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Abstract
This study addresses orbit design and optimisation for the situation of satellite interception in which the target
spacecraft is capable of manoeuvring using continuous magnitude restricted thrust. For the purpose of designing
a long-range continuous thrust interception orbit, the orbit motion equations of two satellites with J2 perturbation
are constructed. This problem is assumed to be a typical pursuit-evasion problem in differential game theory; using
boundary constraint conditions and a performance index function that includes time and fuel consumption, the
saddle point solution corresponding to the bilateral optimal is derived, and then this pursuit-evasion problem is
transformed into a two-point boundary value problem. A hybrid optimisation method using a genetic algorithm
(GA) and sequential quadratic programming (SQP) is derived to obtain the optimal control strategy. The proposed
model and algorithm are proved to be feasible for the given simulation cases.

Nomenclature
Abbreviations
AU Unit acceleration
CW Clohessy-Wiltshire
DU Unit distance
GA Genetic algorithm
GA-PSO Genetic algorithm-particle swarm optimisation
NLP Nonlinear programming
PSO Particle swarm optimisation
SA Simulated annealing
SQP Sequential quadratic programming
TU Unit time

Symbols
(ri, ξi, φi, γi, vi, ζi) state variables of spacecraft
(ai, ei, ii, �i, ωi, fi) six orbital elements
Oe − xeyeze inertial coordinate system
Rζi Rφi Rξi Rθi Rii R�i matrix of coordinate transformation
O − xOyOzO orbit coordinate system of spacecraft
μ gravitational coefficient of the earth
ĉ1, ĉ2,ĉ3 coordinate base vector of Oe − xeyeze

J2 perturbation coefficient
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r, θ̂ , h coordinate base vector of O − xOyOzO

g0 standard gravitational acceleration
T value of thrust on spacecraft
Is specific impulses of thrust
ṁ propellant mass flow rate
β angle between thrust vector Tand its projection in O − xOyO plane
α angle between the projection of thrust vector T in O − xOyO plane and velocity vector v
ζ angle between the projection of velocity vector vin plane O − yLzL and axis OyL

γ angle between the velocity vector v and its projection in plane O − yLzL

uE control actions of the pursuer and the target
uP control actions of the pursuer
xE state vector of the target
xP state vector of the pursuer
ẋE state differential vector of the target
ẋP state differential vector of the pursuer
J performance index function
ψ( · ) set of boundary constraints
H Hamiltonian function(
u∗

P, u∗
E

)
saddle point solution

f P() f E() state equations of pursuer and target
� terminal conditions of the system
λE covariates corresponding to f E()
λP covariates corresponding to f P()
kmP weight coefficient of the fuel consumption of the pursuer
kt weight coefficient of interception time
tf interception time
t0 initial time of manoeuvring
TE value of thrust on target
TP value of thrust on pursuer
mE mass of target
mP mass of pursuer
υ covariates corresponding to the boundary constraint conditions
IsP specific impulses of pursuer
u1 ∼ u4 components of uP and uE

λ1 ∼ λ12 components of λP and λE

u(A)

1 u(B)

1 ∼ u(A)

4 u(B)

4 the possible values of u1 ∼ u4

x1 ∼ x12 components of xP and xE

ηi decision variables
ki weight value of J
hsafe safe altitude
ε specified small value
RE Earth radius
g Gravitational acceleration
μ Gravitational constant
ci distance from the set of functions composed of Equations (26), (30) and (34)

1.0 Introduction
Interception of satellite signals has become a contentious topic in aeronautical engineering. Satellite
interception can be split into direct ascent and common orbit types based on the mechanism of launch
(Fig. 1). In terms of energy consumption, the two methods are vastly different: The former requires a
launch vehicle to launch an intercepting weapon near the target satellite, which results in a high level of
energy consumption; the latter, on the other hand, uses satellites, which are light in weight, inexpensive
to manufacture, and have high agility and strong autonomous mobility. Satellite interception technology
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(a) Common orbit interception (b) Direct ascent interception

Figure 1. Two typical intercepting satellite modes.

relies on efficient interception; thus, the orbit design and optimisation method of intercepting satellites
is becoming an essential issue in order to overcome the bottleneck.

