of Hijano et al. (2015). To save calculation time, we use the infinite
element domain in which the physical domain is surrounded by a layer of virtual domain
that extends to infinity, as shown in figure 1(a). In this way, the nozzle and collector are
assumed to have a large physical dimension, which subsequently affects the solution. It is
noted that the infinite element domain is only used to solve the electric field. In this study,
we set W = 10R0, L = R0 and H = 20R0. We have checked the results and verified that
the electric field is hardly affected by increasing the size of the computational domain in
this case.

In what follows, it is convenient to show the equations in dimensionless form. The
problem can be dimensionalized using the characteristic length scale lc = R0, capillary

time scale tc =
√

ρlR3
0/γ , stress scale pc = γ /R0, electric field strength scale Ec =

E0 = 2φ̂/[R0 ln(4H/R0)] and surface charge density scale qc = ε0E0. It is noted that all
variables will be made dimensionless in the following discussion unless stated otherwise.
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Figure 1. (a) Sketch of the numerical model considered in this work. (b) Initial condition (left) of the system
and the simulated emission (right) of a charged drop from the meniscus at the onset of pinch-off. The zoomed-in
view shows the jet’s tip and the mesh refinement. Here, θ0 = 60◦ for the initial condition.

The incompressible Navier–Stokes equations for the velocity u and pressure p inside the
liquid domain (Ωl) are

∇ · u = 0 in Ωl, (2.1)

∂u
∂t

+ u · ∇u = −∇p + Oh∇2u + Boiz in Ωl. (2.2)

Here, Oh = μl/
√

ρlR0γ is the dimensionless Ohnesorge number, Bo = ρlgR2
0/γ is the

Bond number, g is the gravity acceleration and iz is the unit vector in the direction of g.
The electric potential φ satisfies the Laplace’s equation in both phases:

∇2φ = 0 in Ωl and Ωa, (2.3)

and thus the electric field is expressed as E = −∇φ.
Along the liquid–gas interface Sf , the Maxwell stresses are added into the traction

condition so that the flow and electric field are coupled. The stress balance is expressed as

n · [T H
i + T E

i ]g
l = κn on Sf , (2.4)

where
T H

i = −piI + Ohi(∇u + (∇u)T) (2.5)
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and
T E

i = CaEεi(EE − E2I/2) (2.6)

are the hydrodynamic stress tensor and the Maxwell stress tensor, respectively. On the
left-hand side of (2.4), [xi]

g
l denotes the jump in a quantity x in going from phase l to phase

g; l and g represent the quantity on the liquid and gas sides of Sf , respectively; n is the
unit vector normal to the interface pointing away from the liquid and κ = ∇ · n is twice
the mean curvature of the interface. The electric capillary number CaE = ε0E2

0R0/γ is
used to measure the ratio of electric to capillary force. Also along the liquid–gas interface,
the surface charge density q is given by the Gauss law, q = n · [εiEi]

g
l , which represents

the normal jump in the electric displacement. For the leaky-dielectric model, the bulk
density of charge is zero but the surface charge density q obeys the charge transport
equation

∂q
∂t

+ ∇s · (qu) − 1
Pe

∇2
s q = εl

εg
αn ·

[
El − σg

σl
Eg

]
on Sf , (2.7)

where ∇s = (I − nn) · ∇ is the surface gradient. The left-hand side of (2.7) shows the
accumulation, convection and diffusion of the surface charge, respectively. The Péclet
number Pe = R2

0/Dctc denotes the ratio of the time scale R2
0/Dc for charge diffusion and

the capillary time tc, where Dc is the surface diffusion coefficient. On the right-hand

side of (2.7), α = tc/te =
√

ρlR3
0σ

2
l /γ ε2

l is the dimensionless charge relaxation parameter,
where te = εl/σl is the charge relaxation time. This source-like term represents the charge
transport by Ohmic conduction. In the limit that the surface charge transport is dominated
by Ohmic conduction (α → ∞ or σl → ∞), the fluid behaves as a perfect conductor. To
prohibit the mass transfer across the interface, the kinematic boundary condition is applied
along Sf ,

n · (u − us) = 0 on Sf , (2.8)

where us is the velocity of points on Sf . Dirichlet boundary conditions on φ are imposed
on the nozzle (φ = φ0), the grounded collector (φ = 0) and the corresponding parts in the
infinite element domain. In the present study, φ0 = ln(80)/2, calculated from the physical
position of nozzle and collector. Neumann boundary conditions n · E = 0 are imposed on
the right and bottom boundaries. Symmetry conditions are set along the symmetry axis
(r = 0) for the solution of flow and electric field. No-slip and no-penetration conditions
on u are imposed along the nozzle wall.

In our study, we focus on the influence of three parameters, the opening half-angle θ0
(i.e. the initial volume of the meniscus), the electric capillary number CaE (i.e. the electric
field strength) and the charge relaxation parameter α (i.e. the electrical conductivity),
on the emission process of charged drops from a nozzle. Here we set Oh = 0.1 since
it stands for easy observation of the interplay between the viscous, inertial and electric
forces. The effect of gravity is ignored because the Bond number Bo 	 1 in most
applications. Table 1 summarizes the values of the other constant parameters used in the
current study.

