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Abstract. In this paper, we first construct π -type Fermions. According to these,
we define π -type Boson–Fermion correspondence which is a generalization of the
classical Boson–Fermion correspondence. We can obtain π -type symmetric functions
Sπ

λ from the π -type Boson–Fermion correspondence, analogously to the way we get
the Schur functions Sλ from the classical Boson–Fermion correspondence (which is
the same thing as the Jacobi–Trudi formula). Then as a generalization of KP hierarchy,
we construct the π -type KP hierarchy and obtain its tau functions.

2010 Mathematics Subject Classification. 37K05, 37K10.

1. Introduction. Two-dimensional Fermions and Boson–Fermion correspond-
ence are well-known in mathematical physics. Meanwhile, Young diagrams and
symmetric functions are of interest to many researchers and have many applications in
mathematics including combinatorics and representation theory of the symmetric and
general linear group. There are many relations between them.

The Kakomtsev–Petviashvili (KP) hierarchy [1] is one of the most important
integrable hierarchies and it arises in many different fields of mathematics and physics
such as enumerative algebraic geometry, topological field and string theory. Schur
functions have close relations with the tau functions of KP hierarchy. Schur functions
in variables x1, x2, . . . , xn are well-known to give the characters of finite-dimensional
irreducible representations of the general linear groups GL(n) [2, 3]. From [4, 5, 6],
Schur functions can be realized from vector operators and these vertex operators
correspond to free Fermions acting on Bosonic Fock space. It turns out that the Boson–
Fermion correspondence and the Jacobi–Trudi formula are the same thing, which tells
us that Schur functions are solutions of differential equations in KP hierarchy, and
the linear combinations of Schur functions with coefficients satisfied some relations
(püker relations) are also tau functions of KP hierarchy.

The π -type symmetric functions are upgraded from Schur functions in the same
setting. The linear basis of π -type symmetric functions provides the structure of the
universal character ring of group Hπ (subgroup of GL(n)) [7, 8, 9]. Like Schur functions,
π -type symmetric functions can also be realized from vertex operators which are
constructed in [10]. Then free Fermions can be constructed and there exists for sure
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an integrable system. In this paper, we will construct this integrable system, and find
that the π -type symmetric functions are the solutions of differential equations in this
integrable system.

The paper is organized as follows. In Section 2, we recall the π -type symmetric
functions and vertex operators associated with them. In Section 3, we recall Schur
functions and KP hierarchy. In Section 4, we define π -type Fermions and construct π -
type Boson–Fermion correspondence from which we can calculate π -type symmetric
functions. In Section 5, we construct the π -type KP hierarchy and analyse its tau
functions.

2. π -type symmetric function and vertex operator. We begin this section with
some notational preliminaries [10]. Let �(x) be the ring of symmetric functions of a
countably infinite alphabet of variables x = {x1, x2, . . .}. The power sum symmetric
functions pn(x) are

pn(x) =
∑

k

xn
k.

The operators pn and n∂pn (∂pn := ∂/∂pn ) give a representation of the infinite-
dimensional Heisenberg algebra generated by an, n ∈ �, n �= 0 with the relation

[an, am] = nδn+m,0. (1)

The vertex operator are defined with the help of Heisenberg algebras

M(z, x) =
∏

k

1
1 − zxk

= exp

( ∞∑
n=1

pn

n
zn

)
, (2)

L(z, x) =
∏

k

(1 − zxk) = exp

(
−

∞∑
n=1

pn

n
zn

)
, (3)

where L(z, x) = M(z, x)−1. In the special case z = 1, we set M(x) = M(1, x) and L(x) =
L(1, x). When x is to be understood, we often write L(z, x) and M(z, x) by L(z) and
M(z), respectively, for short.

For a Young diagram λ, let T λ denote the set of semi-standard tableaux T of shape
λ with entries from {1, 2, . . . , n}, and let xT = x#1

1 x#2
2 · · · x#n

n where #k is the number
of entries k in T , then the Schur function

Sλ(x) =
∑

T∈T λ

xT .

Schur functions are an orthonormal basis of the ring �(x). The operation of symmetric
function skew is defined by duality as

〈g⊥f |h〉 = 〈f |g · f 〉.

Given two Schur functions Sλ and Sμ, the skew Schur function S⊥
μ Sλ = Sλ/μ.

