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1.  Happy Numbers
The happy function  of each positive integer  is defined to be the sum

of the squares of the decimal digits of . For example,  and
. It is well known that for any , there

exists  such that , where  is the -fold
composition of . In addition, if  and  for some ,
then  is called a happy number. Moreover, we can generalise this concept
to an -happy function  for  and  by defining

S x
x S (2) = 4

S (123) = 12 + 22 + 32 = 14 x ∈ �
n ∈ � S(n) (x) ∈ {1,  4} S(n) n

S x ∈ � S(n) (x) = 1 n ∈ �
x
(e, b) Se,b e, b ∈ � e, b ≥ 2

Se,b (x) = ae
k + ae

k − 1 +  …  + ae
0,

if  is the -adic expansion of
 with  and  for all .

Then a similar result still holds: there exists a finite set  such that for
any , there exists  such that . For example, if

, then ; and if , then

x = (akak −1… a0)b = akbk + ak −1bk −1 +  …  + a0 b
x ak ≠ 0 ai ∈ {0,  1,  2,  … , b − 1} i = 0,  1,  … , k

A ⊆ �
x ∈ � n ∈ � S(n)

e,b (x) ∈ A
(e, b) = (2,  10) A = {1,  4} (e, b) = (3,  10)

A = {1,  55,  136,  153,  160,  370,  371,  407,  919} .
For more details about this, see for instance in the articles by El-Sedy and
Siksek [1], Grundman and Teeple [2], and the book by Guy [3].

On one hand, we may focus on the study of long strings of consecutive
integers which are happy or -happy as given by El-Sedy and Siksek
[1], Pan [4], Zhou and Cai [5], Gilmer [6], Styer [7], and Chase [8]. On the
other hand, we may consider generalisations of the concept of -happy
functions as in the work of Chase [8], Grundman [9], Swart et al. [10],
Noppakaew, Phoopha, and Pongsriiam [11], and Subwattanachai and
Pongsriiam [12]. In this article, we focus on the latter and continue the study
from those articles [11, 12]. Let us consider the following functions.

(e, b)

(e, b)

Definition 1: (The sum of factorials of digits)
Let  and let  be defined byb ≥ 2 f b : � → �

f b (x) = ak! + ak − 1! +  …  + a0!

if  is the -adic representation of  with .x = (akak − 1… a0)b b x ak ≠ 0

Definition 2: (A power of sums of digits) 
Let  and let  be defined bye, b ≥ 2 ge,b : � → �

ge,b (x) = (ak + ak − 1 +  …  + a0)e

if  is the -adic representation of  with .x = (akak − 1… a0)b b x ak ≠ 0
The functions  and similar variations are natural examples of

new digit maps falling outside the scope of Chase's definition and other
f b, ge,b,
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36 THE MATHEMATICAL GAZETTE

articles on digit maps, yet similar results still hold. That is, if  is such a
function, then we can explicitly determine a finite set  such that for
every , there exists  such that . In addition, our
results can be interpreted as solutions to certain Diophantine equations
which explain some popular mathematical curiosities.

f
A ⊆ �

x ∈ � n ∈ � f (n) (x) ∈ A

 
2.  Main results

Before proceeding further, we emphasise that throughout this Article, if
we write a representation of a number without specifying a base, then it is
always written in base 10. In this section, we first show the calculation
related to  and . After that we consider a similar function and give some
calculations in less details. Our results are as follows.

f b ge,b

Lemma 1: Let  be an integer greater than 1. Then there exists an integer
 such that

b
M = Mb ≥ 1

(k + 1) (b − 1)! < bk for all  k ≥ M.
In particular, if , then we can choose .b = 10 Mb = 7

Proof: By using a usual method in calculus, one can show that

as . So there is an integer  such that if , then  is

greater than . This proves the first part. For the second part, we
prove by induction that

bk

k + 1
→ ∞

k → ∞ M ≥ 1 k ≥ M
bk

k + 1
(b − 1)!

(k + 1) 9! < 10k for all  k ≥ 7. (1)
It is easy to see that (1) holds when . Suppose that  and (1)
holds for . Then

k = 7 k ≥ 7
k

(k + 2) 9! < (10k + 10) 9! = 10 (k + 1) 9! < 10k + 1.
Therefore (1) is verified and the proof is complete.

Remark 1: By a similar method as in the proof of Lemma 1 for ,
we can take  as follows: , , , , ,

  and .

