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Abstract
We propose an individual claims reserving model based on the conditional Aalen–Johansen estimator, as developed
in Bladt and Furrer ((2023a) arXiv:2303.02119.). In our approach, we formulate a multi-state problem, where the
underlying variable is the individual claim size, rather than time. The states in this model represent development
periods, and we estimate the cumulative density function of individual claim sizes using the conditional Aalen–
Johansen method as transition probabilities to an absorbing state. Our methodology reinterprets the concept of
multi-state models and offers a strategy for modeling the complete curve of individual claim sizes. To illustrate our
approach, we apply our model to both simulated and real datasets. Having access to the entire dataset enables us
to support the use of our approach by comparing the predicted total final cost with the actual amount, as well as
evaluating it in terms of the continuously ranked probability score.

1. Introduction
This manuscript demonstrates that multi-state models provide a natural framework for modeling the
cost of individual claims in an individual reserving application. Our approach builds upon the findings
presented in a recent paper (Bladt and Furrer, 2023b), which introduces the conditional Aalen–Johansen
estimator. This estimator is a versatile, non-parametric tool for estimating state occupation probabilities
conditioned on specific features, and it also discusses its key properties. Note that Aalen–Johansen-type
estimators have traditionally found applications in life insurance. However, in this work, we demonstrate
how these estimators can also be applied to non-life insurance for reserving purposes.

As mentioned earlier, multi-state models have found widespread use in the domain of life insur-
ance. In the works of Hoem (1969, 1972), they introduce a by-now standard approach, representing
biometric states (active, deceased, etc.) as finite states within a spatial model. However, to the best of
our knowledge, these models have seen less frequent application in non-life insurance literature. Notable
exceptions can be found in the work of Hesselager (1994) and Maciak et al. (2022). In Hesselager (1994),
the authors model outstanding claim amounts conditionally on the current state, such as incurred but
not reported (IBNR), reported but not settled (RBNS), and settled. In this context, the time variable
corresponds to calendar time, similar to that in life insurance. In contrast, our approach in this paper
takes a different perspective, replacing time with payments as the fundamental evolution variable. In
Maciak et al. (2022), the authors propose modeling the incremental paid amounts as outcomes of a
homogeneous Markov chain on a finite state space, though only for aggregated data and in discrete time.

In this manuscript, we propose an individual claims reserving model based on a continuous-time
non-explosive pure jump process denoted by J on a finite state space, S = {1, . . . , k}, k ∈N, where
states correspond to the development periods (DPs) within a development triangle, and the “time spent”
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between state transitions corresponds to the claim size growth between DP’s. The state k serves as an
absorbing state, representing claim closure. It is worth noting that, in practice, DPs have a stochastic
behavior that leads to variation in the state space dimension across individual claim histories. However,
for simplicity, we address this by collapsing long claim developments into a single state, as the specific
details are not of primary importance in this context.

In a broader context, the application of counting processes to individual reserving has been a sub-
ject of research since the seminal contributions (Arjas, 1989; Norberg, 1993, 1997), with subsequent
refinements and practical considerations detailed in the work of Haastrup and Arjas (1996) and Antonio
and Plat (2014). In the study of Antonio and Plat (2014), they assume a framework where claims are
generated by a position-dependent marked Poisson process, and they incorporate a severity modelling
approach within the mark.

The primary contribution of this manuscript lies in presenting a novel interpretation of state spaces,
which enables us to approach the claims reserving problem from a fresh perspective, using a non-
parametric estimator from survival analysis. We denote state process by Jz when the cumulative claim
size of an individual reaches z, where z ∈ [0, +∞). Note that in this approach, the fundamental variable
of interest is the claim size itself, rather than time. The transition probabilities leading to the absorbing
state k represent the cumulative distribution of individual claim sizes. In other words, as individuals
progress through the states, their observations accumulate claim size, reflecting the evolution of their
claims. Upon reaching the absorbing state, a claim is considered settled, and no further payments are
possible.

Recent literature on individual reserving has focused on decomposing individual reserving data into
different modules that describe the micro-level structure of the portfolio, for example, payment delay,
settlement delay and payment size. By doing so, Huang et al. (2015) and Wang et al. (2021) extended the
discrete model for predicting IBNR claims in Norberg (1986) to a model for RBNS and IBNR claims that
discusses, theoretically and with empirical studies, the beneficial effect of including individual informa-
tion in reserving models. An interesting approach to modelling the joint distribution of reporting delays
and claim sizes of RBNS claims under censoring can be found in Lopez (2019). The work in Crevecoeur
et al. (2023) embeds Crevecoeur et al. (2022) in a more general context and illustrates how pricing and
reserving can be modelled under a unified framework and severity is modelled conditionally on the
previous modules. A similar approach has been proposed in Delong et al. (2022), wherein the authors
incorporate a gamma-distributed severity component into a neural network-based methodology.

In contrast to the aforementioned works, which rely on likelihood-based estimation or parametric
assumptions on the claim size distribution, we propose a fully non-parametric estimation of the full
cumulative distribution function of claim sizes, building on the results of Bladt and Furrer (2023b). The
latter reference proposes a conditional version of the classic Aalen–Johansen estimator, which allows
for continuous or discrete covariates, and where minimal assumptions on the process J are imposed,
that is no Markov assumption is required. In particular, such lax probabilistic framework is desirable
when it is unclear whether there exist duration effects in each state, as is the case for claim development
processes.

Finally, we also propose a solution for modelling the IBNR and RBNS reserves separately. Our model
is compared with the chain ladder in two case studies, one using simulated data and the other using
a recent dataset from a Danish non-life insurer. In both the simulation case study and the real data
case application, we have access to the total future claims costs and can thus compare the predicted
amount with the target amount. The predicted curve for the cumulative density function of claims size
is compared with the empirical cumulative density function using the continuously ranked probability
score (CRPS), first proposed in Gneiting and Raftery (2007). Interestingly, we show how the CRPS can
be used to perform model selection by answering the natural question of how to select the number of
states in the state space S .