The plethysm is defined as follows [2]. Let f (x) = ∑
i yi. Consider these monomials

as elements of a new countably infinite alphabet y = {y1, y2, . . .}. Then for any Schur
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function Sλ, the plethysm of f by Sλ, Sλ[f ](x) := Sλ(y) is the symmetric function of the
composite alphabet. For any Young diagram π ,

Mπ (z, x) =
∏

T∈T π

1
1 − zxT

=
∑
r≥0

zrS(r)[Sπ ](x), (4)

Lπ (z, x) =
∏

T∈T π

(1 − zxT ) =
∑
r≥0

(−1)rzrS(1r)[Sπ ](x), (5)

for arbitrary π , we have

Sπ
λ (x) = L⊥

π (x)Sλ,

the symmetric functions of this type correspond to the branching rule from a module of
the general linear group to (generically indecomposable) module of the Hπ subgroup.

Define

Vπ (z) = M(z)L⊥(z−1)
∏
k>0

L⊥
π/(k)(z

k), (6)

then we have

Sπ
λ = [zλ]Vπ (z1)Vπ (z2) · · · Vπ (zk) · 1, (7)

where [zλ] means selecting the coefficient of zλ1
1 zλ2

2 · · · zλk
k . In order to obtain the

complete set of exchange relations between the π -type vertex operators, it is necessary
to introduce suitably constructed dual vertex operators V∗

π (z).

THEOREM 2.1 (Theorem 1 in [10]). For each partition π and any z, let

Vπ (z) := M(z)L⊥(z−1)
∏
k>0

L⊥
π/(k)(z

k), (8)

V∗
π (z) := L(z)M⊥(z−1)

∏
k≥0

M⊥
π/(12k+1)(z

2k+1)
∏
k>0

L⊥
π/(k)(z

2k), (9)

where it is to be understood that all the Schur functions in M(w), L(w), M⊥(w)
and L⊥(w), for any w, depend on the same sequence of variables (x1, x2, . . .) whose
specification, for the sake of simplicity, has been suppressed.

Furthermore, let the associated full vertex operators Xπ (z) and X∗π (z), constructed
by adjoining zero mode contributions, be defined by

Xπ (z) = Vπ (z)eKzH0 :=
∑

n∈�+1/2

Xπ
j z−j−1/2+H0 , (10)

X∗π (z) = V∗
π (z)e−Kz−H0 :=

∑
n∈�+1/2

X∗π
j z−j−1/2−H0 , (11)

then we have the modes Xπ (z) and X∗π (z) fulfil the free Fermion anti-commutation
relations of a complex Clifford algebra:

{Xπ
i , Xπ

j } = 0, {X∗π
i , X∗π

j } = 0, {Xπ
i , X∗π

j } = δi+j,0,

where {·, ·} signifies an anti-commutator.

603

https://doi.org/10.1017/S0017089518000381 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000381


NA WANG AND CHUANZHONG LI

3. Schur function, vertex operator and KP hierarchy. Let �[x] = �[x1, x2, . . .] be
the polynomial ring of infinitely many variables. Although the number of variables is
infinite, each polynomial itself is a finite sum of monomials, so involves only finitely
many of the variables. Bosons are operators {an}n∈�,n�=0 satisfying relations (1). The
representation of Bosons on �[x] is an = ∂

∂xn
, a−n = nxn for n > 0. Denote ∂

∂xn
by ∂n.

Define

exp

⎛
⎝∑

m≥1

xmkm

⎞
⎠ =

∑
n≥0

P(n)kn, exp

⎛
⎝∑

m≥1

∂m

m
km

⎞
⎠ =

∑
n≥0

Q(n)kn (12)

when i < 0, we set P(i) = 0, Q(i) = 0. For any m, P(m) is a polynomial of variables
x1, x2, . . . , xm, P(m) = P(m)(x1, x2, . . . , xm). In fact, Replacing xn with the power sum
symmetric function pn, we get P(n) = S(n), where S(n) is the Schur polynomial of Young
diagram (n). Let x = (x1, x2, · · · ) and xn = pn(x̃1, x̃2, . . .). Therefore, for any Young
diagram λ = (λ1, λ2, . . . , λl),

Pλ(x) = Sλ(x̃) = det(hλi−i+j(x̃))1≤i,j≤l, (13)

where hn(x̃) is the nth complete symmetric function, i.e.,

hn(x̃) =
∑

i1≤···≤in

x̃i1 · · · x̃in .