2 ≤ b ≤ 9
Mb M2 = 2 M3 = 2 M4 = 3 M5 = 3 M6 = 4

M7 = 5, M8 = 5 M9 = 6

Theorem 1: Let  and  be integers as in Lemma 1. Thenb M

f b (x) < x for all  x ≥ bM. (2)
In particular,  for all .f 10 (x) < x x ≥ 107

Proof: Let . Then  where ,  and
 for all . By Lemma 1, we obtain

x ≥ bM x = (akak − 1… a0)b k ≥ M ak ≠ 0
0 ≤ ai ≤ b − 1 i = 0,  1,  … , k

f b (x) = ak! + ak −1! +  …  + a0! ≤ (k + 1)(b − 1)! < bk ≤ akb
k ≤ x.

This proves (2). The second part follows from (2) and Lemma 1.
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Remark 2: By Remark 1 and Theorem 1, we see that  for all
,  for all ,  for all ,  for

all ,  for all ,  for all ,
for all  and  for all .

f 2 (x) < x
x ≥ 22 f 3 (x) < x x ≥ 32 f 4 (x) < x x ≥ 43 f 5 (x) < x

x ≥ 53 f 6 (x) < x x ≥ 64 f 7 (x) < x x ≥ 75 f 8 (x) < x
x ≥ 85 f 9 (x) < x x ≥ 96

 To obtain a finite set  satisfying , we now only need
to recall Theorem 1.2 of Noppakaew, Phoopha and Pongsriiam [11].
Consider the following two conditions for a function :

A ⊆ � f (n)
b (x) ∈ A

f : � → �

(A) There exists  such that  for all .Nf ∈ � f (x) < x x ≥ Nf

(B) For each , the sequence  converges to a fixed point or
eventually enters into a cycle. In addition, the number of all such fixed
points and cycles is finite.

x ∈ � (f (n) (x))n ≥ 1

Then we have the following results.
Theorem 2: (Noppakaew, Phoopha, and Pongsriiam [11]) If
satisfies the condition (A), then  satisfies the condition (B).

f : � → �
f

Theorem 3: Let  be an integer. Then there exists a finite set
 such that for every , there is an integer  such

that . In particular, if , then we can take 

b ≥ 2
A = Ab ⊆ � x ∈ � n ≥ 1

f (n)
b (x) ∈ A b = 10

A = {1,  2,  145,  40585,  169,  871,  872} .
In fact  are the fixed points of , and 169, 871, 872 are
the elements of distinct cycles arising from the iteration  for any

.

1,  2,  145,  40585 f b
f (n)

b (x)
n, x ∈ �

Proof: By Theorems 1 and 2, we see that  satisfies the condition (B). Then
we choose  to be the set of all elements in the cycles and fixed points of

, so that  is a finite subset of . Let  be given. We know that
, so if  converges to a fixed point  as ,

then it means that there is  such that  for all . So in
particular, . Moreover, if  eventually enters into a cycle as

, then  for some . This proves the first part. For the
second part, let , and let  be the set of fixed points of  and
the set of all cycles (which are not fixed points) occurring in the iteration

 for any . We assert that

f b
Ab

f b Ab � x ∈ �
f b : � → � f (n)

b (x) y ∈ � n → ∞
N ∈ � f (n)

b (x) = y n ≥ N
f (N)

b (x) ∈ Ab f (n)
b (x)

n → ∞ f (n)
b (x) ∈ Ab n
b = 10 F10 f 10 C10

f (n)
10 (x) n, x ∈ �

F10 = {1,  2,  145,  40585} and

C10 = {(169,  363601,  1454) , (871,  45361) , (872,  45362)} .
It is easy to check that if , then .
Suppose  and . By Theorem 1, we obtain . So we
only need to check the integers  in  whether or not they satisfy

. After a computation in a computer, we find that  if,
and only if, . This gives the set . Similarly, to
determine the set , it is enough to look for the cycles occurring in the
sequence  where  runs over the integers in . After a
straightforward verification, we obtain  as asserted.

x ∈ {1,  2,  145,  40585} f 10 (x) = x
x ∈ � f 10 (x) = x x < 107

x [1,  107)
f 10 (x) = x f 10 (x) = x

x ∈ {1,  2,  145,  40585} F10
C10

(f (n) (x)) x [1,  107)
C10
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Therefore we can take  to be the set consisting of 1, 2, 145, 40585,
169, 363601, 1454, 871, 45361, 872, 45362. But 169, 363601, 1454 are in
the same cycle, so we need only one of them. For instance, if ,
then ,  and . Similarly,
we can choose just one of 871, 45361 and one of 872, 45362. Therefore we
can take  to be the set consisting of 1, 2, 145, 40585, 169, 871, 872 as
required.  This completes the proof.