Control systems for intercepting satellites with little mobility have been extensively examined in
a large number of studies. It was found that orbital planar motion and motion outside of the orbital
plane can be used to decompose satellite relative motion using the well-known Clohessy-Wiltshire (CW)
equation. With the fuel expense in consideration, they devised a relative orbital control technique that
included three in-plane and one out-of-plane impulsive manoeuvres. An impulsive approach to a near-
orbit rendezvous or interception is simple to conceive or implement. However, as impulsive guidance is
an open-loop control system, its precision generally falls short of the mission’s specifications. Another
more probable real situation is that the interceptor and target satellites can both perform orbital manoeu-
vres with thrusters onboard, hence it is commonly believed that both spacecraft utilise continuous thrust
manoeuvres. Therefore, this topic revolves around finding the best trajectory for a continuous thrust
interception with the target’s manoeuvring.

As shown in Fig. 2 is the overview of literatures on satellite or spacecraft interception orbital opti-
misation. According to the literature, the three most significant categories for this orbital trajectory
optimisation are Nonlinear programming (NLP), Metaheuristics and Hybrid algorithms.

When it comes to the optimisation of space trajectories, gradient-based approaches like NLP appears
to be the most prevalent ways for solving problems about trajectory optimisation. As a result, NLP is
frequently capable of achieving rapid convergence and obtaining extremely precise outcomes. Because
of this, there have been a lot of individual software programs since 1970 (SNOPT, [1] rSQP++, [2]
KNITRO [3]). Gradient-based approaches, on the other hand, require an initial guess at all the system’s
parameters. Analysers must be familiar with the ideal trajectory because all the nodal states and control
values are based on parameters. Poor initial guessing frequently results in the cost function failing to
converge a non-global optimum solution. The gradient-based method’s first guess is a difficult problem
to solve in spacecraft trajectory optimisation. This issue was originally addressed in 1995, [4] which led
to the introduction of metaheuristics, an alternate methodology to address the trajectory optimisation
problems.

Significant progress has been made in the application of getting approximate solutions to spacecraft
trajectory optimisation problems via metaheuristics in recent years. When it comes to solving space-
craft trajectory optimisation challenges, many publications have employed evolutionary algorithms,
which are the most common instances. Such as GA, Particle Swarm Optimisation (PSO) and Genetic
Algorithm-Particle Swarm Optimisation (GA-PSO), etc. are widely used. Shafieenejad [5] proposes an
approach for optimising continuous-thrust orbital transfer trajectories. Abdelkhalik [6] puts forward a
new approach for calculating the ideal orbital transfer trajectory based on a genetic algorithm. In Ref. (7)
PSO is adopted in solving difficulties like finding periodic orbits within the confines of the circular
restricted three-body problem and optimising orbital transfers. Imperialistic Competition Algorithm is
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Figure 2. Overview of literatures on satellite/spacecraft interception orbital optimisation.

utilised to solve low-thrust orbital transfer problems, which included nonlinear dynamic equations in
Ref. (8). Detailed models, aims, methodologies, and solutions for spacecraft trajectory optimisation are
reviewed by Shirazi [9]. Even though evolutionary algorithms appear to be the primary choice for most
spacecraft trajectory optimisation problems because of their availability and ease of implementation.
Metaheuristics are more commonly applied in issues with impulsive models rather than continuous
models, according to Ref. (10).