This manuscript is organised as follows. In Section 2, we introduce the conditional Aalen–Johansen
estimator after a discussion on the probabilistic setup and we explain how to reinterpret a state space
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S to set up our reserving model. In Section 3, we connect our framework to development triangles and
after a discussion on the current literature in reserving, we illustrate how to estimate of the final cost of
the claims. Section 4 will demonstrate the effectiveness of our approach through a comprehensive case
study using simulated data. Recent contributions to the literature have provided various algorithms for
generating individual loss reserve datasets (Gabrielli and Wüthrich, 2018; Avanzi et al., 2021, 2023;
Wang and Wüthrich, 2022). Once reporting delays become available, it is possible to simulate both
incurred but not settled (IBNR) claims and reported but not settled (RBNS) claims. We have chosen to
focus on the exploration of RBNS claims in the next section, deliberately avoiding additional assump-
tions about the claims generation process (see for example Avanzi et al., 2021). This approach aims to
draw the attention of the reader to the applicability of our models in different scenarios. We showcase
the application of our IBNR modeling strategy in the section Section 5, where we rigorously test our
models using a recent real individual data portfolio from a Danish insurer. Finally, Section 6 concludes.

2. The conditional Aalen–Johansen estimator
In this section, we introduce our statistical framework, the quantities of interest, and the conditional occu-
pation probabilities. We present the conditional Aalen–Johansen estimator (Bladt and Furrer, 2023b), a
non-parametric estimator for the conditional occupation probabilities of an arbitrary jump process. Note
that the conditional Aalen–Johansen estimator is closely linked with the literature streams on kernel-
based estimation for survival and semi-Markov processes (McKeague and Utikal, 1990; Nielsen and
Linton, 1995; Dabrowska, 1997), as well as landmarking (Van Houwelingen, 2007). We conclude the
section with some remarks on the interpretation of multi-state models for reserving. As we explain in
the next paragraphs, this is a fundamental step to construct our reserving model.

2.1. The probabilistic setup
Let J = (Jz)z�0 be a non-explosive pure jump process on a finite state space S and take (�, F , P) to be the
underlying probability space. Here, we let S = {1, . . . , k}, with k ∈N. Denote by Y the possibly infinite
absorption time of J. Let X be a random variable with values in Rd equipped with the Borel σ−algebra.
We assume that the distribution of X admits a density g with respect to the Lebesgue measure λ. Absolute
continuity in case of known atoms may be relaxed as discussed in Bladt and Furrer (2023b).

We introduce a multivariate counting process N with components Njh = (
Njh(z)

)
z�0

given by

Njh(z) = # {s ∈ (0, z]:Js− = j, Js = h} , z � 0,

for j, h ∈ S , j �= h. Let us introduce the following assumption.

Assumption 1. For every z � 0 and j, h ∈ S , j �= h there exists some δ > 0 such that

E
[
Njh(z)1+δ

]
< ∞.

Taking the largest z and the minimum across the whole states provides a delta which is independent
of j,h,z.

For any x in the support of X define the conditional occupation probabilities according to

pj(z | x) =E
[
1{Jz=j} | X = x

]
.

We denote by p(z | x) the row vector with elements pj(z | x). We now introduce the cumulative conditional
transition rates and cast the conditional occupation probabilities as a product integral of these cumulative
rates. To this end, let

pjh(z | x) =E
[
Njh(z) | X = x

]
,
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and define the cumulative conditional transition rates via

�jh(z | x) =
∫ z

0

1

pj(s− | x)
pjh(ds | x).

A cumulative transition hazard matrix is defined by having the j,j entry �j,j(z | x) = ∑
j �= �j,h(z | x) for

j, h ∈ S , j �= h.
Let q(· | x) be the interval function associated with the conditional transition probabilities:

qjh(s, z | x) = 1{pj(s|x)>0}
E

[
1{Jz=h}1{Js=j} | X = x

]
pj(s|x)

+ 1{pj(s|x)=0}1{j=h}.

In Overgaard (2019), it is shown that this assumption ensures that the product integral

t

0

(Id +Λ(ds | x))

is well defined. Therefore,

p(t | x) = p(0 | x)
t

0

(Id +Λ(ds | x)).
(2.1)

We are interested in the situation where the observation of J is right-censored. To this end, we intro-
duce a strictly positive random variable W describing right censoring, so that we actually observe the
triplet (

X, (Jz)0�z�W , Y ∧ W
)

.

Whenever the Markov property fails for the jump process J, the following assumption is key for our
estimation procedure.

Assumption 2. Right censoring is conditionally entirely random:

W⊥⊥ J | X.

Other censoring schemes are possible if J is Markovian, though we do not make that assumption in
the sequel.

Remark 1. From a reserving perspective, the above assumption amounts to stating that, conditional
on covariates, closure of a claim is simply specified through an independent random mechanism. One
should note that this assumption is not verifiable, despite its widespread use in survival analysis.

We introduce

pc
j (z | x) =E

[
1{Jz=j}1{z<W} | X = x

]
,

and

pc
jh(z | x) =E

[
Njh(z ∧ W) | X = x

]
.

from which we may conclude that

�jh(z | x) =
∫ z

0

1

pc
j (s− | x)

pc
jh(ds | x), (2.2)

within the interior of the support of W .
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2.1.1. Estimators
Consider the i.i.d. replicates

(
Xi,

(
Ji

z

)
0�z�Wi , Yi ∧ Wi

)n

i=1
. Define δi: = 1{Yi�Wi}, which equals 1 when

the observation is absorbed (closed claim), and zero otherwise. In a reserving context, this distinction
is usually reflected by specifying two types of claims: closed claims and RBNS (open) claims, and we
write, respectively, n = nClosed + nRBNS.

We now construct an estimator for the conditional occupation probabilities pj(z | x), but from Equation
(2.1), it essentially suffices to estimate the cumulative conditional transition rates �jh(z | x), which we do
using Equation (2.2), Let Kb be kernel functions of bounded variation and bounded support, with b =
1, . . . , d and let (an) be a bandwidth sequence. We impose the following standard assumption, confering
with Stute (1986).

Assumption 3. The band sequence satisfies:

1. an → 0 as n → ∞.
2. nad

n → ∞ as n → ∞.
3.