A

f (n)
10 (x) = 169

f (n + 1)
10 (x) = 363601 f (n + 2)

10 (x) = 1454 f (n + 3)
10 = 169

A

Remark 3: By a similar method as in Theorem 3, we obtain for
the set  of fixed points of  and the set  of cycles in the iteration
for any  as follows. For , we only need to run a computation
in a computer for  in  to obtain that  and .
Similarly, for , we run computations, for

, , , , ,
,  respectively, to obtain

2 ≤ b ≤ 9
Fb f b Cb f (n)

b (x)
n, x ∈ � b = 2

x [1,  22) F2 = {1,  2} C2 = ∅
b = 3,  4,  5,  6,  7,  8,  9

x ∈ [1,  32) x ∈ [1,  43) x ∈ [1,  53) x ∈ [1,  64) x ∈ [1,  75)
x ∈ [1,  85) x ∈ [1,  96)

F3 = {1,  2} , C3 = ∅,
F4 = {1,  2,  7} , C4 = {(3,  6)} ,
F5 = {1,  2,  49} , C5 = ∅,
F6 = {1,  2,  25,  26} , C6 = ∅,
F7 = {1,  2} , C7 = {(38,  126,  27,  726,  243,  864)} ,
F8 = {1,  2} , C8 = {(3,  6,  720,  10) , (125,  5161)} ,
F9 = {1,  2,  41282} ,

and  consists of exactly one cycle, namely,C9

(1450, 80642, 251, 40327, 10803, 5173, 15121, 1445, 45481, 41094, 735,
723, 80646, 969, 41043).

The calculation for  is similar to that for , but the well-known Euler
constant will appear in the proof. So to avoid confusion, we will write

 to denote the base of the natural logarithm, while  is reserved
for the integers appearing in the definition of .

ge,b f b

E = 2.718… e
ge,b

Lemma 2: We have  for all ,
for all ,  for  and
for . In general, if  is an integer, then

81 (k + 1)2 < 10k k ≥ 4 729 (k + 1)3 < 10k

k ≥ 6 6561 (k + 1)4 < 10k k ≥ 8 59049 (k + 1)5 < 10k

k ≥ 10 e ≥ 2

9e (k + 1)e < 10k for all  k ≥ e2. (3)

Proof: The first four inequalities can be proved straightforwardly by
induction, so we leave the details to the reader. For (3), let  be an
integer. Observe that it can be proved by induction that
for all , so in particular . This implies that (3) holds
when . Next, suppose that  and (3) holds for . Recall that the
sequence  is strictly increasing and converges to

, the base of the natural logarithm. From this and the fact that

e ≥ 2
9 (n2 + 1) < 10n

n ≥ 2 9 (e2 + 1) < 10e

k = e2 k ≥ e2 k
(an) = ((1 + 1

n)n)
E = 2.718…
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, we obtaink ≥ e2

(k + 2)e

(k + 1)e = (1 +
1

k + 1)e

≤ (1 +
1

e2 + 1)e

< (1 +
1

e2 + 1)e2 + 1

= ae2 + 1 ≤ sup {an | n ∈ �} = lim
n → ∞

an = E < 10.

Then , by the induction hypothesis.
So the proof is complete.

9e (k + 2)e < 9e (10) (k + 1)e < 10k + 1

Lemma 2 will be used in the calculation in some examples. For a
general result, we have the following theorem.

Theorem 4: Let  be integers. Then the following statements hold.e, b ≥ 2
(i) There exists an integer  such that

 for all .
M = Me,b ≥ 1

(k + 1)e (b − 1)e < bk k ≥ M
(ii)  for all .ge,b (x) < x x ≥ bM

(iii)  satisfies the condition (B) and there exists a finite set
such that for every , there is  such that .
ge,b A = Ae,b ⊆ �

x ∈ � n ∈ � g(n)
e,b (x) ∈ A

(iv) Let  and  be the sets of fixed points of  and the cycles
arising in the sequence  for any . Then we have

Fe,b Ce,b ge,b
(g(n)

e,b (x))n ≥ 1 x ∈ �

F2,10 = {1,  81} , C2,10 = {(169,  256)} ,

F3,10 = {1,  512,  4913,  5832,  17576,  19683}, C3,10 = {(6859,  21952)} ,

F4,10 = {1,  2401,  234256,  390625,  614656,  1679616},

C4,10 = {(104976,  531441)} ,

F5,10 = {1,  17210368,  52521875,  60466176,  205962976},
and  consists of the following cycles:C5,10

(16807, 5153632, 9765625, 102400000), (6436343, 20511149), 
(28629151, 45435424).