Hybrid optimisation strategies have become increasingly popular in recent years. Techniques like this
can often yield the best outcomes, especially in real-world scenarios. The use of both metaheuristics and
other techniques in concert is becoming more commonplace. GA and SQP are employed to solve the
general multiple-impulse rendezvous problem in Ref. (11). Vasile [12] offers a novel multi-objective
agent-based approach that combines a number of heuristics to address three distinct issues in space
trajectory design. A hybrid metaheuristic based on GA and simulated annealing (SA) is employed and
outperforms traditional GA and SA in the optimisation of orbital manoeuvres for satellites in Ref. (13).
Sentinella [14] designs and uses a hybrid evolutionary method for spaceship trajectory optimisation that
synergistically uses differential evolution, genetic algorithms and particle swarm optimisation. A new
method based on differential games theory has recently been devised, which naturally treats the intercep-
tion problem as a game of pursuit-evasion in which both sides have movement capabilities. To solve this
challenge in particular, Isaacs [15] first focuses on it and comes up with the saddle solution. A modified
first-order differential dynamic programming technique was used to construct a near-optimal feedback
control for minimax-range pursuit-evasion problems between two constant-thrust spacecraft in Ref. (16).
This paper, on the other hand, assumes that the satellites have a high degree of maneuverability, which
is simply not true. A numerical technique for solving the open-loop trajectory of a three-dimensional
satellite pursuit-evasion interception is presented in Refs (17) and (18), in which each spacecraft has a
limited ability to move. The pursuer’s goal in the interception was to hit the target satellite as quickly as
feasible, while the evader’s goal was to delay that moment as long as possible. Genetic algorithms were
used to initially generate a pre-solution to the saddle-point equilibrium problem. The initial guess was
then used in the semi-analytic procedure to determine the precise trajectory of the pursuit-evasion, and
a global solution for the nonlinear pursuit-evasion games can be found using an intensive random search
and collocation method, but it uses a lot of computing resources. Closed-loop control is more complex

https://doi.org/10.1017/aer.2022.102 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.102


904 Wu et al.

to derive than open-loop control. To synthesise almost optimum feedback controllers for nonlinear two
player pursuit-evasion games, Ghosh [19] uses extremal fields. A surrogate model of a feedback con-
troller was constructed using universal Kriging to generate sub-optimal control based on current states.
The real-time feedback map was constructed by interpolating controls of these open-loop extremals.
Stupik [20] researches satellite interception using the linearised CW equation. The typical solutions
interpolate the sub-optimal feedback solution with various initial conditions. The number of conjugates
to solve drops from 12 to 3. Despite the method is for the open solution, the open loop extremal’s offline
solving ability accordingly improves. Although the authors used Kriging to build a real-time feedback
control, they cannot guarantee optimality intercept trajectory. Gutman [21] proposes a nonlinear vector
guidance law for exo-atmospheric interception using steering jets as the only viable way. Time-to-go is
presented as the solution of a quartic polynomial equation for both ideal and non-ideal interceptors, and
the proposed optimal guidance law could optimise both parties’ capture time. Zhou [22] designs the pur-
suer’s control strategy based on fuzzy comprehensive evaluation and differential game. This is done by
introducing relative state variables and zero effort miss (ZEM) variables into the Lawden equations, and
the orbital pursuit-evasion-defense problem is solved using a hybrid method integrating multi-objective
genetic algorithms, but the satellites are assumed to be highly maneuverable. For two separate spacecraft
tracking instances, Wang [23] develops two reinforcement learning parameter-self-tuning controllers:
tracking a disabled target and a mobile target, and the reinforcement learning is verified to be effective
for achieving desired purposes, but one of the flaws of learning-based algorithms is their reliance on
large samples of data.

However, most aforementioned works assume that either the interceptor always has adequate fuel or
maneuverability during the game or that the target follows a single strategy over the course of the game’s
action. In a real interception procedure, as the target is unwilling to cooperate, the interceptor is unable
to accurately detect the target’s information, and the maneuverability of interceptor should be strictly
regulated. To fill the gap between applications and methodologies, an investigation of the interception
of a target satellite with a continuous magnitude restricted thrust is conducted in this study.

The contributions of this paper can be summarised as follows:

(1) The J2 perturbation is considered in the orbit motion equation of the continuous thrust inter-
ception orbit design, and the mass change of the spacecraft is included. The performance index
function of the zero-sum differential game problem considers that the interception time and fuel
consumption are both optimal.

(2) Based on differential game theory, a hybrid optimisation algorithm is designed with full con-
sideration of target maneuverability, which can effectively improve the efficiency of problem
solving.