∑∞
n=1 cr

n < ∞ for some r ∈ (1, 1 + δ) where cn: = (
nad

n

)−1
log n.

For instance, one may take, for (1 + δ)−1 < η < 1, any sequence satisfying

ad
n ∼ log n

n1−η
.

We introduce the usual kernel estimator for the density g:

g(n)(x) = 1

n

n∑
i=1

g(n,i)(x) = 1

n

n∑
i=1

d∏
b=1

1

an

Kb

(
xb − Xi

b

an

)
.

It is well-known (cf. Ghosh, 2018, Ch. 1.4) that

g(n)(x)
a.s.→ g(x), n → ∞,

and, for any random variable V with i.i.d. replicates (Vi) satisfying E[|V|1+δ] < ∞ that
1

n

∑n
i=1 Vig(n,i)(x)

g(n)(x)
a.s.→E[V | X = x], n → ∞. (2.3)

Based on the kernel estimator for g, we form the following Nadaraya–Watson type kernel estimators:

N
(n)
jh (z | x) = 1

n

n∑
i=1

N
(n,i)
jh (z | x) = 1

n

n∑
i=1

Ni
jh

(
z ∧ Wi

)
g(n,i)(x)

g(n)(x)
(2.4)

I(n)
j (z | x) = 1

n

n∑
i=1

I(n,i)
j (z | x) = 1

n

n∑
i=1

1{z<Wi}1{Ji
z=j}g(n,i)(x)

g(n)(x)
(2.5)

Remark 2. Due to Assumption 1, it follows from Equation (2.3) that

N
(n)
jh (z | x)

a.s.→ pc
jh(z | x), n → ∞.

Furthermore, it holds that

I(n)
j (z | x)

a.s.→ pc
j (z | x), n → ∞.

Definition 1. The conditional Nelson–Aalen estimator for the cumulative conditional transition rates
is defined as

�
(n)
jh (z | x) =

∫ z

0

1

I
(n)
j (s− | x)

N
(n)
jh (ds | x).
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Figure 1. Example of multi-state model for claims reserving, with k = 5. We interpret time spent in each
state as increasing claims size clock, instead of calendar time. The states represent the development
periods (DP’s) of the individual claims.

Definition 2. The conditional Aalen–Johansen estimator for the conditional occupation probabilities
is defined according Equation (2.1), but with the cumulative conditional transition rates replaced by the
conditional Nelson–Aalen estimator, that is,

(n)(z | x) = (n)(0 | x)
z

0

Id + (n)(ds | x) ,

where p(n)
j (0 | x) = I

(n)
j (0 | x). The estimator p(n)

j (0 | x) for the occupation probabilities pj(z|x) denotes the
jth entry of the row vector p(n)(z | x), an estimator for p(z|x).

Remark 3. We refer to Bladt and Furrer (2023b) for the proof that the estimators are pathwise strongly
consistent and asymptotically Gaussian distributed.

When all the subjects start in state 1 at inception, we can use the estimator of the occupation prob-
abilities of the absorbing state k, p(n)

k to model the cumulative density function of the individual claim
size.

Remark 4. The Volterra integral equation defines the product integral of the matrix function �(ds | x)
as the unique solution p(· | x) to the equation

p(t | x) = Id +
∫

(0,t]

p(s− | x)�(ds | x).

However, when a piecewise constant estimator of � is given by �(n), as is described in detail in the
previous section, the computation of the product integral simplifies. More precisely, denote 0 = t0 <

t1 < t2 < · · · the sequence of time points describing all observed jump times in the sample. Then the
recursion

p(n)
j (t�+1|x) −p(n)

j (t�|x) =
∑
k∈Z
k �=j

p(n)
k (t�|x)	�

(n)
kj (t�+1|x) −p(n)

j (t�|x)
∑
k∈Z
k �=j

	�
(n)
jk (t�+1|x)

and starting value p(n)(0|x) = I(n)(0|x) completely characterize the product integral p(n)
j ( · |x) at jump

times (and constant otherwise).

2.2. Practical considerations for claims development
In this section, we offer practical insights into our modeling approach, with the aim of assisting the
reader in understanding our multi-state setup for claims reserving. Refer to Figure 1, which conceptually
illustrates our model featuring a state space S with k = 5 states.
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In our framework, we represent the active state as IBNR claims, while we treat RBNS claims as tran-
sitioning through intermediate states. Any claim that reaches state k is considered closed in our system
due to the presence of an absorbing state. Consequently, we do not allow claims to reopen in our frame-
work. Notably, unlike a traditional survival study, we do not explicitly model the time component, and
the number of IBNR claims, along with their characteristics, remains unknown at the time of evalua-
tion. In Section 3, we delve into how to model RBNS and IBNR claims, showcasing how our model can
accommodate such scenarios. Furthermore, we have designed our state space so that state DP3+ at step
k − 1 in Figure 1 is the final relevant DP that we explicitly model.

Finally, it is worth mentioning that we have not introduced development triangles yet, which are the
standard aggregate datasets commonly used in claims reserving applications. The choice of parameter k
aligns with the data that, in a conventional modelling approach, would be aggregated into development
triangles of varying sizes. Since our proposed framework does not explicitly model the time component,
we assume that payments close at the development year following the last payment. This assumption
results in a development triangle with k − 1 development times. This aspect will be particularly relevant
for our data application, where we compare our model to the benchmark chain ladder method outlined
in Mack (1993), and we need to construct a development triangle for this purpose.

Remark 5. By changing the multi-state model in Figure 1, our approach can be modified to take into
account additional domain-specific aspects of reserving data. For instance, if we allow transitions back
from the state k (closed) to states 3, . . . , k − 2 (DP 2, . . . ), our framework can be modified to take into
account reopenings.