Proof: Since  are already given, we obtain  as

and so there exists  such that  for all .

This proves (i). Suppose . Then  where ,
 and  for all . Then by (i), we obtain

e, b
bk

(k + 1)e → ∞ k → ∞

M ≥ 1
bk

(k + 1)e > (b − 1)e k ≥ M

x ≥ bM x = (akak − 1… a0)b k ≥ M
ak ≠ 0 0 ≤ ai ≤ b − 1 i = 0,  1, … , k

ge,b = (ak + ak −1 +  …  + a0)
e ≤ ((k + 1)(b − 1))e < bk ≤ akb

k ≤ x.
This proves (ii). Then (iii) follows from (ii), Theorem 2, and exactly the
same argument as in Theorem 3. For (iv), to determine the set  and
for a particular pair of , we only need to apply Lemma 2 and run a

Fe,b Ce,b
(e, b)
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computation on the integers in  as in the proof of Theorem 3. If
 and , we can take . After checking   for  in

the interval , we obtain , . If
 and , we can take . Then running a computation for
 where  and , we obtain

[1, bM)
e = 2 b = 10 Me,b = 4 (g(n)

e,b (x)) x
[1,  104) F2,10 = {1,  81} C2,10 = {(169,  256)}

e = 3 b = 10 Me,b = 6
g(n)

e,b (x) n ∈ � x ∈ [1,  106)
F3,10 = {1,  512,  4913,  5832,  17576,  19683} and  C3,10 = {(6859,  21952)} .

Similarly, if , then we take ; if ,
then we take , After running a computation in a computer, we
obtain , ,  and  as given above. So the proof is complete.

(e, b) = (4,  10) Me,b = 8 (e, b) = (5,  10)
Me,b = 10

F4,10 C4,10 F5,10 C5,10

Observing that , we are interested in
determining all numbers with this property. So we should consider

 if  but there is a
problem with this definition since  is not defined. One way to avoid this is
to skip the zero digit and define  if

 and  are taken from
but without zero. Equivalently, we can temporarily assign the value
and study the following function.

3435 = 33 + 44 + 33 + 55

h (x) = aak
k + aak − 1

k − 1 +  …  + aa0
0 x = (akak − 1… a0)10

00

h (x) = bbm
m + bbm − 1

m − 1 +  …  + bb0
0

x = (akak − 1… a0)10 bm, bm − 1, … , b0 ak, ak − 1, … , a0
00 = 0

Definition 3: Let  be defined by ,
 if  and

h = � ∪ {0} → � ∪ {0} h (0) = 0
h (a) = aa a ∈ {1,  2,  … ,  9}

h (x) = h (ak) + h (ak − 1) +  … +h (a0)
if  and  is the decimal representation of  with

. Equivalently, we can assign  and define  by
x ≥ 10 x = (akak − 1… a0)10 x

ak ≠ 0 00 = 0 h

h (x) = aak
k + aak − 1

k − 1 +  …  aa0
0

for each .x = (akak − 1… a0)10

The calculation for  can be done in the same way as that for  and , so
we skip the details and leave them to the reader. We have the following result.

h f b ge,b

Theorem 5: The following statements hold.
(i)  for all (k + 1) 99< 10k k ≥ 10.

(ii)  for all h (x) < x x ≥ 1010.
(iii)  satisfies the condition (B) and there exists a finite set  such

that for every , there is  such that .
h A ⊆ �

x ∈ � n ∈ � h(n) (x) ∈ A
(iv) The set of fixed points of  is h {1,  3435,  438579088} .

Proof: The statement (i) can be proved by induction. If , then we
write  with  and , and so 

x ≥ 1010

x = (akak − 1… a0)10 k ≥ 10 ak ≠ 0

h (x) ≤ 99 (k + 1) < 10k ≤ ak10k ≤ x.
Then (iii) follows from (ii), Theorem 2, and exactly the same argument as
before. Then running a computation in a computer, we obtain (iv).
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3.  Diophantine equations and proofs of some mathematical curiosities
Many people have enjoyed numerical curiosities which are distributed

via social media worldwide. They can be discovered by anyone and can
definitely be appreciated without proofs or explanations. Nevertheless, we
show that our results can be interpreted as solutions to certain Diophantine
equations and use them to explain or create some curiosities. For example,
the only fixed points of  are 1, 2, 145 and 40585, and so the solutions in
non-negative integers  with  to the Diophantine
equation

f 10
ak, ak − 1, … , a0 ak ≠ 0

ak! + ak − 1! +  …  + a0! = (akak − 1… a0)10

are given by the numbers 1, 2, 145 and 40585.