The rest of the paper is organised as follows. In the forthcoming section, the orbit motion equation
of two satellites with J2 term perturbation is established by defining state variables. Next, based on the
differential game theory, the corresponding saddle point solution conditions are derived according to the
boundary constraint conditions and the performance index function including time and fuel consump-
tion. Then we introduce the zero miss variables and propose a hybrid algorithm combines GA with SQP
to solve the problem, and the optimal control strategy is obtained consequently. Several numerical sim-
ulations are used to analyse the proposed algorithm. Figure 3 describes the main content and the main
solution process of this paper.

2.0 Transformation between state variables and six elements of orbits
For constant continuous small thrust engine, the control variable is the azimuth angle of thruster nozzle,
in order to solve this problem conveniently, in the orbit coordinate system, a new set of state variables
(ri, ξi, φi, γi, vi, ζi) is defined to describe the motion state of spacecraft, ri, γi, vi, ζi are geocentric distance,
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Figure 3. Main content and the main solution process of this paper.

flight path angle, flight speed, azimuth of spacecraft, respectively, ξi and φi are geographical longitude
and latitude of spacecraft, respectively.

The purpose of defining the state variable is to obtain the real-time change of the control angle of
the engine thruster relative to its own spacecraft, which is more intuitive. If the state variable in inertial
coordinate system is used, only the inertial component of thrust vector can be obtained. The geocen-
tric equatorial inertial coordinate system Oe − xeyeze is established with the geocentric as the coordinate
origin Oe. The right-hand system is composed of xe, ye and ze. Oexe represents the direction which the
North Pole pointing to the earth’s rotation axis, and Oeze represents the direction pointing to the vernal
equinox. The orbit coordinate system of spacecraft (represented by O − xOyOzO) is established with cen-
tre of mass as the coordinate origin (represented by O), in which the direction of the radial vector r is the
axis oxO, the axis ozO is the orbital angular momentum direction, the axis oyO is the direction of θ̂ , and
the three axis constitute the right-hand system. Another coordinate system adopted in our study is the
local horizontal coordinate system O − xLyLzL, and the coordinate origin of O − xLyLzL is the same with
the one of O − xOyOzO; the yL axis points east in the local horizontal plane; the radial vector direction of
Oe pointing to O is the xL-axis; the zL-axis points north in the local horizontal plane.

Figures 4 and 5 are the orbit coordinate system of spacecraft, which respectively described by state
variables (ri, ξi, φi, γi, vi, ζi) and six orbital elements (ai, ei, ii, �i, ωi, fi) in the geocentric equatorial iner-
tial coordinate system Oe − xeyeze. Where, ĉ1, ĉ2 and ĉ3 are the coordinate base vector of Oe − xeyeze,
and r, θ̂ and h are the coordinate base vector of O − xOyOzO, and N is the intersection line between the
orbital plane and the equatorial plane.

According to Fig. 4, the coordinate base vector of O − xOyOzO can be obtained by three times
coordinate transformations, which is given as follows:⎡
⎣ r
θ̂

h

⎤
⎦= rζiRφiRξi

⎡
⎣ ĉ1

ĉ2

ĉ3

⎤
⎦

=
⎡
⎣ cos φi cos ξi cos φi sin ξi sin φi

− sin ζi sin φi cos ξi − cos ζi sin ξi − sin ζi sin φi sin ξi + cos ζi cos ξi sin ζi cos φi

− cos ζi sin φi cos ξi + sin ζi sin ξi − cos ζi sin φi sin ξi − sin ζi cos ξi cos ζi cos φi

⎤
⎦
⎡
⎣ ĉ1

ĉ2

ĉ3

⎤
⎦

(1)
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Figure 4. The orbit coordinate system represented by state variables.

Figure 5. The orbit coordinate system represented by orbital elements.