3. Claims reserving
In this section, we will introduce the definitions of final cost of the claims and of the claims reserve and
provide a notation for development triangles, an aggregated representation of the reserving data. We
then connect the multi-state model that we introduced in the previous section to the actuarial literature
in reserving, with a comparative literature review that distinguishes between the approaches that rely on
aggregated data and those that rely on individual data, as the methodology outlined in this manuscript.
We remark that aggregated data are a known data representation in survival studies when the individual
data are not available, Andersen et al. (1993, p. 168) and Gill (1986). We conclude this section with a
discussion on the numerical estimation of the total final cost of the claims using the conditional Aalen–
Johansen estimator p(n)

k of pk(z|x).

Notation. Together with our sample, which is composed of n i.i.d. observations generated from J and
its covariates (refer to the previous section), we additionally observe the following quantities that are
not related to J1, . . . , Jn: {

Ti, Ui
}n

i=1
.

In detail, Ui and Ti represent the accident period and the reporting delay of the ith claim, with Ui, Ti ∈
{1, . . . , k − 1}. Let us also define the development triangle of the reporting delays as the set

D(k−1) = {
d�,j:� + j � k;�, j = 1, . . . , k − 1

}
,

with d�,j = ∑n
i=1 1{Ui=� and Ti=j} denoting the total claims reported in accident period � with delay j. In a

similar fashion, we can define the development triangle of cumulative payments,

C(k−1) = {
C�,j:� + j � k;�, j = 1, . . . , k − 1

}
,

where C�,j = ∑n
i=1 1

{
Ui=� and Ji

zi,j
=j

}zi,j, with 0 � zi,j � Wi such that Ji
z−i,j

∈ {1, . . . , j − 1} , Ji
zi,j

= j denoting
the total cumulative amount paid in accident period � and DP j.
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We are presently interested forecasting the ultimate cost of our claims,

YClosed + YRBNS: =
n∑

i=1

δiYi +
n∑

i=1

(1 − δi)Yi =
k−1∑
�=1

C�,k−1,

The claims reserve is simply R = ∑k−1
�=1

(
C�,k−1 − C�,k−�

)
.

3.1. A comparative literature review
Research papers on loss reserving can be broadly categorized into two main streams of research: models
based on development triangles (aggregate loss reserving models) and models based on individual data
(individual loss reserving models). The relationship between individual data and aggregate modelling
has been extensively studied in Miranda et al. (2012), Hiabu (2017), and Bischofberger et al. (2020),
utilizing different survival analysis tools.

The existing body of literature on aggregate reserving has already provided the building blocks for
predicting the distribution of loss reserves, with a specific emphasis on models that seek to emulate
the empirical chain-ladder algorithm. In this section, we briefly mention some of these models and
defer to the comprehensive discussion in Hess and Schmidt (2002) for their detailed categorization.
For a distribution-independent approach to computing the mean squared prediction error of the loss
reserve, one can refer to Mack (1993), where the author decomposes the prediction error of the loss
reserve into its elemental components, namely process variance and estimation variance, as expressed
by E[(R̂ − R)2] = Var(R) +E[(R̂ −E[R̂])2]. The model has received several statistical critiques through
the years but remains one of the best-performing reserving models in an actuary’s toolkit.

In England and Verrall (1999), the authors replicate the point estimates of the chain-ladder method
and ingeniously employ bootstrap and generalized linear models (GLM) to compute E[(R̂ − R)2]. For an
extension of the model, allowing for negative payments as well as an exploration of the model assump-
tions underpinning it, one may consult Verrall (2000). An interesting comparison of the fundamental
assumptions underpinning the aforementioned models is presented in Mack and Venter (2000), where
the authors conclude that only the approach outlined in Mack (1993) is the true underlying model of
the chain-ladder algorithm. In a more recent development, in Al-Mudafer et al. (2022), the approach
in England and Verrall (1999) is integrated into the framework of mixture density networks (Bishop,
1994).

Shifting our focus to non-parametric models for individual reserving, the current discussion primarily
centers on providing precise point forecasts for the loss reserve. In contrast, Delong and Wüthrich (2023)
discuss the role of the variance function in regression problems for pricing.

In another recent development, Wüthrich (2018) incorporates neural networks into the chain-ladder
model, introducing features to the existing methodology. Further related work can be found in Lopez
et al. (2019) and Lopez and Milhaud (2021), where the authors employ a tree-based algorithm for
modeling RBNS claims using censored data. In particular, in Lopez and Milhaud (2021), the use of
bootstrapping for estimating the uncertainty in the claims reserve is discussed.

Our manuscript introduces a novel approach to the individual reserving problem, allowing us to
explicitly model curves of individual claim sizes denoted as pk(z|x) within our framework.

3.2. Prediction of RBNS and IBNR claim costs
We can calculate the final cost of RBNS claims numerically using the conditional Aalen–Johansen
estimate p(n)

k (z | x) for pk(z|x). The predictor of the final total cost of RBNS claims is defined by

ŶRBNS =
n∑
i

1{δi=0}
(

Wi + ̂E[Y|Y > Wi, X = x]
)
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with

̂E [Y|Y > Wi, X = x] = 1

1 −p(n)
k (Wi | x)

∫ +∞

Wi

(1 −p(n)
k (y | x))dy. (3.1)

We remark that the general formula for the mth moment is explicitly given by

̂E [Ym|Y > Wi, X = x] = 1

1 −p(n)
k (Wi | x)

∫ +∞

Wi

mym−1(1 −p(n)
k (y | x))dy.

Remark 6. Relatable approaches to the predictor in Equation (3.1) can be found in the survival literature
on censored regression. For instance, similar techniques were presented for the estimation of the linear
model in Buckley and James (1979) and for the construction of the artificial data points in Heuchenne
and Van Keilegom (2007).

Strictly speaking, from a reserving standpoint, we also need to propose a strategy for reserving for
the (unknown) IBNR claims. We denote the total number of IBNR claims by nIBNR, which is a ran-
dom variable with values in N0. The individual cost of the IBNR claims is described by a sequence
of iid copies of the random variable Ỹ , namely

{
Ỹ i′}

i′∈N. Under the framework of Bladt and Furrer
(2023b), Ỹ has cumulative distribution function pk(z). As we will describe shortly, we specify a model
that does not consider the features, since in this case we do not have access to future exposures by fea-
ture. We propose to correct the model for the random presence of IBNR using a compound distribution,
under the assumptions in Klugman et al. (2012, p. 148). We describe the total cost of IBNR claims as
follows:

YIBNR =
nIBNR∑
i′=1

Ỹ i′ .