Corollary: , , ,
and these are the only positive integers with this property. That is, a positive
integer  is the sum of the factorials of all its decimal digits (except the
leading zeros) if, and only if,  or 40585.

1 = 1! 2 = 2! 145 = 1! + 4! + 5! 40585 = 4! + 0! + 5! + 8! + 5!

x
x = 1,  2,  145

Proof: This follows immediately from Theorem 3.

Corollary: 

1 = (1)9 = 1! ,  2 = (2)9 = 2! ,  41282 = (62558)9 = 6! + 2! + 5! + 5! + 8!

and these are the only positive integers with this property. That is, if ,
then  is the sum of factorials of its digits (in base 9) if, and only if, 

x ∈ �
x

x = (1)9 , (2)9 , (62558)9 .

Proof: This follows immediately from Remark 3.

Corollary: We have

1 = 13,  512 = (5 + 1 + 2)3 ,  4913 = (4 + 9 + 1 + 3)3 ,

5832 = (5 + 8 + 3 + 2)3 ,  17576 = (1 + 7 + 5 + 7 + 6)3 ,

19683 = (1 + 9 + 6 + 8 + 3)3 ,
and these are the only positive integers with this property. That is, if ,
then  is the cubes of the sum of its decimal digits if, and only if, 

x ∈ �
x

x = 1,  512,  4913,  5832,  17576 or  19683.
Similarly,

1 = 14, 2401 = (2 + 4 + 0 + 1)4

234256 = (2 + 3 + 4 + 2 + 5 + 6)4, 390625 = (3 + 9 + 0 + 6 + 2 + 5)4

614656 = (6 + 1 + 4 + 6 + 5 + 6)4 , 1679616 = (1 + 6 + 7 + 9 + 6 + 1 + 6)4
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are the only positive integers that are equal to the 4th power of the sum of
their decimal digits;

1 = 15,
17210368 = (1 + 7 + 2 + 1 + 0 + 3 + 6 + 8)5 ,
52521875 = (5 + 2 + 5 + 2 + 1 + 8 + 7 + 5)5 ,
60466176 = (6 + 0 + 4 + 6 + 6 + 1 + 7 + 6)5 ,

205962976 = (2 + 0 + 5 + 9 + 6 + 2 + 9 + 7 + 6)5 ,
are the only positive integers that are equal to the 5th power of the sum of
their decimal digits.

Proof: This follows immediately from Theorem 4.

Corollary: 

1 = 11,  3435 = 33 + 44 + 33 + 55,
438579088 = 44 + 33 + 88 + 55 + 77 + 99 + 88 + 88,

and these are the only positive integers with this property.

Proof: This follows immediately from Theorem 5.

Other known results in the literature can be used to produce similar
relationships too. Here we rewrite the results of Grundman and Teeple [2],
and Hargreaves and Siksek [13].
Corollary: (Grundman and Teeple [2], and Hargreaves and Siksek [13]) We
have
1 = 13,  153 = 13 + 53 + 33,  370 = 33 + 73 + 03,  371 = 33 + 73 + 13,  407 = 43 + 03 + 73,
and these are the only positive integers with this property. That is, if ,
then  is the sum of the cubes of its decimal digits if, and only if, ,
153, 370, 371, 407. Similarly,

x ∈ �
x x = 1

1 = 14,  1634 = 14 + 64 + 34 + 44,  8208 = 84 + 24 + 04 + 84,  9474 = 94 + 44 + 74 + 44,
are the only positive integers that are equal to the sum of the 4th powers of
their decimal digits. In addition,

1 = 15,  4150 = 45 + 15 + 55 + 05,  4151 = 45 + 15 + 55 + 15,
54748 = 55 + 45 + 75 + 45 + 85,  92727 = 95 + 25 + 75 + 25 + 75,
93084 = 95 + 35 + 05 + 85 + 45,  194979 = 15 + 95 + 45 + 95 + 75 + 95

are the only positive integers that are equal to the sum of the 5th powers of
their decimal digits.
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