3. Numerical scheme and validation

Equations (2.1)–(2.8) are numerically solved via the ALE algorithm, in which the
computational mesh can move to deform the interface. To this end, we employed the
finite-element software COMSOL Multiphysics. The built-in package enables us to model
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First droplet emission from an electrified liquid meniscus

Viscosity
ratio, μl/μg

Density
ratio, ρl/ρg

Conductivity
ratio, σl/σg

Permittivity
ratio, εl/εg

Péclet
number, Pe

269 1000 1 × 106 10 1000

Table 1. Properties of the fluids.

the two-phase interface and couple the electric field and shear-induced deformation. In
the underlying problem, triangular elements were adopted in the computational domain.
Moreover, we note that the treatment of droplet emission from the apex of the liquid–air
interface must require special attention. The minimum size of the mesh is determined
by the radius Rd of the droplet formed from EHD tip streaming. Here we use a
coordinate-dependent function to specify the size of mesh elements evaluated on the
liquid–air interface. An example mesh is shown in figure 1(b). The local mesh size h on the
interface is a square root function of the radial coordinates r of the points. The minimum
size is hmin = 2 × 10−5 at r = 0 and the maximum size is hmax = 5 × 10−3 at r = 1.
Moreover, 0.05 and 0.25 are used as a limit of the maximum size for the infinite element
domain and the fluid domain, respectively. However, the quality of moving mesh becomes
worse as the tip streaming occurs so that an automatic remeshing technique is adopted to
remesh the deformed domain. When the mesh quality becomes less than a given limit, the
software will automatically remesh the computational domain using the specified function
of mesh size and immediately reinitialize the solution. A typical snapshot of the remeshed
sequence is shown in the zoomed-in region in figure 1(b). A particular advantage of this
method is that we can model the emission of a very tiny droplet, e.g. Rd/R0 < 0.001; see
the results in § 4.3. Time integration is handled with a backwards differentiation formula
(BDF) with an adaptive time step and specified time step constraint. The system is solved
by a multifrontal massively parallel sparse direct solver (MUMPS) coupled with a constant
Newton’s method. Further details on the numerical scheme can be found in our previous
study (Chen et al. 2023).

We then present the validation of our numerical model used to analyse the problem. In
figure 2, the simulated result is compared with the reported experimental study of Ferrera
et al. (2013). In their experiments, two parallel circular electrodes of radius W = 5 cm and
H = 10 cm were used to create a uniform electric field. Initially, a static drop of volume
V = 3.26R3

0 (i.e. θ0 = 105.6◦) hung from an orifice surrounded by air with a contact
radius R0 = 2 mm. The working liquid was 1-octanol with μl/μg = 478, ρl/ρg = 824,
σl/σg = 9 × 105 and εl/εg = 10.3. From their given data, the dimensionless parameters
are calculated as Oh = 0.0431, CaE = 0.11, Bo = 1.27 and α = 157.5. Figure 2 shows
the droplet shapes at different times in the simulation and experiment. A tip streaming
appears in the droplet apex, followed by the breakup of the charged jet into a tiny
droplet of radius Rd = 10.1 μm. It is confirmed that our numerical model can well
reproduce the experimental sequence. Moreover, the Taylor cone and emitted droplet
formed at the droplet tip are clearly observed in the last two images. This means that
the numerical method can capture the tip streaming beyond the limitation of high-speed
imaging. Moreover, the charge relaxation in our electrohydrodynamic model is validated
by simulating the deformation of a droplet when subjected to an electric field. Please refer
to Appendix A for details.
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t = 0 t = 1 t = 2.1 t = 2.153 t = 2.155 t = 2.167

t = 0 t = 1.415 t = 2.332 t = 2.388 t = 2.39 t = 2.40

1 mm

(a)

(b)

Figure 2. Side-view snapshots of an electrified pendant droplet during the tip streaming process at different
dimensionless times for θ0 = 105.6◦, Oh = 0.0431, CaE = 0.11, Bo = 1.27 and α = 157.5. Here the electric
field is created by two parallel electrodes. The insets in the last two images show the magnified view of the jet’s
tip. Reprinted with permission from Ferrera et al. (2013). Copyright 2013 AIP Publishing.

4. Results and discussion

4.1. Critical condition for tip streaming
We begin our study by presenting the stability limit, i.e. the critical condition when
tip streaming occurs, of a liquid meniscus in the general case. Figure 3(a) shows the
phase diagram as a function of the dimensionless electric capillary number CaE and the
opening half-angle θ0 at fixed charge relaxation parameter α = 10. It is noted that the
critical condition is expected to be independent of the liquid properties, except the surface
tension (Rubio et al. 2023). Three distinct regimes are observed: jetting, non-jetting and
dripping. Figure 3(b) shows the meniscus shapes in these three regimes at the instants
when pinch-off occurs or the meniscus becomes stable. In the non-jetting regime, for
example, θ0 = 90◦ and CaE = 1.31, the meniscus will oscillate under the electric and
capillary forces. Then the oscillation is damped out due to the viscous effect and the
meniscus eventually approaches a stable state. However, when the electric field is slightly
improved, CaE → 1.32, the shape of the meniscus tip becomes a Taylor cone. The tip
streaming subsequently appears in the meniscus apex, resulting in a continuously growing
jet, which is called the jetting regime. It is noted that the jetting regime is defined as
the cases with the occurrence of a tip-streaming jet in our study. The radius of the jet is
two orders of magnitude smaller than the nozzle radius. Figure 3(a) demonstrates that the
increase in θ0 remarkably decreases the critical electric capillary number CaE,c required
for jetting. This is because the variation of surface energy of the meniscus and electrostatic
energy of the electric field are both affected by increasing the opening half-angle θ0,
namely, increasing the liquid volume. This reason is discussed in more detail below. When
θ0 is increased to be larger than 134◦, the meniscus undergoes a transition from non-jetting
to dripping and jetting rather than non-jetting to jetting for θ0 ≤ 134◦. In this transitional
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First droplet emission from an electrified liquid meniscus