Similarly, according to Fig. 5, the vector
[

r θ̂ h
]T

can also be obtained by three times coordinate
transformations as follows:

⎡
⎣ r
θ̂

h

⎤
⎦= RθiRiiR�i

⎡
⎣ ĉ1

ĉ2

ĉ3

⎤
⎦

=
⎡
⎣ cos θi cos �i − sin θi cos ii sin �i cos θi sin �i + sin θi cos ii cos �i sin θi sin ii

− sin θi cos �i − cos θi cos ii sin �i − sin θi sin �i + cos θi cos ii cos �i cos θi sin ii

sin ii sin �i − sin ii cos �i cos ii

⎤
⎦
⎡
⎣ ĉ1

ĉ2

ĉ3

⎤
⎦ .

(2)
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Then, RζiRφiRξi = RθiRiiR�i , and the relation of relative angles is given as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos φi cos ξi = cos θi cos �i − sin θi cos ii sin �i

cos φi sin ξi = cos θi sin �i + sin θi cos ii cos �i

sin φi = sin θi sin ii

sin ζi cos φ = cos θi sin ii

cos ζi cos φi = cos ii

(3)

The state variables φi, ξi and ζi can be calculated by Equation (3). For ri and vi, it can be directly
solved by the six elements of orbit as follows:

ri = ai(1 − ei
2)

1 + ei cos θi

, vi =
√

μ

(
2

ri

− 1

ai

)
(4)

And the flight path angle can be obtained from the radial velocity component of the spacecraft:

vri = μ

hi

ei sin fi =
√

μ

pi

ei sin fi =
√

μ

ai

(
1 − e2

i

)ei sin fi = ṙi = vi sin γi (5)

At this point, when the number of six orbits of the spacecraft is given, all the elements in the cor-
responding state variables can be obtained according to the above transformation relationship. If the
state variables are known, the number of six orbitals can also be obtained by the transformation method
mentioned above.

Thus, the orbit motion equation of spacecraft with J2 term can be established as follows: [24]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ̇ = T cos β sin α

mv
+ v cos γ

r
− μ cos γ

vr2
− 3GJ2

4vr4
((3 cos (2φ) − 1) cos γ − 2 sin (2φ) cos ζ sin γ )

ṙ = v sin γ

v̇ = T cos α cos β

m
− μ sin γ

r2
− 3GJ2

4r4
((3 cos (2φ) − 1) sin γ + 2 sin (2φ) cos ζ cos γ )

φ̇ = v cos γ sin ζ

r

ξ̇ = v cos γ cos ζ

r cos φ

ζ̇ = T sin β

mv cos γ
− v tan φ cos γ cos ζ

r
+ 3GJ2

2vr4 cos γ
sin (2φ) sin ζ

ṁ = − T

g0Is

(6)

where GJ2 = J2μR2
e , μ = 3.986 × 105km3/s2 is the gravitational coefficient of the earth; J2 = 1.018 ×

10−3 is perturbation coefficient; Re = 6378.165 km is the average radius of the earth; ṁ is the propellant
mass flow rate; g0 = 9.80665m/s2 is the standard gravitational acceleration; T is the thrust value; Is is
the according specific impulse; the description and definition of α, β, γ , ζ are given in Figs 6–8.

3.0 Zero-sum differential games
Assuming that both the pursuer and the target can fully know the information of dynamics and thrust
acceleration of the other side, and both sides can update and optimise their own control output according
to the other party’s information, then the interception of manoeuvring target can be regarded as a zero-
sum differential game problem.

Assuming that the pursuer (interceptor) is a player P and the target is another one (denoted by E),
the control actions of the pursuer and the target are uP and uE, respectively. Since the two spacecraft are
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Figure 6. Illustration of O − xLyLzL.

Figure 7. Relationship between Oe − xeyeze and O − xLyLzL.

independent, then the dynamic model can be divided, so the state equations of the two spacecrafts are
as follows:

ẋP = f P (xP, uP, t) ẋE = f E (xE, uE, t) (7)

where t ∈ (t0, tf

)
, and the initial time t0 and terminal time tf can be fixed or free.