The expression for YIBNR is well known in non-life mathematics and is often referred to as the collective
risk model, Parodi (2014). The moments of YIBNR can be calculated in closed form. In particular, the
expected cost of IBNR claims is predicted by

ŶIBNR = Ê[YIBNR] = n̂IBNRÊ[Ỹ],

with the m-th moment of Ỹ predicted by

̂
E[Ỹm] =

∫ ∞

0

mym−1(1 −p(n)
k (y))dy,

fitting the unconditional Aalen–Johansen to the sample n to obtain p(n)
k (z). To project the number of

IBNR claims, we simply use the chain ladder model on the triangle of reporting delays D(k−1) and obtain
n̂IBNR.

Similarly, the variance of the IBNR claims is predicted by

̂Var(YIBNR) = n̂IBNR

[
̂
E[Ỹ2] − Ê[Ỹ]

2
]

+ Ê[Ỹ]
2

̂Var(nIBNR).

We denote by ̂Var(nIBNR) a predictor for the variance of nIBNR. In this manuscript, we consider the
predictor for the process variance discussed in Mack (1993).

The total size of claims is YTOT = YClosed + YRBNS + YIBNR and we estimate it with ŶTOT = YClosed +
ŶRBNS + ŶIBNR. We remark that in several lines of business the contribution of the true cost of IBNR
claims (YIBNR) to YTOT is minor compared to the cost of RBNS claims (YRBNS). This is the case for those
lines of business that have data with mostly single payments and a short time lag between reporting
and settlement. See for instance the results presented in Friedland (2010, p. 80) on the US market data,
comparing for different lines of insurance the size of the estimated cost of IBNR claims to paid and
outstanding claims. As we will show in Section 5, our real dataset exhibits exactly this behaviour and
the IBNR correction will have a minor impact on the estimated final cost.
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4. Simulation of RBNS claims
In this section, we perform two simulation studies to provide numerical evidence of the applicability of
our models to claims reserving. To demonstrate the potential benefits to actuaries of using our modeling
approach, we first compare our results with the chain ladder model (Mack, 1993). A second comparison
with the hierarchical reserving model in Crevecoeur et al. (2023) can be found in Appendix A. To
facilitate the presentation of our results, we refer to our model as AJ, the chain ladder model in Mack
(1993) as as CL, and the hierarchical reserving model as hirem.

4.1. Implementation
It is possible to simulate observations from a jump-process model using the function sim_path from the
R package AalenJohansen (Bladt and Furrer, 2023a), by introducing a matrix of transition intensities.
Markov and semi-Markov models are allowed. To obtain a realistic set of examples for the simulation
study, we used the Nelson–Aalen implementation of the R package survival (Therneau, 2023) to esti-
mate the (unconditional) cumulative transition intensities �

(n)
jh (z) for different choices of k = 4, 5, 6, 7

on the real dataset available to us for writing this manuscript. Then, similar choices of parameters were
employed for the present section. See Table 3 for the description of the real data. The matrix of intensities
can be obtained from the cumulative intensities �

(n)
jh (z). Simulation by knowing the data generation pro-

cess underlying the data is important to understand model performance compared to the true estimation
target. For example, in Figure 2, we show an example of the fittedp(n)

k (z | x) on datasets simulated directly
with � without any feature effect. For each choice of k we simulated two datasets. The first dataset con-
tains 120(k − 1) observations. The second dataset contains 1200(k − 1) observations. By comparing the
p(n)

k (z | x) fitted to the smallest sample (red) with the curve fitted to the largest sample (blue), we observe
that increasing the sample size yields fits that are closer to the true pk(z | x), empirically validating the
consistency of the Aalen–Johansen estimator with claim size as operational time.

In particular, we have presented a model that can take into account the individual feature informa-
tion. In the case studies that we present in the next section, we treat the accident period as a feature and
add an effect by simply specifying qjh(s, z | x) = qjh(s, z)/f (x), where f (x) is a function of some feature
x and we can derive qjh(s, z) from the cumulative transition matrix obtained with the survival pack-
age. In the simulations we present, we assume that observations are generated from f (x) = 10 + k − x,
where in place of x we use the accident period, namely Ui introduced in the previous sections. For the
simulation of the reserving datasets, we decide arbitrarily the number of observations in each accident
period Ui. Each claimant is then associated with a numeric variable representing the accident period Ui,
taking values in {1 . . . , k − 1}, from which we can calculate the effect f (Ui) = 10 + k − Ui. We also add
an effect on the volumes, and generate fewer observations in most recent accident period. Generating
decreasing volumes resembles cycles in the underwriting, a case study of an insurer that underwrites
less policies in the more recent accident periods, resulting in less claims. In particular, we generated
1200 observations in the first accident period Ui = 1 and decreased by 100 the number of observations
every accident periods. For instance, we have 1100 observations with Ui = 2 and 1000 observations with
Ui = 3.

4.2. Evaluating the models performance
Using the approach introduced in Section 4.1, we present two simulated scenarios: Alpha and Beta.
In scenario Alpha, we simulate directly with unconditional transition intensities that we have fitted to
the real data. In the Beta scenario, we introduce the effect of the accident period characteristics and
the occupation intensities. In each scenario we simulate, for the different choices of k = 4, 5, 6, 7, a total
number of 20 datasets to smooth possible fluctuations due to the random generator and report the average
results that we obtain. Each dataset in scenario Alpha contains 1200(k − 1) observations. The dataset
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(a) (b)

(c) (d)

Figure 2. Comparison of the true severity curve (dark grey dotted line) to the fitted severity curve for
different data sizes in the 4 simulated scenarios. The red curve is fitted on 120(k − 1) RBNS claims, the
blue curve is fitted on 1200 RBNS claims. Z is rounded by millions.

in scenario Beta contains 1200(k − 1) − 100(k − 2) observations. As motivated in Section 4.1, we let
the volumes decrease in recent accident periods. We chose arbitrarily to decrease the volume by 100 in
every accident period subsequent to the first one.