Non-jetting Jetting Dripping
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Transition: 134°

(a) (b)
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θ0 = 90°

CaE = 1.31

θ0 = 90°

CaE = 1.32
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CaE = 1.03

C
a E

,c

Figure 3. (a) CaE − θ0 phase diagram indicating the jetting, non-jetting and dripping regimes. Here, α = 10
and the data points represent the transitions between different regimes. The dashed line marks the case of
θ0 = 134◦. (b) Typical cases in these three regimes.

regime, the system will first enter a dripping regime. Figure 3(b) shows a typical case of the
dripping regime, in which the size of the emitted droplet is of the same order of magnitude
as the nozzle radius. Only when the electric field is increased further, the jetting can be
obtained. Consequently, the critical number CaE,c for jetting increases with increasing
θ0 for θ0 > 134◦. In contrast, the critical number CaE,c for dripping is decreased with
increasing θ0. The transition between these regimes can be understood from the crucial
condition for the jetting behaviour: the electric field is high enough to generate a cone
jet at the meniscus tip, as well as the requirement that the primary liquid does not detach
from the nozzle. To satisfy the latter, the initial volume of the meniscus could not exceed
a critical limit, i.e. θ0 ≤ 134◦; otherwise, the dripping would occur before jetting.

From figure 3(a), it is noted that neither jetting nor dripping is observed for θ0 < 50◦.
This is due to the non-uniform distribution of the electric field in the nozzle-to-plate
configuration. For θ0 < 50◦, when the electric field is continuously increased, the
accumulated charge reaches the limit and a conical meniscus will first form near the nozzle
rather than at the meniscus tip, which gives rise to the formation of multiple jets (Jaworek
& Krupa 1999). This regime is not accounted for in the present study.

In figure 4, we recover the limiting cases of the jetting regime for different θ0 in
figure 3(a). Snapshots for each column respectively display the initial and final states
of the meniscus at the incipience that the first droplet is emitted. As the liquid volume
increases, the shape of each meniscus and its axial length differ drastically from each
other, which is determined by the original liquid volume. The shapes of the liquid meniscus
for different θ0 have been experimentally reported in the literature (Verdoold et al. 2014;
Kong et al. 2022). It is seen that the shapes of the transition region that connects the tip
streaming jet and the Taylor cone are similar for all the limiting cases. However, when
θ0 ≥ 134◦, the meniscus eventually takes on a spindle-like shape with a conical end at the
incipience of pinch-off. A tiny droplet is then emitted from the spindle tip. From figure 4, it
is clearly seen that the radius of the neck connecting the conical meniscus and the spindle
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Figure 4. Simulated meniscus shapes for different θ0 and CaE,c in the limiting case of the jetting regime.
Here, α = 10. The upper images show the initial meniscus shapes and the lower images show the emission of
the tip-streaming jet and the about-to-form droplet at the incipience of pinch-off.

is very small. The elongated jet resembling a spindle will certainly detach from the liquid
meniscus and eventually form one or more satellite droplets. This jetting-before-dripping
mode has been reported in the review of Cloupeau & Prunet-Foch (1994). However, in our
study, we focus on the limiting cases when tip streaming occurs so that we prefer to treat
this case as the jetting mode since the tip streaming has occurred before dripping. As θ0
continues to increase, the size of the spindle is significantly increased, but the neck radius
is slightly increased. We thereby conclude that for the single cone jetting, the initial liquid
volume cannot exceed a critical value.

To qualitatively discuss the limiting cases, we plot in figure 5 the effect of θ0 on the key
parameters of the tip streaming processes. Figure 5(a) shows the variation of the pinch-off
time tp for different θ0. It might be surprising that the pinch-off of the electrified jet occurs
earlier (tp ≈ 3) for θ0 ranging from 60◦ to 90◦. The pinch-off time will slightly increase
when θ0 decreases to 50◦. However, tp is significantly increased with increasing θ0 for
θ0 ≥ 90◦. The maximum pinch-off time is found to be tp ≈ 20 for θ0 = 134◦, which is
exactly the critical limit for the transition regime. When θ0 exceeds this critical limit, tp
will decrease again. This is primarily because the time scale for the dripping regime is
larger than that for the jetting regime. The pinch-off time is therefore observed to reach its
maximum near the transitional regime.
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First droplet emission from an electrified liquid meniscus
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Figure 5. Effect of θ0 on the meniscus shapes at the incipience of pinch-off in the limiting case of jetting.
(a) Pinch-off time, (b) size of the first emitted droplet, (c) axial location of the jet’s tip and (d) redefined
length of the jet. Here, α = 10 for all cases and the filled symbol represents the critical case of θ0 = 134◦.
(e) Definition of the jet length Lj.