In the following, we do not distinguish Young diagram λ, Pλ and Sλ. The actions
of Pλ and Qλ on Young diagram μ are defined to be [11, 12]

Pλ · μ := λ · μ, Qλ · μ := μ/λ, (14)

where the multiplication λ · μ satisfies the Littlewood–Richardson rule.
Introduce the vertex operators

V±(k) =
∑
n∈�

V±
n kn = exp

(
±

∞∑
n=1

xnkn

)
exp

(
∓

∞∑
n=1

∂n

n
k−n

)
. (15)

The operator X+
n is a raising operators of the Schur function, i.e.,

Sλ(x̃) = Pλ(x) = V+
λ1

V+
λ2

· · · V+
λl

· 1 (16)

for a partition λ = (λ1, λ2, . . . , λl).
By Boson–Fermion correspondence, there are three vector spaces which are

isomorphic to each other, the polynomial ring �[x] = �[x1, x2, . . .] of infinitely many
variables x = (x1, x2, . . .) which is called the Bosonic Fock space, the charge zero part
of the Fermionic Fock space F which is the vector space based by the set of Maya
diagrams, and the vector space Y based by the set of Young diagrams. Therefore, a
Maya diagram |u〉 can be written as

|u〉 = |λ, n〉 = |Pλ, n〉,

where n is the charge of |u〉. In special case, if the charge n = 0, we also write the Maya
diagram |u〉 as |λ〉.
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Let f (z, x) be a function in space �[z, z−1, x1, x2, . . .]. Define operators

eK f (z, x) := zf (z, x), kH0 f (z, x) := f (kz, x). (17)

Define the generating functions [4]

X(k) =
∑

j∈�+ 1
2

Xjk−j− 1
2 = V+(k)eKkH0 , (18)

X∗(k) =
∑

j∈�+ 1
2

X∗
j k−j− 1

2 = V−(k)eKkH0 . (19)

It can be checked that

{Xi, Xj} = 0, {X∗
i , X∗

j } = 0, {Xi, X∗
j } = δi+j,0. (20)

DEFINITION 3.1. For an unknown function τ = τ (x), the bilinear equation

∑
j∈�+ 1

2

X∗
j τ ⊗ X−jτ = 0 (21)

is called the KP hierarchy.

4. π -type Boson–Fermion correspondence. We begin this section by recalling the
definition of Maya diagram. Let an increasing sequence of half-integers [4]

u = {uj}j≥1, with u1 < u2 < u3 < . . . ,

satisfy uj+1 = uj + 1 for all sufficiently large j. Putting a black stone on the position uj

for all j and a white stone on every other half-integer position, we get a Maya diagram
and denote it by |u〉. Specially, the Maya diagram |1/2, 3/2, 5/2, . . .〉 is denoted by
|vac〉.

Fermions ψj, ψ
∗
j , j ∈ 1

2 + � are operators satisfying

{ψi, ψj} = 0, {ψ∗
i , ψ∗

j } = 0, {ψi, ψ
∗
j } = δi+j,0.

The actions of Fermions ψj, ψ
∗
j on Maya diagrams are determined by

ψj|u〉 =
{

(−1)i−1| . . . , ui−1, ui+1, . . .〉 if ui = −j for some i,
0 otherwise,

(22)

ψ∗
j |u〉 =

{
(−1)i| . . . , ui, j, ui+1, . . .〉 if ui < j < ui+1 for some i,
0 otherwise.

(23)

The generating functions of Fermions are

ψ(k) =
∑

j∈�+1/2

ψjk−j−1/2, ψ∗(k) =
∑

j∈�+1/2

ψ∗
j k−j−1/2.
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The normal order is defined as usual. Let

Hn =
∑

j∈�+1/2

: ψ−jψ
∗
j+n : and H(x) =

∞∑
n=1

xnHn. (24)

For Maya diagrams |u〉 and |v〉, the pair 〈v|u〉 is defined by the formula

〈v|u〉 = δv1+u1,0δv2+u2,0 . . . .