The set of boundary constraints is as follows:

ψ
(
xP0, xE0, xPf , xPf , t0,tf

)= 0 (8)

The performance index function is as follows:

J = ϕ
(
xP0, xE0, xPf , xPf , t0,tf

)
(9)

The pursuer wants to intercept the target as soon as possible with the least fuel consumption, that is,
the minimum hope; the target wants to extend the intercepted time infinitely, have enough time to escape
the pursuit, or hope that the fuel of the pursuer is exhausted in the interception process, that is, the hope
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Figure 8. Illustration of thrust under O − xOyOzO.

is the most. The above problems can be described by the following inequalities:

J
(
u∗

P, uE

)≤ J
(
u∗

P, u∗
E

)≤ J
(
uP, u∗

E

)
, ∀uP, uE (10)

The problem belongs to the traditional zero-sum differential game, and the saddle point solution is(
u∗

P, u∗
E

)
. It can also be seen from the above equation. That if the pursuer or target adopts non optimal

control strategy, the function value of performance index will deteriorate relative to the target value of
saddle point solution no matter what strategy is adopted. If the target cannot be intercepted successfully
when the saddle point solution is obtained, it must not be intercepted.

The corresponding pursuit trajectory can be obtained by integrating the saddle point solution into
the system state equation. In order to obtain the necessary conditions of existence of

(
u∗

P, u∗
E

)
, the

Hamiltonian function H and terminal conditions of the system � are defined as follows:

H = λT
P f P + λT

E f E = HP + HE � = ϕ + υTψ (11)

Where, λP and λE are the covariates corresponding to the state equation of the pursuer and the target,
respectively, and υ represents the covariates corresponding to the boundary constraint conditions. The
necessary condition of existence is:

λ̇P = −
[

∂H

∂xP

]T

= −
[

∂fP

∂xP

]T

λP λ̇E = −
[

∂H

∂xE

]T

= −
[

∂fE

∂xE

]T

λE (11)

The corresponding boundary conditions to the covariate variables λP and λE are:

λPk (t0) + ∂�

∂xPk (t0)
= 0 xPk (t0) free k = 1, 2, . . . , nP

λEk (t0) + ∂�

∂xEk (t0)
= 0 xEk (t0) free k = 1, 2, . . . , nE

(12)

λPk

(
tf

)− ∂�

∂xPk

(
tf

) = 0 xPk

(
tf

)
free k = 1, 2, . . . , nP

λEk

(
tf

)− ∂�

∂xEk

(
tf

) = 0 xEk

(
tf

)
free k = 1, 2, . . . , nE

(13)
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The cross-sectional conditions corresponding to the two-point boundary values are as follows:

∂�

∂t0

− H (t0) = 0 t0 is free

∂�

∂tf

+ H
(
tf

)= 0 tf is free
(14)

For the sum of control variables uP and uE, the Hamiltonian function is separable, so:

min
uP

max
uE

H = max
uE

min
uP

H = min λT
P f P + max λT

E f E (15)

The saddle point solution
(
u∗

P, u∗
E

)
must satisfy the following two equations:

uP = arg min
uP

H = arg min
uP

(
λT

P f P

)
uE = arg max

uE

H = arg max
uE

(
λT

E f E

)
(16)

When the control variables are not constrained, the Equation (13) can be replaced by the following
equation: [

∂H

∂uP

]T

=
[

∂f P

∂uP

]T

λP = 0

[
∂H

∂uE

]T

=
[

∂f E

∂uE

]T

λE = 0 (17)

The above equation guarantees uP and uE is the extreme point. In order to solve the saddle point
solution, uP and uE should also satisfy the following second order conditions:

HuPuP = ∂2H

∂u2
P

≥ 0, HuEuE = ∂2H

∂u2
E

≤ 0 (18)

That is to say, the Hessian matrix of Hamiltonian function with respect to control variable uP

should be semi positive definite, and the Hessian matrix with respect to uE should be semi negative
definite. The control variables of uP and uE corresponding to the minimax of Hamiltonian function
respectively.

The first-order and second-order necessary conditions of optimal control can be obtained by the above
derivation. The satellite interception problem is transformed into a two-point boundary value problem.
The two-point boundary value problem is composed of Equations (7), (8), (11)–(14), (17) and (18). The
key to solve the two-point boundary value problem is to find initial value of the covariate which satisfy
terminal constraints.