As seen in figure 5(b), the size ratio Rd/R0 is found to be approximately 0.04 for all
limiting cases, indicating that θ0 has little effect on the radius Rd of the emitted droplet.
Here, Rd is calculated from (3

∫ ztip
zneck

πr2 dz/4π)1/3, where zneck is the axial coordinate of
the neck point. Figure 5(c) shows the axial location of the jet’s tip as a function of the
opening half-angle. As one may expect, an increase in θ0 leads to a longer jet. However,
the axial location of the tip cannot reflect the jet’s length because the initial values are
distinct. The initial meniscus height is determined by the opening half-angle: z0 = R0(1 −
cos θ0)/sin θ0. In this case, we redefine the jet length Lb as measured from the point where
the change of the jet radius starts to be very small (Ismail et al. 2018). The definition of Lj
is illustrated in figure 5(e), where the chosen point satisfies �r/�z = 0.2. In figure 5(d),
it is surprising that the value of the redefined jet length is all around 4 and also has little
dependence on θ0. These results suggest that θ0 has an effect only on the pinch-off time.

We proceed by theoretically demonstrating the correlation between the critical electric
capillary number CaE,c and the opening half-angle θ0. For a sessile droplet subjected to a
uniform electric field created by two parallel electrodes, Beroz et al. (2019) suggested that
the critically stable droplet shapes correspond to the minima of the free energy, i.e. dF = 0.
The free energy F consists of the surface energy Fs = γ R2

0a(ξ) and electrostatic energy
FE = ε0E2

0Vν(ξ). Here, a(ξ) and ν(ξ) are the dimensionless shape functions. Thus, the
differential dF = 0 becomes γ R2

0a′(ξ) + ε0E2
0Vν′(ξ) = 0, or equivalently, a′(ξ)/ν′(ξ) +

(ε0E2
0R0/γ )(V/R3

0) = 0. For the critically stable shape, they infer that a′(ξ)/ν′(ξ) is a
constant and the formula becomes

R3
0
V = kCaE, (4.1)

where the prefactor k is found to be π/2 from their experimental results. This simple
scaling law yields the qualitative relation between the critical electric capillary number
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Figure 6. (a) Critical electric capillary number CaE,c as a function of the dimensionless shape function
R3

0/V . A linear relationship is identified for the plate-to-plate configuration as reported by Beroz et al. (2019).
(b) Distribution of electric field strength |E| inside and outside the droplet for the plate-to-plate configuration
(left) and the meniscus for the nozzle-to-plate configuration (right). Here, θ0 = 90◦ and α = 10. The white
regions represent the nozzle and plate. (c) Electric field strength along the interface and the symmetry axis as
a function of the axial coordinate. Here, z = 0 denotes the triple contact point.

CaE,c and the opening half-angle θ0, because

R3
0
V = 3 sin3 θ0

π(1 − cos θ0)
2(2 + cos θ0)

. (4.2)

We then replot CaE,c as a function of R3
0/V , as shown in figure 6(a). Additionally,

the plate-to-plate configuration has also been simulated using our numerical model
with the same parameters. A horizontal electrode is included to create a uniform
electric field. Figure 6(b) shows the distribution of electric field strength |E| inside and
outside the droplet (or meniscus) for the plate-to-plate configuration and nozzle-to-plate
configuration.

The red data points in figure 6(a) show a linear relationship between CaE,c and
R3

0/V with a fitting constant k = π/2 for the plate-to-plate configuration. There is an
excellent agreement between the prediction of (4.2) and our numerical results. It is noted
that no dripping is observed among these cases, even for θ0 � 134◦. However, for the
nozzle-to-plate configuration, which is the one considered in this work, the critical value
CaE,c appears to be larger. The qualitative relation between CaE,c and R3

0/V for our
considered model is quite different from that obtained in the theoretical study of Beroz
et al. (2019). To this end, we look at the spatial distribution of the electric field in these
two cases. Both the contour in figure 6(b) and spatial variation in figure 6(c) indicate that
the electric field around the interface for the nozzle-to-plate configuration is smaller than
that for the plate-to-plate configuration. This is because the characteristic electric field is
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First droplet emission from an electrified liquid meniscus

chosen to be the value at the nozzle tip for the nozzle-to-plate configuration rather than
the uniform far field for the plate-to-plate configuration. This special geometry causes the
local electric field to get weaker quickly with the axial distance, as shown in figure 6(c).
Since the electric stress T E

i = CaEεi(EE − E2I/2) is determined by the electric fields on
the two sides of the interface, a higher value is required for the critical electric capillary
number CaE,c. However, it is noted that a higher CaE,c does not indicate a higher electric
potential applied on the nozzle because the definitions of characteristic electric field
strength are different for the nozzle-to-plate and plate-to-plate configurations. The former
is E0 = 2φ̂/[R0 ln(4H/R0)] and the latter is E0 = φ̂/H. For example, when θ0 = 90◦,
the critical electric potential difference is calculated as 1374 V for the nozzle-to-plate
configuration but 5981 V for the plate-to-plate configuration; this is the reason why the
nozzle-to-plate configuration is preferred in most applications.