The Boson–Fermion correspondence is the correspondence

	 : F → �[z, z−1, x1, x2, x3, . . .]

given by

|u〉 �→ 	(|u〉) :=
∑
l∈�

〈l| exp(H(x))|u〉,

which is an isomorphism of vector spaces, where |l〉 is the Maya diagram obtained
from |vac〉 by sliding the diagram bodily l steps to the right (that is, −l steps to the left
if l < 0), and the operator H(x) is defined in (24).

Under Boson–Fermion correspondence, the Fermions ψj, ψ
∗
j , respectively,

correspond to the operators Xj, X∗
j defined in equations (18) and (19).

Let λ be a Young diagram and λ′ be its conjugate. The Frobenius notation λ =
(n1, . . . , nl|m1, . . . , ml) describes the Young diagram λ by ni = λi − i, mi = λ′

i − i, where
l is the number of the boxes in the NW-SE diagonal line of λ.

The Boson–Fermion correspondence tells us that the basis vector

ψn1 · · · ψnl ψ
∗
m1

· · · ψ∗
ml

|vac〉 for n1 < · · · < nl < 0 and m1 < · · · < ml < 0

of Fermionic Fock space of charge zero goes over into the Schur function Sλ

multiplied by (−1)
∑l

i=1(mi+1/2)+l(l−1)/2, where λ = (−n1 − 1/2, . . . ,−nl − 1/2| − m1 −
1/2, . . . ,−ml − 1/2). Under the correspondence between Young diagrams and Maya
diagrams, we can also write Sλ as

Sλ(x) = 〈vac|eH(x)|λ〉. (25)

In the following, we will define π -type Boson–Fermion correspondence, from
which we will get π -type symmetric functions. Define

L⊥(z) = exp

⎛
⎝−

∑
n≥1

Hn

n
zn

⎞
⎠ , (26)

which corresponds to L⊥(z) defined in Section 2 by Boson–Fermion correspondence,
that is why we use the same notation.

According to the definition of operators Pλ(x) in equations (12) and (13), The
operator Pλ(Hn) is defined by replacing xi in Pλ(x) with 1

i Hin, which is a plethysm in
fact. For example, P(2)(x) = 1

2 x2
1 + x2, then P(2)(Hn) = 1

2 H2
n + 1

2 H2n.
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Define

L⊥
π (z) = exp

(
−

∞∑
n=1

zn

n
Pπ (Hn)

)
, (27)

where π is a Young diagram. In special case, if π = ∅, the operator L⊥
π (z) = 1; if

π = (0), the operator L⊥
π (z) = 1 − z and if π = (1), the operator L⊥

π (z) = L⊥(z). When
z = 1, we denote L⊥

π (z) by L⊥
π .

DEFINITION 4.1. Define π -type Fermions by

ψπ
j := L⊥

π ψj(L⊥
π )−1, (28)

ψ∗π
j := L⊥

π ψ∗
j (L⊥

π )−1. (29)

It is easy to check that the π -type Fermions satisfy

{ψπ
i , ψπ

j } = 0, {ψ∗π
i , ψ∗π

j } = 0, {ψπ
i , ψ∗π

j } = δi+j,0.

PROPOSITION 4.2. Under Boson–Fermion correspondence, π -type Fermions ψπ
j , ψ∗π

j
correspond to Xπ

j , X∗π
j defined in Theorem 2.1, respectively. Therefore, the conclusion in

Theorem 2.1 holds naturally.

Proof. Under Boson–Fermion correspondence, the operator Hn, n > 0
corresponds to ∂n, then L⊥

π (z) corresponds to

exp

(
−

∞∑
n=1

zn

n
Pπ (∂n)

)
,

which is the same as L⊥
π (z) defined in Section 2. In appendix A of [10], they have proved

that

L⊥
π (z)M(w) = M(w)

∏
k≥0

L⊥
π/(k)(zw

K ),

L⊥
π (z)L(w) = L(w)

∏
k≥0

L⊥
π/(12k)(zw

2k)M⊥
π/(12k+1)(zw

2k+1),

where

M(z) = exp

( ∞∑
n=1

xnzn

)

appeared in X(z) and L(z) = (M(z))−1 appeared in X∗(z), and we know that
Fermions ψj and ψ∗

j correspond to Xj and X∗
j under Boson–Fermion correspondence,

respectively. Then we obtain the conclusion. �
In the following, we will generalize the Boson–Fermion correspondence to π -

type, from which we can calculate π -type symmetric functions. It turns out that
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the classical Boson–Fermion correspondence is the special case π = ∅ of the π -type
Boson–Fermion correspondence.