The choice of measure of model performance can be an ardouos task when models are very different,
as are AJ and CL. The first performance measure that we propose is the error incidence,

EI = ŶTOT

YTOT
− 1,

where ŶTOT is the predicted final claim size and YTOT is the actual final claim size, which is available from
the simulation. The EI is an interesting benchmark that provides insight into the relative accuracy of
the AJ compared to the CL, though it does not highlight the fact that AJ provides a much more nuanced
description of the claim size than point estimates. In Figure 3, we provide a box plot of the EI for the
Alpha scenario (left side) and the Beta scenario (right side) for the different values of k. Compared to
the CL, the AJ model performs favourably for each choice of k and in both scenarios.

While the EI is an interesting benchmark, to better understand the performance of the models com-
pared to the data at hand, we would ideally like to use a proper scoring measure (Gneiting and Raftery,
2007). In principle, a scoring metric with the property of being proper is able to evaluate the better
model by assigning better scores to better models. In this manuscript we consider the continuously
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Box plots of EI for AJ and CL over the 20 simulations, for each value of k, in the Alpha
scenario (left column) and the Beta scenario (right column).

ranked probability score (CRPS) as a proper scoring metric:

CRPS
(
p(n)

k (z | x), y
) =

∫ +∞

0

(
p(n)

k (z | x) − 1{y�z}
)2

dz

=
∫ y

0

(
p(n)

k (z | x)
)2

dz +
∫ +∞

y

(
1 −p(n)

k (z | x)
)2

dz,
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Table 1. Results for scenario Alpha. For each value of k (column one) we present the average results
over the 20 simulations. Each row of the table corresponds to a different AJ model specification (column
three). The table includes the (average) actual YTOT simulated total cost (column four) and the error
incidence for the AJ and the CL (columns five and six). In columns seven and eight, we reported the
coefficients of variation of YTOT. The results for the CRPS are reported in column nine.

k Scenario U Actual EI EI ŝd(YTOT)/ŶTOT ŝd(YTOT)/ŶTOT CRPS
YTOT (average) (AJ) (CL) (AJ) (CL) (average)

4 � 598.483 0.006 0.111 0.008 0.009 0.145
5 Alpha � 456.746 −0.085 0.082 0.007 0.008 0.095
6 � 1952.683 −0.016 0.269 0.007 0.009 0.410
7 � 2359.151 −0.035 0.257 0.007 0.007 0.557

Table 2. Results for scenario Beta. For each value of k (column one), we present the average results
over the 20 simulations. Each row of the table corresponds to a different AJ model specification (column
three). The table includes the (average) actual simulated total cost (column four) and the error incidence
for the AJ and the CL (columns five and six). In columns seven and eight, we reported the coefficients
of variation of YTOT. The results for the CRPS, relative to the AJ model with features, are reported in
column nine.

k Scenario U Actual YTOT EI EI ŝd(YTOT)/ŶTOT ŝd(YTOT)/ŶTOT CRPS (average,
(average) (AJ) (CL) (AJ) (CL) relative)

4 � 42.279 0.006 0.103 0.008 0.008 1.000
� 0.005 0.008 1.008

5 � 94.580 0.011 0.190 0.009 0.008 1.000
Beta � −0.006 0.007 1.064

6 � 108.423 −0.013 0.256 0.007 0.008 1.000
� −0.016 0.007 1.039

7 � 116.032 −0.033 0.255 0.007 0.008 1.000
� −0.031 0.008 1.260

where p(n)
k (z | x) is the predicted curve of the individual claims sizes and yi is the (true) value of the

final claim size that is available from the simulation. The interested reader can refer to the established
statistical literature on proper scoring for a detailed discussion on this topic Gneiting and Raftery, 2007;
Gneiting and Ranjan, 2011).

4.3. Empirical analysis
The average results of our 20 simulations for the Alpha scenario are reported in Table 1. Each column
of the table represents one of the AJ models fitted for the different choices of k (column one). The
target YTOT (average simulated total cost) assuming YIBNR = 0 is in column four. The predicted final cost
is ŶTOT = YClosed + ˆYRBNS. The EI results show that, on average, our models outperform the CL for every
choice of k except k = 5 (columns five and six). For all choices of k, we find that the relative variability
of our model is less than that provided by the CL (columns seven and eight). We compute sd(YTOT) =√∑nRBNS

i Var(Yi). In this manuscript, we will not discuss the estimation error, and the results we present
with respect to the variability of the reserve refer only to the process variance. In column nine, we report
the (average) CRPS.

Table 2 reports the average results for the 20 simulations of the Beta scenario. For each simulation,
we fit two models, with and without the use of U as a feature (� and � in the table). The model with U
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is correctly specified assuming the Beta scenario. The aim of this experiment is to show that the CRPS
is able to judge which is the better model in a context where we know the data generation process. As
expected, we obtain a lower average CRPS for the models that include features. The CRPS results in
Table 2 are relative to the AJ model with feature U. For example, for k = 6 we see that the AJ model
without the feature U shows (on average) a CRPS 3.9% higher than the CRPS of the AJ model with
feature U. For the purpose of an easier interpretation, the CRPS results will be shown relative to the
AJ with feature model also in the following tables. The (average) target YTOT is reported in the fourth
column. The results for EI indicate that the AJ model generally outperforms the CL model. The relative
variability results show comparable results for AJ and CL.

5. A data application on an insurance portfolio
In this section, we propose a case study on our model using real data. For this data application, we have
at our disposal a recent real dataset from a Danish non-life insurer. The dataset is not publicly available
(Table 3).

Table 3. Description of the real dataset.

Covariates Description
Claim_number Policy identifier
claim_type ∈ {1, . . . , 20} Type of claim
AM Accident month
CM Calendar month of report
DM Development month
incPaid Incremental paid amount
Delta Indicator, 0 when the claim is open

We provide additional insight in Figure 4. The exploratory analysis of the data shows that most of
the records have a single payment (Figure 4(b)) and a very fast settlement (Figure 4 (d)). The data we
present in this manuscript come from a very stable line of business. Interestingly, we show that we are
able to outperform the CL on data where the CL is expected to behave as well as it can. Most of the
datasets belong to claim_type 1, see Figure 4 (a).