Next, we turn our attention towards the transition of non-jetting, dripping and jetting
regimes. The transitional opening half-angle is found to be 135◦. We therefore plot in
figure 7 the temporal dynamics in these three regimes with CaE = 1.02, 1.03 and 1.08,
and θ0 = 135◦. Figure 7(a) shows the simulated images of the meniscus shapes. Given
almost the same CaE, the sequence exhibits an entirely different outcome. For CaE =
1.02, the electrified meniscus eventually reaches a stable state after an axial oscillation.
However, when CaE is slightly increased to 1.03, dripping occurs. Under the electric field,
the meniscus is stretched into a nearly cylindrical liquid that is attached to the capillary at
t = 12. Then a neck begins to form and continues to thin. The neck quickly narrows down
until the drop pinches off. Figure 7(a) shows that tip-streaming can only be observed until
CaE is increased to 1.08. Among this range of CaE that dripping occurs, we find the radius
Rd/R0 of the emitted droplet is approximately 1.17. It is therefore concluded that this value
determines the minimum size of droplets that can be produced by the dripping regime.

Figure 7(b–d) respectively show the temporal evolutions of the axial location, the charge
density and the curvature at the tip for a meniscus deforming via different regimes. During
the initial stage, the meniscus height in the jetting regime increases faster than that in
the dripping regime. At t = 13.85, it rapidly increases from 9.64 to 13.36 during a very
short period of �t = 0.3. This is because the charge density has reached a limit value at
this instant, which gives rise to a strong electrostatic force at the tip of the meniscus. The
variations of the charge density and curvature further confirm this significant increase in
the normal electric stress at the tip of the meniscus. We note that the charge density and
the tip curvature simultaneously rise to values almost an order of magnitude higher than
that in the dripping or non-jetting regimes. When tip streaming occurs, both the charge and
curvature begin to decrease, suggesting that the charged droplet starts to be emitted from
the jet’s tip. It is noted that the charge density and the curvature are interdependent during
the entire process, as shown in figure 7(c,d). From the results above, we can conclude that
the key factor that determines the difference between these three regimes is the speed at
which the tip charge density rises. To obtain the jetting regime, the surface charge must
accumulate quickly enough at the meniscus tip so that the Taylor cone can form prior to
dripping.

4.2. Influence of opening half-angle on the tip streaming
After discussing the critical condition for tip streaming by considering the limiting cases
in the previous section, we will now elucidate the influences of three key parameters on
the first emission of a charged droplet. Figure 8(a,b) shows the influence of the opening
half-angle θ0, i.e. the initial volume, on the meniscus shapes during the tip streaming

987 A38-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

43
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.430


H. Chen, G. Wang, T. An, Z. Yin and H. Fang

1.0

2.0

3.0

4.0

t

13 14 15
0

20

40

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

2.5

5.0

7.5

10.0

12.5

15.0

Non-jetting

Dripping

Jetting

4 8 12 Final

2.5

5.0

7.5

10.0

(a) (b)

(c)

(d)

t = 0

CaE = 1.02
ztip

qmax = 19

qCaE = 1.03

CaE = 1.08

CaE = 1.02

CaE = 1.03

CaE = 1.08

κtip

Figure 7. (a) Simulated images of time evolutions of the meniscus shapes in three regimes for θ0 = 135◦.
Effect of CaE on the temporal evolutions of physical quantities, (b) the axial location, (c) the charge density
and (d) the curvature at the tip of the meniscus. Here, α = 10.

process. Here the electric capillary number CaE is chosen to be 2.0 for all cases so
that jetting can be ensured for all θ0 ranging from 70◦ to 110◦. It is observed that a
liquid meniscus with a larger θ0 will form a longer jet when pinch-off occurs. Compared
with the limiting cases in figure 4, the cone angle decreases remarkably as the electric
capillary number increases, resulting in the cone shape elongated to a larger extent. The
subsequently emitted droplet adapts a teardrop shape and the thread connecting the jet
and droplet becomes longer as θ0 increases. Figure 8(c) shows that the size of the emitted
droplet varies little with the opening half-angle θ0, indicating that it does not depend on
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First droplet emission from an electrified liquid meniscus
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Figure 8. Simulated meniscus shapes for different θ0 at (a) t = 0 and (b) the incipience of pinch-off. Here,
CaE = 2.0 and α = 10 for all cases. In panel (b), the upper-right corner shows the magnified views of the
tip-streaming jet’s tip and the about-to-form droplet. Effect of θ0 on the (c) size of the first emitted droplet and
(d) temporal evolutions of the axial location at the tip of the meniscus.

the geometry of the liquid meniscus. This result yields the universality in the formation
of a cone jet, which becomes valid when the radius of the jet is orders of magnitude
smaller than the characteristic length scale. In this case, Gamero-Castaño & Magnani
(2019) proposed that the characteristic only depends on the physical properties of the
liquid meniscus, and is independent of the geometric and electrostatic variables (e.g. the
dimensionless parameters θ0 and CaE in this study). The present results therefore verify
that the droplet emission from a liquid meniscus is expected to be a universal phenomenon.