DEFINITION 4.3. Let F denote the Fermionic Fock space based by the set of Maya
diagrams, define

	π : F → �[z, z−1, x1, x2, . . .] (30)

by

	π (|u〉) =
∑
l∈�

zl〈l|eH(x)L⊥
π |u〉, (31)

where |u〉 is a Maya diagram.

PROPOSITION 4.4. The correspondence 	π : F → �[z, z−1, x1, x2, . . .] defined above
is an isomorphism of vector spaces.

Under the correspondence between Maya diagrams and Young diagrams, we know
that the charge zero Maya diagram |u〉 corresponds to a Young diagram denoted by λ,
and we denote |u〉 by |λ〉, then we get

PROPOSITION 4.5. For a Maya diagram |λ〉 which corresponds to the Young diagram
λ, the π -type symmetric functions Sπ

λ (x) can be obtained from

Sπ
λ (x) = 〈vac|eH(x)L⊥

π |λ〉. (32)

From the relations between ψπ
j , ψ∗π

j and ψj, ψ
∗
j , we have

PROPOSITION 4.6. If Young diagram λ = (−n1 − 1/2, . . . ,−nl − 1/2| − m1 −
1/2, . . . ,−ml − 1/2) in the Frobenius notation, then Sπ

λ (x) can be obtained from

〈vac|eH(x)ψπ
n1

· · ·ψπ
nl
ψ∗π

m1
· · · ψ∗π

ml
|vac〉 for n1 < · · · < nl < 0 and m1 < · · · < ml < 0

by multiplying (−1)
∑l

i=1(mi+1/2)+l(l−1)/2.

Take an example, we will calculate S(2) in two ways. We will need the actions of
Hn on Maya diagrams. From the actions of Fermions on Maya diagrams, we get the
action of H1 on Maya diagram, that is, H1 sending a Maya diagram |u〉 to the sum
over all Maya diagrams who can be obtained from |u〉 by moving a black stone to the
right. Define

exp(
∑
m≥1

Hm

m
km) =

∑
n≥0

Q(n)kn, exp(
∑
m≥1

H−m

m
km) =

∑
n≥0

P(n)kn. (33)

The action of Q(m) on Maya diagram is that Q(m) sending a Maya diagram |u〉 to the
sum over all Maya diagrams who can be obtained from |u〉 by moving black stones
n times to the right and no one black stone is moved twice. and Q(1m) sends a Maya
diagram |u〉 to the sum over all Maya diagrams who can be obtained from |u〉 by
moving black stones n times to the right and no two adjacent black stones move at
the same time [12, 13]. The actions of Pλ on Maya diagram is similar to that of Qλ on
Maya diagram but shifting the black stones to the left. Then the action of Hm on a
Maya diagram can be obtained from the actions of Pn, Qn on this Maya diagram, and
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we get that the action of Hm on Maya diagram is moving black stones |m| times, to the
right if m > 0 and to the left if m < 0. Then we can calculate S(2) . The first way, since

ψ
(2)
−3/2 = ψ−3/2 − ψ1/2 − ψ−1/2Q + ψ3/2Q + · · · ,

ψ
∗(2)
−1/2 = ψ∗

−1/2 + ψ∗
1/2Q + ψ∗

3/2Q2 + · · · ,

then

S(2) = 〈vac|eH(x)ψ
(2)
−3/2ψ

∗(2)
−1/2|vac〉,

= 〈vac|eH(x)(ψ−3/2 − ψ1/2)ψ∗
−1/2|vac〉,

= S − S0 = 1
2

x2
1 + x2 − 1,

and in the second way, we know that for Maya diagram

|γ 〉 =
1
2

3
2

5
2

7
2

9
2

· · ·
− 1

2− 3
2− 5

2− 7
2

· · ·

we have that Hmγ = 0 when m > 2. Then,

S(2) = 〈vac|eH(x)e− ∑∞
n=1

1
2n (H2

n +H2n)ψ−3/2ψ−1/2|vac〉,
= 〈vac|eH(x)(1 − 1

2
(H2

1 + H2))|γ 〉,
= 〈vac|eH(x)(1 − Q2)|γ 〉,
= S − S0 = 1

2
x2

1 + x2 − 1.