Remark 7. Notice that the covariate in our application is discrete, which with a uniform kernel effec-
tively amounts to subsampling of data. However, the estimators of the paper provide consistent and
asymptotically normal estimators even when covariates are continuous. Nonetheless, kernel-based meth-
ods are prone to the curse of dimesionality, and hence our method provides the best results when
covariate dimensions are small.

To analyse the real dataset, we propose two strategies that an actuary could follow to calculate the loss
reserve. In Section 5.1, we show an example where we censor our data by different calendar periods and
fit an AJ model for the maximum depth of data available. For example, for a model with k = 4, we will
have the individual data corresponding to a development triangle with 3 accident periods. The purpose
of this application is to show the behaviour of our model compared to the CL on different datasets.
In Section 5.2, we conclude with an application where we highlight the use of the CRPS measure to
perform model selection, after having censored the data at an arbitrary calendar time, that is 5 calendar
periods. Here we fit different models to the same datasets and select the best-performing model in terms
of CRPS to calculate the loss reserve. The applications in this section also comprise the IBNR model
that we have illustrated in the previous sections. In fact, we predict ŶTOT = YClosed + ŶRBNS + ŶIBNR and
̂Var(YTOT) = ̂Var(YRBNS) + ̂Var(YIBNR).
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(a) (b)

(c) (d)

Figure 4. Exploratory data analysis on the real dataset that we use in this section. We show the relative
frequencies by type of claim Figure (a), the distribution of the number of payments Figure (b), the density
plot of the total individual claim size Figure (c) and the distribution of the settlement delay from accident
Figure (d).

5.1. Model comparison on different datasets
Consider the first application, where we censor our data at different depths and fit an AJ model using
the largest possible state space. Using our model, it is possible to explore and compare the individual
claim size curves for the different values of claim_type, as shown in Figure 5.

The results are reported in Table 4, and they show that in general the AJ models outperform the CL in
terms of EI, except for the scenario with k = 7. For each scenario, we are able to select a model with or
without features using the CRPS measure. The rows with a � (column two) refer to models that include
the claim_type feature in the fit. The target YTOT is shown in column three. While in other scenarios,
the CRPS for the AJ model that includes the claim_type feature is close to or better than the CRPS
of the model without the feature, in k = 5 the model without the feature has a much lower CRPS. The
relative variability results show that AJ and CL have comparable results. In fact, only for k = 4 does CL
have a lower relative variability.

For each choice of k, we can simply select the best-performing model in terms of CRPS and compute
the claims reserve, the results are displayed in Table 5.
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Table 4. For different choices of k (column one), we fit a model with and without claim_type (column
two). The target YTOT is shown in column three. The EI is shown in columns four and five. The CV of YTOT

are displayed in columns seven and eight for the AJ and CL respectively. The CRPS is shown in column
nine.

k claim_type YTOT EI EI ŝd(YTOT)/ŶTOT ŝd(YTOT)/ŶTOT CRPS (average,
(AJ) (CL) (AJ) (CL) relative)

4 � 616.1327 −0.0035 0.0157 0.0029 0.0023 1.0000
� −0.0029 0.0029 1.1403

5 � 822.5956 −0.0064 0.0209 0.0008 0.0024 1.0000
� −0.0061 0.0007 0.4596

6 � 999.6005 −0.0059 0.0173 0.0017 0.0017 1.0000
� −0.0052 0.0017 0.9987

7 � 1190.9112 −0.0146 0.0144 0.0011 0.0017 1.0000
� −0.0142 0.0011 1.0022

(a) (b)

(c) (d)

Figure 5. For each different dimension k = 4, 5, 6, 7, 8, we provide the individual claim size curves for
our observations by covariate value claim_type. The x-axis represents Z and we scale it by log2 to
ease the plot visualization.
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Table 5. We selected for each data k (column one), the
best-performing model in terms of CRPS and present the
reserve (column one) and the standard deviation of the
reserve (column two).

k R sd(YTOT) claim_type
4 10.7832 1.8054 �
5 7.4981 0.5720 �
6 10.3268 1.6731 �
7 5.6317 1.3381 �

Table 6. For the dataset with depth 5 accident periods, we fit the AJ model both including and excluding
the claim_type feature (column two). The target YTOT is displayed in column three. The EI for the AJ
and the CL can be found in columns four and five. The coefficient of variation of YTOT is displayed in
columns six and seven. The CRPS is displayed in column eight.

k claim_type YTOT EI EI ŝd(YTOT)/ŶTOT ŝd(YTOT)/ŶTOT CRPS (average,
(AJ) (CL) (AJ) (CL) relative)

4 � −0.0059 0.0016 1.0143
� −0.0040 0.0020 1.0000

5 � 999.6005 −0.0069 0.0173 0.0015 0.0017 0.9916
� −0.0052 0.0018 1.0000

6 � −0.0052 0.0017 0.9987
� −0.0059 0.0017 1.0000

5.2. Model comparison on a single dataset
In the second application, we censor our data after 5 accident period and construct the AJ model for
k = 4, 5, 6. For each choice of k, we fit a model both with and without the feature claim_type. Table 6
shows that in terms of CRPS, the model with k = 4 using the claim_type feature is the best model
(minimum CRPS). This model is also the best in terms of EI.

Using the CRPS, we are able to select the model with k = 4 and that uses claim_type as a feature to
compute the claims reserve. The model provides a reserve of 11.485 millions and a standard deviation of
2.0385 millions. The strategy presented in this last section is of particular interest to reserving actuaries.
While the empirical study in Section 5.1 is interesting for understanding the behaviour of our model on
different data, in practice the maximum depth of the data is selected using indicators such as claims
settlement speed or using the expert judgement of an experienced actuary Wüthrich and Merz (2008,
p. 12). The depth of the data is then known and the main interest is simply to select the best model, as
shown here. Selecting the most appropriate model can be very difficult, see again Wüthrich and Merz
(2008, p. 13), and the strategy presented in this section provides a mathematically sound approach to
doing so.

