
J. Austral. Math. Soc. (Series A) 39 (1985), 101-106

GENERALIZED IMPLICATION EQUATION LANGUAGES

NORMAN Y. FOO and ROSLYN B. RILEY

(Received 17 January 1983; revised 21 December 1983)

Communicated by J. N. Crossley

Abstract

The calculus for equational implication languages given by Selman is generalized to handle the logical
equivalent of the if... then.. . else... construct of high level programming languages. The relevance of
these results to current investigations in the algebraic specifications of data types is discussed.

1980 Mathematics subject classification (Amer. Math. Soc): 68 C 01.
Keywords and phrases: implication language, algebraic theory, decidability, completeness.

1. Introduction

Recent work by Goguen et al. [2] has shown that the algebraic specification of
data types advocated by Guttag [3] and others is really an application of versions
of the theory of varieties and quasi-varieties. The application however is not
trivial. Questions relating to the computational equivalence, adequacy and ef-
ficiency are not yet completely resolved. Slightly variations in the syntax of the
languages admitted seem to have a great effect on the succinctness of some data
type specifications, as suggested by Majster [4], and proved by Thatcher et al. [8].
The general problem of showing that one specification is equivalent to another is
recursively unsolvable, so good heuristics for transforming from one syntax to
another and for eliminating redundant axioms are computationally useful and
desirable.

The most general syntax considered by workers in the field of algebraic
specifications is that adopted by Goguen et al. [2]. It admits the usual equations
which axiomatize varieties, and in addition, incorporates the i f . . . then . . . and
if... then.. .else. . . constructs of programming languages like Algol and Pascal.

© 1985 Australian Mathematical Society 0263-6115/85 $A2.00 + 0.00

101

https://doi.org/10.1017/S1446788700022217 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022217

102 Norman Y. Foo and Roslyn B. Riley I21

Hence axioms of the forms

E -» Fand (E -> F). (-E -* G)

are in effect included. (Here E, F, G are equations, and -» , • ,—, denote the
logical connectives "implies", "conjunction" and "negation" respectively.) We
are interested in devising valid manipulation rules for expressions in this syntax,
with a view to obtaining the transformation heuristics alluded to earlier. Such a
deductive calculus can be found by extending the complete calculus provided by
Selman [7] for an equational language with an if...then... construct to one
which also includes if... then... else It turns out that it is no more difficult to
generalize the syntax even further to permit all expressions of the form A —> B,
where A and B are either equations or the negations of equations. The calculus to
be examined here therefore includes all the variants: if A then B, if A then B else
C, in which A, B, C may be equations or their negations.

It is probable that results on different calculi for classes of specification
languages will have a significant bearing on algorithms that implement them. A
typical example of such an algorithm is the on-line equality prover of Samet [5],
which deals with the more restricted class of an equational language without
variable names. Entailment in that case is decidable but as indicated later the
introduction of variables makes it undecidable. This undecidability property is
obvious if the recursive unsolvability of the word problem for groups or semi-
groups is assumed, however it follows more simply from showing how to encode
the halting problem for Turing machines in this generalized syntax.

2. The formal system

A generalized implication equation language (GIEL), L, is defined by a
denumerable set of variables; a set of constants; and a set of function symbols
(each of finite rank). From these the terms are formed by a finite number of
applications of the following two rules.

1. All constants and variables are terms.
2. If the function symbol, / , has rank «, and (t1 • • • tn) are terms then

/((?i ' ' " ?«)) is a term. For any two terms, t\ and tl, the following are atomic
formulas.

1.1\ = tl.
1. -tl = tl.
An equation with free variable x, say tl(x) = tl{x) is implicitly universally

quantified over this variable. Hence its negation is the existential statement that
there is some x with tl(x) not equal to tl{x). The notation above, — tl = tl is

https://doi.org/10.1017/S1446788700022217 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022217

[3] Generalized implication equation languages 103

used for this negative existential, since the alternative, t\ ¥= tl, lends itself to a
misinterpretation as a universal negation. For consistency, the following defini-
tions of formulas also have the implicit universal quantification. The formulas are
either atomic formulas or of the form F -* G, where F and G are atomic
formulas. The only other symbols in L are those used above: = , —> , —, (, and).
The axioms and rules of inference are given below, with p, q, (t1 • • • tn) for
terms; £ is an equation, each Fi is an atomic formula and / is a function symbol
of rank n. In them oppis used as a metasymbol defined by opp/7 = q is —p = q
and opp —p = q is p = q. This is used to subsume four distinct rules in a
common scheme and to remove the need to cope with constructions like p =