4.0 Saddle point solutions of differential games
The interception time and the fuel consumption of the pursuer in the interception process are selected
as the performance indexes of the pursuit and escape problem:

J =
∫ tf

t0

[
kt + kmP |ṁP|

]
dt =

∫ tf

t0

[
kt + kmP

∣∣∣∣− TP

g0IsP

∣∣∣∣
]

dt =
(

kt + kmP TP

g0IsP

) (
tf − t0

)
(19)

Where, kt is the weight coefficient of interception time and kmP is the weight coefficient of the fuel
consumption of the pursuer. If the pursuer and the target manoeuvre at the same time, then t0 = 0. Given
the initial states of the two sides, assuming that the manoeuvrability of the pursuer is greater than that
of the target spacecraft, that is TP/mP > TE/mE, the pursuer must be able to catch up with the target
spacecraft. Then J can be transformed into:

J =
(

kt + kmP TP

g0IsP

)
tf (20)
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Since the quantities in brackets above are constant, the performance index can also be simplified as
the optimisation of interception time:

J = tf (21)

Let the state variables of pursuer and target and the corresponding covariates be as follows:

xP(E) = [
x1(7) x2(8) x3(9) x4(10) x5(11) x6(12)

]T

= [
rP(E) vP(E) γP(E) ξP(E) φP(E) ζP(E)

]T (22)

λP = [λ1, λ2, λ3, λ4, λ5, λ6]
T λE = [λ7, λ8, λ9, λ10, λ11, λ12]

T (23)

By changing the angle of the thruster α and β, the pursuer and the target can adjust the pursuit
trajectory, so uP and uE are represented respectively as follows:

uP = [
αP βP

]T = [u1 u2]T uE = [
αE βE

]T = [u3 u4]T (24)

For the problem of pursuiting and escaping with given initial boundary conditions, the terminal
boundary conditions can be obtained according to the end conditions of interception. Assuming that
the fuel of the two spacecraft is sufficient, the following conditions should be met by the pursuer and
the target at the interception time tf , that is,

[
r ξ φ

]T of the two spacecraft is the same:

rP = rE

∣∣
t=tf , ξP = ξE

∣∣
t=tf , φP = φE

∣∣
t=tf (25)

The set of terminal boundary constraints can be obtained as follows:

ψ =
⎡
⎣ x1f − x7f

x4f − x10f

x5f − x11f

⎤
⎦= 0 (26)

The ccovariates corresponding to the boundary set are:

υ = [υ1, υ2, υ3]T

For H, the necessary and sufficient conditions of minimax algorithm are applied to obtain equation
of the covariate as follows:

λ̇P = −
[

∂H

∂xP

]T

= −
[

∂fP

∂xP

]T

λP λ̇E = −
[

∂H

∂xE

]T

= −
[

∂fE

∂xE

]T

λE (27)

⎡
⎢⎢⎢⎢⎢⎣

λ̇1

λ̇2

...
λ̇11

λ̇12

⎤
⎥⎥⎥⎥⎥⎦= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ ẋ1

∂x1

∂ ẋ1

∂x2

. . .
∂ ẋ1

∂x11

∂ ẋ1

∂x12

∂ ẋ2

∂x1

∂ ẋ2

∂x2

. . .
∂ ẋ2

∂x11

∂ ẋ2

∂x12
...

...
. . .

...
...

∂ ẋ11

∂x1

∂ ẋ11

∂x2

. . .
∂ ẋ11

∂x11

∂ ẋ11

∂x12

∂ ẋ12

∂x1

∂ ẋ12

∂x2

. . .
∂ ẋ12

∂x11

∂ ẋ12

∂x12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

⎡
⎢⎢⎢⎢⎢⎣

λ1

λ2

...
λ11

λ12

⎤
⎥⎥⎥⎥⎥⎦ (28)
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The specific representation of each component is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇1 =
(