5. π -type KP hierarchy. In this section, we will define the π -type KP hierarchy
and discuss its tau functions.

DEFINITION 5.1. For an unknown charge zero state |u〉 in F , the bilinear equation
∑

j∈�+ 1
2

ψ∗π
j |u〉 ⊗ ψπ

−j|u〉 = 0 (34)

is called the π -type KP hierarchy.

Under Boson–Fermion correspondence, this definition can be written into

DEFINITION 5.2. For an unknown function τ = τ (x), the bilinear equation
∑

j∈�+ 1
2

X∗π
j τ ⊗ Xπ

−jτ = 0 (35)

is called the π -type KP hierarchy.

We write Vπ (z) = ∑
n∈� Vπ

n zn and V∗
π (z) = ∑

n∈� V∗π
n zn. It can be check that

Vπ
n and V∗π

m satisfy Vπ
n Vπ

m + Vπ
m−1Vπ

n+1 = 0, V∗π
n V∗π

m + V∗π
m−1V∗π

n+1 = 0 and Vπ
n V∗π

m +
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V∗π
m+1Vπ

n−1 = δn+m,0. From the relations between Vπ
n , V∗π

n and Xπ
n , X∗π

n , equation (35)
can be rewritten into

∑
n+m=−1

V∗π
n τ ⊗ Vπ

mτ = 0. (36)

Suppose τ = τ (x) is a solution of π -type KP hierarchy (36), then Vπ (α)τ solves
(36) again with an arbitrary constant α ∈ �×.

In the following, we will discuss the differential equations in the π -type KP
hierarchy and their solutions. From the relations between Fermions and π -type
Fermions, equation (34) can be rewritten into

∑
j∈�+ 1

2

L⊥
π ψ∗

j (L⊥
π )−1τ ⊗ L⊥

π ψ−j(L⊥
π )−1τ = 0.

Multiplied by (L⊥
π )−1 ⊗ (L⊥

π )−1, the equation above turns into
∑

j∈�+ 1
2

ψ∗
j M⊥

π τ ⊗ ψ−jM⊥
π τ = 0. (37)

From this, we can obtain

PROPOSITION 5.3. If τ is a solution of the π -type KP hierarchy, then M⊥
π τ is a solution

of KP hierarchy. If τ is a solution of KP hierarchy, then L⊥
π τ is a solution of π -type KP

hierarchy.

From (4), we have

M⊥
π =

∑
n≥0

(S(n)[Sπ ](x))⊥.

From the definition of plethysm, the relation S(n)[Sπ ] = ∑
λ aλ

(n)π Sλ holds for |λ| =
n · |π |, and it has been proved that aλ

(n)π are non-negative integers [2]. Then,

M⊥
π =

∑
n≥0

∑
λ

aλ
(n)π (Sλ)⊥ =

∑
n≥0

∑
λ

aλ
(n)π Qλ.

The action of Pλ on Maya diagram is clearly known [13]. Let λ = (λ1, λ2, . . . , λk) be a
Young diagram. The action of Pλ on Maya diagram |u〉 includes k steps corresponding
to k in λ. The first step is P(λ1) acting on |u〉 which we have introduced above, and
the position, where the black stone is moved, is labeled by 1; the second step is P(λ2)

acting on all the Maya diagrams obtained from P(λ1) · |u〉 and the position, where the
black stone is moved, is labelled by 2; continuing until the kth step, the operator P(λk)

acts on all the Maya diagrams obtained from P(λk−1) · · · P(λ2)P(λ1) · |u〉, and the position,
where the black stone is moved, is labelled by k. We define Pλ sending Maya diagram
|u〉 to the sum over all Maya diagrams obtained from k steps above and satisfied the
following situation: From right to left, one looks at the first l entries in the list (for any
l between 1 and λ1 + λ2 + · · · + λk), each integer p between 1 and k − 1 occurs at least
as many times as the next integer p + 1.