6. Conclusion
The methodology described in this manuscript presents an improved approach for predicting loss
reserves compared to commonly used aggregate loss reserving methods. We also introduce a
comprehensive non-parametric estimator for the cumulative density function of individual claim sizes,
distinguishing it from other individual loss reserving methods that mainly focus on point forecasts of
claim reserves. While some questions remain open, particularly regarding the modeling of IBNR claims
and their dependence on specific features, practical applications can address these issues by fitting our
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model with the chain ladder method for future reports and projecting their future costs using the uncon-
ditional curve of individual claim sizes. Furthermore, this methodology can be extended in various ways.
One possibility is to explore the use of reverse time models, as described in Hiabu (2017), to project the
future exposure of IBNR claims. In a broader context, future research could investigate how to model
not only the size but also the frequency of individual claims.

Supplementary material. The code at https://github.com/gpitt71/conditional-aj-reserving complements the results of this
manuscript. The folder was registered with unique Zenodo DOI 10.5281/zenodo.10118895.
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Appendix
A Comparison with hirem
We perform a first comparison with the hirem model on the scenario Beta that we introduced in
Section 4.3. The results are reported in Table A1. For the different values of k (column one), we compare
the AJ model (with feature U) to the CL and hirem in terms of EI and CRPS. Each row corresponds to
a different model (column two). The (average) target YTOT is reported in column three. The EI (column
four) shows that the AJ model is predicting the target YTOT more accurately than the CL and hirem. We
also observe that the hirem model seems to be less accurate for higher values of k. Consistently with
the data generating assumptions, the CRPS indicates that the AJ model better describes the curve of
the claim size. The relative variation is reported from Table 2 the AJ model and the CL model (column
five). We observe a similar relative variation of YTOT on our models compared to hirem.
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Table A1. Results for scenario Beta. For each value of k (column one) we present the average results
over the 20 simulations. Each row of the table corresponds to a different model (column two). The table
includes the (average) actual simulated total cost (column three) and the error incidence for the AJ, the
CL, and hirem (columns four). In columns five we show the average relative variation and in column
six we reported the average CRPS relative to the AJ CRPS.

Scenario Model YTOT (average) EI ŝd(YTOT)/ŶTOT CRPS (average, relative)
AJ 42.279 0.006 0.008 1.000

Beta (k = 4) CL 0.103 0.008 –
hirem −0.028 0.009 1.582

AJ 94.580 0.011 0.009 1.000
Beta (k = 5) CL 0.190 0.008 –

hirem 0.071 0.009 1.680
AJ 108.423 −0.013 0.007 1.000

Beta (k = 6) CL 0.256 0.008 –
hirem 0.148 0.009 1.697

AJ 116.032 −0.033 0.007 1.000
Beta (k = 7) CL 0.255 0.008 –

hirem 0.168 0.008 1.790

Table A2. Description of the hirem data.

Covariates Description
claim.nr Policy identifier
Type ∈ {T1, T2, T3} Type of claim
Hidden ∈ {I, M, H} Covariate unknown to the insurer (disregarded for modeling)
occ.year Accident year
rep.year Calendar year of reporting
dev.year Development year
size Incremental paid amount
settlement Indicator, 1 in the development year of settlement

A second comparison is performed on synthetic data generated from the individual claims simulators
available in the R package (Crevecoeur and Robben, 2024). The package includes the hirem models
implementation and four individual claims simulators for reported claims for k = 10. While the four
scenarios are briefly introduced in this section, we refer to the package documentation and the main
manuscript for a detailed description. The generated features that are relevant for our application are
reported in Table A2.

The data include one categorical feature, the type of claim (Type), which we use in our application
and a hidden feature (Hidden) that is not known to the insurer at the evaluation. The package includes
a baseline simulated scenario (Baseline) and three scenarios that include modifications compare to the
Baseline. In the scenario Claim Mix, there is a change in the portfolio distribution with respect to the
feature Type. In the scenario Extreme, a seasonality effect in calendar year 9 simulates an increase in the
claim occurrences. Lastly, the Settlement scenario simulates a change of the claim settlement process
to quicker settlement after calendar period 7.

The results of this second application are reported Table A3. We find that, both in terms of EI and
CRPS and in the four simulated scenarios, our models always outperform the CL, while hirem performs
better than the AJ (columns five and seven). The CRPS in column seven are relative to the CRPS of the
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Table A3. The hirem package includes four data generators in four different scenarios with k = 10
(column one). We compare our models (AJ with and without features, column two) to the model in
Crevecoeur et al. (2023) and the CL (column three). The actual YTOT target is reported in column four.
We show the EI and the CRPS results in columns five and seven, respectevely. The predicted relative
variation of YTOT is shown in column six.

Scenario Type Model YTOT(average) EI ŝd(YTOT)/ŶTOT CRPS (average, relative)
Baseline � AJ 50.240 0.070 0.004 1.000

� 0.067 0.004 1.001
� hirem 0.012 0.002 0.785
� CL 0.232 0.010

Claim Mix � AJ 57.880 0.071 0.004 1.000
� 0.066 0.004 1.002
� hirem 0.014 0.002 0.792
� CL 0.240 0.010

Extreme � AJ 48.812 0.076 0.005 1.000
� 0.069 0.004 1.002
� hirem 0.039 0.002 0.755
� CL 0.231 0.010

Settlement � AJ 50.241 0.069 0.004 1.000
� 0.065 0.004 1.001
� hirem 0.011 0.002 0.766
� CL 0.231 0.001

AJ model with features. These results are expected, as the data are generated using assumptions that are
consistent with the hirem model, see Appendix A of Crevecoeur et al. (2023). Notwithstanding, the AJ
model is performing comparatively well. The results are averaged over ten simulations.

We remark that the applications reported in Tables A1 and A3 indicate that, in general, for the sce-
narios that we inspected, individual models always outperform the chain ladder benchmark. However,
as expected, the models perform best when the data generating process is consistent with the models
assumptions.
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