Figure 8(d) shows the effect of θ0 on the temporal evolutions of the axial location at
the meniscus tip. It is seen that for θ0 = 80◦, the value of pinch-off time is the smallest
compared with that for the other θ0. This is different from the results of limiting cases
in figure 5(a) because the electric capillary number is kept the same in this case. The
pinch-off time determines the frequency of the jet formation so that the underlying
mechanism has to be answered. The reason for the tendency of pinch-off time can be
found in figure 9, where the distributions of the electric field strength for different θ0 are
plotted at t = 0. Surprisingly, for the nozzle-to-plate configuration considered in our study,
the local electric field at the meniscus tip just reaches its maximum when θ0 = 80◦. The
special distribution determines the magnitude of the initial electrical stresses imposed on
the liquid interface. According to (2.7), the charge transport by Ohmic conduction depends
on the local electric fields on both sides of the interface. Therefore, the higher electric field
accelerates the transport of surface charge, which gives rise to earlier emission of the first
droplet. This finding reveals the applicability of θ0 as an index for evaluation of the time
required for the tip streaming process and hence the frequency of droplet generation.
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Figure 9. (a) Local electric fields at the tip of the meniscus for different θ0. Here the blue and red points
respectively represent the electric field strength inside and outside the drop. (b) Electric field strength along the
meniscus interface and the symmetry axis as a function of the axial coordinate. Here, z = 0 denotes the triple
contact point. (c) Distributions of the electric potential φ (left) and electric field strength |E| (right) at t = 0
for θ0 = 60◦, 90◦ and 120◦.

We then show the distribution of electric potential during the tip streaming process for
the special case of θ0 = 90◦. The contour in figure 10(a) indicates that the liquid seems
to be nearly equipotential before the formation of tip streaming (t = 1.1). However, the
equipotential assumption is no longer valid when tip streaming occurs at t = 1.15. The
electric potential near the tip of the meniscus gradually reduces as the jet develops. When
the first droplet is emitted at t = 1.54, the liquid again becomes an equipotential at the two
ends of the thread.

Figure 10(b) shows the surface charge density as a function of the normalized arclength
of the half-meniscus surface. The charge density at the meniscus tip is expected to increase
quickly at t = 1.15 and decreases at t = 1.45 as a consequence of the jet development. In
figure 10(c), we plot the normal and tangential electric stresses along the meniscus surface.
The cone formation modifies the overall electric stress distribution. From the figure, the
normal stress is always maximum at the tip, which is balanced by the capillary force
caused by the sharp tip curvature. The tangential stress, which is nearly zero at t = 1.1,
increases with time and leads to the tangential fluid flow. A high tangential stress region is
created near the tip, which accelerates the flow towards the meniscus tip, thus developing
the electrified jet. Both the normal and tangential electric stresses start to decrease with
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First droplet emission from an electrified liquid meniscus
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the droplet emission. Moreover, the region with the maximum tangential stress gradually
moves away from the tip of the meniscus as shown in the results at t = 1.45.

4.3. Influence of electric capillary number on the tip streaming
Further, to demonstrate the effect of electric field strength, the simulations were carried
out for various CaE values. Figure 11(a–c) shows the meniscus shapes at the incipience
of pinch-off for various values of CaE at θ0 = 60◦, 90◦ and 120◦, respectively. The jet
length is obviously increased with the increase in CaE. Gawande et al. (2019) demonstrated
that the jet length is governed by a balance of the tangential electric stress and the
viscous stress. The formation of a tip-streaming jet requires a strong tangential electric
stress. The increase in CaE leads to a growth of the tangential electric stress which
accelerates the flow to the tip and results in the reduction of the pinch-off time, as
shown in figure 11(d). Moreover, figure 11(e) shows that the size of the emitted droplets
slightly increases with CaE, but are of the same order of magnitude, which further
confirmed the role of universality in determining the formation of emitted droplets as
discussed above.

4.4. Influence of charge relaxation on the tip streaming
Likewise, to demonstrate the effect of surface charge relaxation (i.e. the electric
conductivity), we plot in figure 12(a–c) the meniscus shapes at the incipience of pinch-off
for various values of α at θ0 = 60◦, 90◦ and 120◦, respectively. It is noted that the choice of
different values of CaE for each θ0 is determined to ensure the occurrence of jetting. The
value of α = tc/te represents the ratio of capillary time to the charge relaxation time. In the
previous cases, we chose a constant value of α = 10 so that the charge relaxation occurs
as quickly as the fluid flow. However, as shown in figure 12, the tip-streaming shapes have
been significantly altered when the charge relaxation parameter is varied from α = 0.01 to
1000 with other parameters fixed.

We note that the jet length Lj increases with the increase in α and reaches its maximum
at α = 10, but decreases for higher values of α. This non-monotonic dependence is in
agreement with the previous studies (Gawande et al. 2019). For a higher α, a long jet
will form at the tip before the emission. Because the radius of the jet Rj is determined
by the tip curvature of the electrified meniscus when the conical tip approaches the
singularity, the liquid meniscus with a higher α will eject a thinner jet and thus a smaller
droplet is emitted from the tip. Since the breakup of the jet is primarily induced by the
Plateau–Rayleigh instability: Lj > 2πRj, the jet length Lj therefore decreases with the
increasing α. However, for lower α, the capillary force is dominant (tc/te 	 1) so that the
capillary breakup occurs earlier than the formation of the jet. As a result, the thin jet has
not formed completely for lower α and the jet length is still relatively short at the incipience
of pinch-off.