Choose τ in equation (37) in the form of linear combination of all charge zero
Maya diagrams τ = ∑

|u〉 c(|u〉)|u〉, where the coefficient c(|u〉) ∈ �. Let |μ〉 be a Maya
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diagram of charge 1 and |ν〉 of charge −1, the coefficient of |μ〉 ⊗ |ν〉 in equation (37) is
zero. From this, we will get many differential equations whose solutions include π -type
symmetric functions.

PROPOSITION 5.4. In π -type KP hierarchy, the tau function τ is a solution if and only
if the coefficients c(|u〉) in τ = ∑

|u〉 c(|u〉)|u〉 satisfy Plüker relations, i.e., the following
equation holds for any |μ〉 and |ν〉 whose charges are 1 and −1, respectively,

∑
j

(−1)j
∑
(n),λ

∑
(m),λ′

aλ
(n)π aλ′

(m)πc(Pλ|μ − μj〉)c(Pλ′ |ν + μj〉) = 0, (38)

here, Maya diagrams are signed Maya diagrams whose definition can be found in [4].

When π = ∅, equation (38) turns into
∑

j

(−1)jc(|μ − μj〉)c(|ν + μj〉) = 0, (39)

which is the Plüker relations of KP hierarchy (equation (10.3) in [4]).
When π = (1) = , equation (38) turns into

∑
j

(−1)j
∑

n,m≥0

c(Pn|μ − μj〉)c(Pm|ν + μj〉) = 0, (40)

which in fact is the same as (39).
When π = (2) = , since aλ

(n)(2) = 1 if and only if λ is an even partition (λi are
even numbers) of 2n, otherwise aλ

(n)(2) = 0, then equation (38) turns into

∑
j

(−1)j
∑

λ,λ′even

c(Pλ|μ − μj〉)c(Pλ′ |ν + μj〉) = 0. (41)

In special case, let

μ =
1
2

3
2

5
2

7
2

9
2

· · ·
− 1

2− 3
2− 5

2− 7
2

· · ·
(42)

and

ν =
1
2

3
2

5
2

7
2

9
2

· · ·
− 1

2− 3
2− 5

2− 7
2

· · ·
(43)

equation (41) equals
∑

λ,λ′even

(c(λ)c(λ′ · ) − c(λ · )c(λ′ · ) + c(λ · )c(λ′ · )) = 0, (44)

where λ · μ = ∑
ν Nν

λμν, Nν
λμ ∈ �≥0 satisfies the Littlewood–Richardson rule.

Replacing c(λ) by Qλτ , we get the differential equation
∑

λ,λ′even

(Qλτ · Q
λ′ · τ − Qλ· τ · Q

λ′ · τ + Qλ· τ · Q
λ′ · τ ) = 0. (45)
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We can similarly write the differential equations in π -type KP hierarchy, i.e., replacing
c(λ) by Qλτ in (38), therefore,

PROPOSITION 5.5. The differential equations in the π -type KP hierarchy are
∑

j

(−1)j
∑
(n),λ

∑
(m),λ′

aλ
(n)π aλ′

(m)π QPλ|μ−μj〉τ · QPλ′ |ν+μj〉τ = 0, (46)

where |μ〉 and |ν〉 are two Maya diagrams whose charges are 1 and −1, respectively.
Choose |μ〉 and |ν〉 as before, we get

∑
(n),λ

∑
(m),λ′

aλ
(n)π aλ′

(m)π (Qλτ · Q
λ′ · τ − Qλ· τ · Q

λ′ · τ + Qλ· τ · Q
λ′ · τ ) = 0. (47)

The solutions of these equations is known from the discussions before. When
π = ∅, equation (47) turns into

τ · Q τ − Q τ · Q τ + Q τ · Q τ = 0,

which is the KP equation

3
4

∂2u
∂x2

2

= ∂

∂x

(
∂u
∂x3

− 3
2

u
∂u
∂x

− 1
4

∂3u
∂x3

)
.

Then we have the following remark.

REMARK 5.6. The π -type KP hierarchy is quite different from other types of
classical KP systems from the point of different types of Lie algbras (like BKP, CKP
and so on [1, 4]). The relation between the tau functions of BKP, CKP and so on and
the tau function of the classical KP hierarchy is more complicated than the relation
between the tau function of the π -type KP hierarchy and the tau function of the
classical KP hierarchy as mentioned in Proposition 5.3.
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