A1.E->E
A2. p = p
A3.p = q -» q= p
Rl. from F\ —» FI infer opp FI -* oppFl (called rule of contraposition)
R2. from F\ infer F2 -» FI
R3. from FI and FI -» F2 infer F2
R4. from FI -» F2 and F2 -» F3 infer FI -» F3
R5. from F -> p = q and F -» ^ = r infer F -» p = r
R6. from F->p1 = ql, and . . . , F -» /;„ = qn infer F -> f(plf... ,pn) =

R7. from 2?(z) infer B(p): the result of replacing all occurrences of variable z
in formula B by p.

It should be observed that these rules are patterned after those in Selman [7], in
particular the last six are virtually the same, and in all cases we have as far as
poosible retained his notation, nomenclature and proof style to facilitate ease of
understanding and reference for those familiar with his results. However, in R7
when the formula B(z) is of the form —t\(z) = tl(z), the substituted p must
have a previously unused name.

A first generalization of an if...then... construct, particularly in computer
science usage, would be an if.. .then.. .else... construct. Since "if E\ then E2
else £ 3 " is equivalent to "if El then F.2 and if —El then F.3", this is obviously
subsumed in the language given above. The inclusion is strict: while contraposi-
tion of the if.. .then.. .else... will give formulas of the forms, if El then F.2, if
— El then El, and if —El then — El, it will not provide the scheme, if El then
— F2, as is permitted in the generalized form admitted in our language.

It should not be thought that the scheme, if El then F2 else F3, enforces the
joint existence of El and — El as antecedents in provable formulas for, if — El is
an axiom, the if.. .then.. .else... reduces to —El -* E3 alone, since the if part
will never be true.

https://doi.org/10.1017/S1446788700022217 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022217

104 Norman Y. Foo and Roslyn B. Riley l4l

3 . Completeness

A formula is said to be closed if it contains no variable symbols. Given a set of

formulas, S, in L, a standard deduction from it is a deduction in which all

applications of the modus ponens rule (R3) has as its minor premise either an

axiom, a formula from S, or a formula derived from 5 by a finite number of

applications of R7 (the rule permitting substitution of constants).

The following lemmas and theorem require that if there is a deduction of F

from S, then there is a standard deduction of F from 5 . In order for this to be

true the following derived rules of inference must be added:

R8. from p = q and q = r infer p = r

R9. from/*! = qx and . . ./>„ = qn infer f(p1 • • • / > „) = fill * *' 9«)

RIO. from F\ -> F2 and opp F2 infer opp F\.

It is easily seen that these are implied by R l to R7. Using these rules, a

deduct ion is made standard in two steps: first the substitutions of constants are

placed as soon as possible in the deduction pattern, and then the appropriate

substi tut ions are made in all uses of R3 . For example,

F l -> Fl

(applying Rlj opp Fl, F\ -» Fl

opp Fl, opp Fl -* opp Fl becomes (RIO)

(applying R3) opp F l .
oppFl

Both deductions prove the formula, opp Fl , but the second is standard, the first is
not.

Analogously with Selman [7] we have the following lemmas.

LEMMA 1. / / F l and Fl are atomic formulas and F l is closed, and S U { F l } h- Fl

thenS\-(F\ -» Fl).

LEMMA 2. / / , F, F l , Fl are atomic formulas, F l and Fl are closed and

S U {F l} I- FandS U {Fl -> Fl} t- Fthen S \- F.

LEMMA 3. If G is a formula containing only the variables xY,...,xn and L + is the

extension of the language L formed by enlarging the set of constants to include the

new symbols c1 • • • cn then G + represents the fomrula in L + formed by replacing

each xtin G by c,. With this notation we have S \- G + in L + implies S \- G in L.

https://doi.org/10.1017/S1446788700022217 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022217

[5] Generalized implication equation languages 105

The proof for each of these lemmas is a straightforward modification of the
corresponding proof by Selman [7] for his language and is therefore omitted. It is
in these proofs that several of the rules of inference must be invoked.