To quantitatively describe the effect of charge relaxation, figure 13 shows the pinch-off
time and the size of the emitted droplet as functions of α, respectively. A monotonic
decrease in pinch-off time is observed with an increase in α. When α is increased by
several orders of magnitude, the pinch-off time continuously decreases from ∼100 to ∼1.
This can be attributed to the definition of α mentioned above. Tip streaming occurs only
when the charge density at the tip reaches its limit so that the normal electric stress is
strong enough to form the Taylor cone. The rate at which charge density rises primarily
depends on the value of α. Therefore, an increase in α will promote the tip streaming
process. Meanwhile, if α is high enough, its effect will become weaker since the transport

987 A38-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

43
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.430


First droplet emission from an electrified liquid meniscus

1.25 1.50 1.75 2.00 2.25 2.50 2.75
1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
in

ch
-o

ff
 t

im
e

(a) (b)
CaE = 2.50

CaE = 1.50

CaE = 2.75 CaE = 1.50 CaE = 1.75 CaE = 2.00CaE = 2.25

CaE = 1.25 CaE = 1.75
(c) (d)

0

0.02

0.04

0.06

0.08

0.10

Rd

1.25 1.50 1.75 2.00 2.25 2.50 2.75

CaE

(e)

θ = 60°
θ = 90°
θ = 120°

Figure 11. Simulated meniscus shapes at the incipience of pinch-off for different CaE at (a) θ0 = 60◦,
(b) θ0 = 90◦ and (c) θ0 = 120◦. The upper-right corner shows the magnified views of the tip-streaming jet’s tip
and the about-to-form droplet. Effect of CaE on the (d) pinch-off time and (e) size of the first emitted droplet.
Here, α = 10 for all cases.

of charge to the tip has already been as quick as the fluid flow. As shown in figure 13(a),
the minimum values of the pinch-off time are approxiamtely 1.1, 1.4 and 3.0 for θ0 = 60◦,
θ0 = 90◦ and θ0 = 120◦, respectively.

Similarly, we observe a non-monotonic dependence of Rd on the charge relaxation α,
as shown in figure 13(b). The accurate results show that the size of the first emitted
droplet reaches its maximum at α ∼ 5. When α > 5, the droplet size is found to decrease
significantly to a small value, for example, the case with α = 1000 produces a tiny droplet
whose radius is only ∼0.1% of the meniscus radius, e.g. 0.2 μm for a 200 μm nozzle. The
variation of Rd in the limit of a high α is in accordance with the results of Collins et al.
(2008). Moreover, a power-law relationship Rd ∼ α−2/3 is observed, which is consistent
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(a) α = 0.01 α = 0.1 α = 1 α = 10 α = 100 α = 1000

(b) α = 0.01 α = 0.1 α = 1 α = 10 α = 100 α = 1000

(c) α = 0.01 α = 0.1 α = 1 α = 10 α = 100 α = 1000

Figure 12. Simulated meniscus shapes at the incipience of pinch-off for different α at (a) θ0 = 60◦ and
CaE = 2.25, (b) θ0 = 90◦ and CaE = 1.5, and (c) θ0 = 120◦ and CaE = 1.25. The upper-right corner shows
the magnified views of the tip-streaming jet’s tip and the about-to-form droplet.

with the popular scaling law proposed by de la Mora & Loscertales (1994). They suggested
that the size of the emitted droplet varies as Rd ∼ (γ /ρ)1/3t2/3

e , namely, Rd ∼ α−2/3 in
the limit of large conductivities. However, at lower α, the size Rd is found to decrease
slightly with decreasing α. The α dependence becomes weaker as the liquid approaches
the dielectric limit (α ∼ 0).

To compare the jet shapes for different α, following Collins et al. (2013), we plot the
simulated profiles of the jets at the incipiences of jet emission and pinch-off for α ranging
from 0.01 to 1000, as shown in figure 14. Here, θ0 = 90◦ and CaE = 1.5. When tip
streaming occurs, the about-to-form jet shrinks as α is decreased to approach the dielectric
limit (α ∼ 0) or increased to approach the perfectly conducting limit (α ∼ ∞), which is
similar to that of the variation of the size of the emitted droplet. This result is beyond
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Figure 13. Effect of α on the (a) pinch-off time and (b) size Rd of the first emitted droplet for θ0 = 60◦ with
CaE = 2.25, θ0 = 90◦ with CaE = 1.5 and θ0 = 120◦ with CaE = 1.25.

the previous studies. The slight decrease in droplet size in the dielectric limit has not
been reported before. To identify the underlying mechanism, we plot in figure 15(a) the
profiles of the tip-streaming jet’s tip for α = 0.01, α = 1 and α = 100, which represent
respectively the cases of the dielectric, leaky-dielectric and conductor. It is observed that
the jet radius is much smaller for α = 100 than for α = 0.01 and α = 1. Obviously, this
is due to the quick accumulation of surface charge since the jet behaves as a perfect
conductor. However, when α decreases from 1 to 0.01, the jet shape is similar for the two
cases, but the jet radius is slightly increased. From the shapes near the jet’s tip, it is clear
that the tip curvature is varied for all of the cases. According to the stress balance in (2.4),
we thus show in figure 15(b–d) the distributions of the surface charge density, the normal
electric stress and the tangential electric stress on the surface near the jet’s tip. Figure 15(b)
shows that the charge density q always reaches its maximum at the tip. However, the
variation in qtip (charge density at the tip) for different α shows a reversed trend as the
jet radius, which results in a difference in the normal electric stresses on the surface, as
shown in figure 15(c). The increase in the normal electric stress leads to a higher capillary
pressure and thereby a higher tip curvature. This explains the non-monotonic dependence
of Rd on α, as observed in simulations. However, another question must be answered: Why
is the charge density at the tip for α = 1 smaller than that for α = 0.01? Actually, from
the charge transport equation (2.7), for low α values, surface charge convection becomes
dominant in charge transport compared with conduction (Sengupta, Walker & Khair 2017;
Nie et al. 2021b). As α is reduced to 0.01, the significance of the convection at the tip
exceeds the conduction and leads to a slight increase in charge density compared with
the case where α = 1. Moreover, figure 15(d) shows the distribution of the tangential
electric stress that accelerates the axial flow of the jet, which also indicates the importance
of flow-induced charge convection in charge transport. From the discussion above, we
propose that to obtain a larger size of the first emitted droplet, the fluid conductivity should
be controlled within a specific range.
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Figure 14. Profiles of the tip-streaming jet’s tip and the about-to-form droplet at the incipiences of jet emission
(upper) and pinch-off (lower) for α values of (a) 0.01, (b) 0.1, (c) 1, (d) 10, (e) 100 and ( f ) 1000. Here, θ0 = 90◦
and CaE = 1.5.

5. Conclusion

In the present study, we have numerically investigated the first emission of a charged
droplet from an electrified meniscus hanging at the nozzle tip. The non-uniform
distribution of electric field is solved for a nozzle-to-plate configuration and coupled
to the Navier–Stokes equations. The numerical model has been validated against the
experimental observation from Ferrera et al. (2013). This model enables us to simulate
the tip streaming process of a liquid meniscus hanging at the nozzle tip when subjected
to an electric field, with a focus on the pinch-off time, jet length and size of the first
emitted droplet. We determined the critical electric capillary number for the occurrence of
tip streaming as a function of the initial liquid volume. Three distinct regimes, including
non-jetting, jetting and dripping, are identified in a phase diagram. We demonstrate that
the key factor that determines the difference between these three regimes is the speed at
which the tip charge density rises.

Next, we investigate the influences of the initial liquid volume, electric field strength
and electrical conductivity of the liquid on the emission of the charged droplet. We find
that the pinch-off time reaches its maximum for θ0 = 80◦, where the opening half-angle
θ0 represents the initial liquid volume. We demonstrate that this is attributed to the
special distribution of electric field in a nozzle-to-plate configuration. Then we analyse
the roles of the normal and tangential electric stresses during the tip streaming process.
The increase in the electric field strength leads to a growth of the tangential electric
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Figure 15. (a) Profiles of the tip-streaming jet’s tip at the incipiences of jet emission for α values of 0.01
(black), 1 (red) and 100 (blue). Here, θ0 = 90◦ and CaE = 1.5. Distributions of (b) surface charge density,
(c) normal electric stress and (d) tangential electric stress on the surface near the jet’s tip at the incipiences of
emission. In panels (b) and (c), the values at the tips have been marked.

stress which accelerates the flow to the tip and results in the reduction of the pinch-off
time. Finally, we systematically discuss the effect of surface charge relaxation α (i.e. the
electric conductivity) on the size Rd of the first emitted droplet. We find a particularly
non-monotonic dependence of Rd on α. The size of the first emitted droplet reaches its
maximum at α ∼ 5. When α > 5, the droplet size is found to decrease significantly to a
small value. However, at lower α, the size Rd is found to decrease slightly with decreasing
α as the liquid approaches the dielectric limit. The non-monotonic dependence is explained
by the increasing role of surface charge convection in charge transport compared with
conduction. These results can serve as a guide for the working conditions of EHD printing
devices, for instance, by selecting the critical voltage for given fluid properties and
geometry of the nozzle and collector electrodes to obtain a jetting mode.
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simulations of Das et al. (2021). The black and blue lines respectively represent the analytical solutions of
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Appendix A. Validation of the electrohydrodynamic model

We validate the electrohydrodynamic model in this study by considering a realistic
problem. A liquid droplet suspended in a second liquid domain is simulated when
subjected to a uniform electric field. The droplet will be deformed under the electric force
and eventually reach a steady state. The deformation parameter D of the droplet is defined
as D = (b − a)/(b + a), where b and a are the lengths of the deformed droplet in the
direction parallel and vertical to the electric field, respectively. Taylor (1966) analytically
provided a relationship between the deformation D and the electric capillary number, as

D = 9
16

CaE

(2 + σr)

[
1 + σ 2

r − 2εr + 3
5
(σr − εr)

2 + 3μr

1 + μr

]
, (A1)

where σr, εr and μr denote the conductivity, permittivity and viscosity ratios of the droplet
to the surrounding medium. We employ the same setting as Das, Dalal & Tomar (2021),
where CaE = 0.18, εr = 10, μr = 1 and Oh = 3.16, so that the deformation D is only
dependent of the conductivity ratio σr. Figure 16 shows the comparison between our
simulation results and previous studies. We observe that there is a good agreement between
our model and the theory, especially compared with Ajayi’s second-order theory (Ajayi
1978). The numerical model is therefore validated in modelling the electrohydrodynamic
problem.
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