COMPLETENESS THEOREM. Let L be a GIEL as defined above, S be any set of
formulas of L, and let F be any particular formula of L. Then

(i)for any algebra, A, if S is valid in A then F is valid in A, (that is, if A (= S then
A t= F)

implies

(ii) F is provable from S, using the axioms and rules of inference given earlier
(S h- F).

PROOF. We use a standard Henkin-type argument.
(1) Suppose F is a closed atomic formula. We wish to form SI , the maximal set

of formulas containing S but not entailing F. If the set of function symbols is
countable, this can be done by enumerating the formulas and then enlarging S in
steps, by adding successively those formulas which do not make the current set
entail F. Where this set is not countable, Zorn's lemma ensures that such an SI
exists even where its construction is not known.

Form the interpolation, / , which has domain all the closed terms. In it each
constant is interpreted as itself and the binary relation R is defined by pRq if and
only if p = qis in SI .

The algebra we shall construct, in which S is valid but F is not, will be I/R. It
is easy to see that by R l and R2 no formula and its negation can both be in SI .
Now we obviously require that pRq fails to hold if and only if — p = q is in SI ,
that is we must know that either p = q is in SI or —p = q is in SI . Assume the
contrary, that there is some closed equation, E, with neither E nor — E in SI .
Then since SI is a maximal set of formulas not entailing F, we have both

(1) SI U E \- F,
(ii) SI U - E\- F.

Since SI does not entail —E, we have SI does not entail (p = p -> — E) from
modus ponens and R2. Therefore SlU{p=p->—E) entails F by maximality
of SI , and by contraposition this yields

(iii) SI U E -* -p =p\- F.
Now Lemma 2 with these parts (i) and (iii) together imply the contradiction, SI

entails F.
(2) Suppose F is any nonatomic closed formula, F\ -* F1. From Lemma 1

S U F\ does not entail F2, so we are done because of part 1 of this theorem.
(3) Suppose F is not closed and S W- F in L. Using Lemma 3 we have S W- F +

in L + , and by 1 or 2 above, we are done.

https://doi.org/10.1017/S1446788700022217 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022217

106 Norman Y. Foo and Roslyn B. Riley . (6)

Thus in all possible cases we have constructed an algebra in which our
unprovable formula is not valid.

Having estabUshed the completeness of the given calculus for GIEL formulas
the obvious question which follows is the decidability of the entailment relation.
It is not hard to see that even at the pure equational level (that is without the
if.. .then...) the entailment relation is already undecidable and so entailment in
GIEL systems is also. We outline the first reduction.

By using Skolem functions to eliminate existential quantifiers the group axioms
can be formulated as equational formulas. The celebrated unsolvability of the
word problem immediately means that the problem of deciding if A can be
deduced from S is unsolvable.

References

[1] J. R. Buchi, 'Weak second order arithmetic and finite automata', Z. Math. Logik Grundlag.
Math. 6 (I960), 66-92.

[2] J. A. Goguen, J. W. Thatcher and E. G. Wagner, 'An initial algebra approach to the
specification, correctness and of abstract data types', Current Trends in programming methodol-
ogy IV, R. T. Yeh (ed.), pp. 80-149 (Prentice Hall, New Jersey, 1978).

[3] J. V. Guttag, 'Some extensions to algebraic specifications', pp. 63-67, Proceedings of ACM
conference (Sigplan Notices 12,1977).

[4] M. E. Majster, 'Limits of the 'algebraic' specification of abstract data types', (ACM-Sigplan
Notices 12,1977).

[5] H. Samet, 'Effective on-line proofs of equalities and inequalities of formulas', pp. 28-32, IEEE
Transactions on Computers 29 (1980).

[6] A. Selman, 'Completeness of calculi for axiomatically defined classes of algebras', J. Symbolic
Logic 37 (1972), 433.

[7] A. Selman, 'Completeness of calculi for axiomatically defined classes of algebras', Algebra
Universalis 2(1) (1972), 20-32.

[8] J. W. Thatcher, E. Wagner and J. Wright, 'Data types specification: parametrization and the
power of specification techniques', pp. 119-132, Wth ACM Symposium on the Theory of
Computing, 1978.

Basser Department of Computer Science
University of Sydney
Sydney, N.S.W. 2006
Australia

https://doi.org/10.1017/S1446788700022217 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022217