x2λ3 cos x3 + λ4x2 cos x3

cos x6

cos x5

+ x2λ5 cos x3 sin x6

−x2λ6 cos x3 sin x5

cos x6

cos x5

)
1

x2
1

−
(

2μEλ2 sin x3 + 2μEλ3

cos x3

x2

)
1

x3
1

λ̇2 = −λ3

[
cos x3

(
1

x1

+ μE

x2
1x2

2

)
− TP

mPx2
2

sin u1 cos u2

]
− λ4 cos x3

cos x6

x1 cos x5

−λ5 cos x3

sin x6

x1

+ λ6

(
TP sin u2

mPx2
2 cos x3

+ cos x3 sin x5 cos x6

x1 cos x5

)
− λ1 sin x3

λ̇3 = −x2λ1 cos x3 + μEλ2

cos x3

x2
1

+ λ3 sin x3

(
x2

x1

− μE

x2
1x2

)
+ x2λ4 sin x3

cos x6

x1 cos x5

+x2λ5 sin x3

sin x6

x1

− λ6

[
TP sin u2 sin x3

mPx2(cos x3)
2 + x2

sin x3 sin x5 cos x6

x1 cos x5

]
λ̇4 = 0

λ̇5 = x2 cos x3 cos x6

x1(cos x5)
2 (−λ4 sin x5 + λ6)

λ̇6 = x2 cos x3

x1 cos x5

(λ4 sin x6 − λ5 cos x5 cos x6 − λ6 sin x5 sin x6)

(29)

Replace the subscript of Equation (29) to get the component expression of the target’s co-state
equation.

According to the boundary conditions of the covariates in Equations (12) and (13), the results are as
follows:

pursuer

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1

(
tf

)= υ1

λ4

(
tf

)= λ4 = υ2

λ5

(
tf

)= υ3

λ2

(
tf

)= λ3

(
tf

)= λ6

(
tf

)= 0

target

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ7

(
tf

)= −υ1

λ10

(
tf

)= λ10 = −υ2

λ11

(
tf

)= −υ3

λ8

(
tf

)= λ9

(
tf

)= λ12

(
tf

)= 0

The conditions that the covariates satisfy are obtained:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1

(
tf

)+ λ7

(
tf

)= 0

λ4

(
tf

)+ λ10

(
tf

)= λ4 + λ10 = 0

λ5

(
tf

)+ λ11

(
tf

)= 0

λ2

(
tf

)= λ3

(
tf

)= λ6

(
tf

)= λ8

(
tf

)= λ9

(
tf

)= λ12

(
tf

)= 0

(30)

For the control variables, according to the first-order conditions of Equation (17), we can get the
following results:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H

∂u1

= TP

mPx2

cos u2 (λ3 cos u1 − x2λ2 sin u1) = 0

∂H

∂u2

= − TP

mP

λ2 sin u2 cos u1 + TP

mPx2

(
λ6

cos u2

cos x3

− λ3 sin u1 sin u2

)
= 0

∂H

∂u3

= TE

mEx8

cos u4 (λ9 cos u3 − x8λ8 sin u3) = 0

∂H

∂u4

= − TE

mE

λ8 sin u4 cos u3 + TE

mEx8

(
λ12

cos u4

cos x9

− λ9 sin u3 sin u4

)
= 0

(31)
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Assume that cos u2 	= 0, cos u4 	= 0, then the possible values of u1, u2, u3 and u4 can be obtained as
follows:

u(A)

1 = arctan

(
λ3

x2λ2

)
u(B)

1 = arctan

(
λ3

x2λ2

)
+ π

u(A)

2 = arctan

(
λ6

cos x3 (x2λ2 cos u1 + λ3 sin u1)

)

u(B)

2 = arctan

(
λ6

cos x3 (x2λ2 cos u1 + λ3 sin u1)

)
+ π

u(A)

3 = arctan

(
λ9

x8λ8

)
u(B)

3 = arctan

(
λ9

x8λ8

)
+ π

u(A)

4 = arctan

(
λ12

cos x9 (x8λ8 cos u3 + λ9 sin u3)

)

u(B)

4 = arctan

(
λ12

cos x9 (x8λ8 cos u3 + λ9 sin u3)

)
+ π

(32)

Therefore, for each participant, there are four possible control modes satisfying the first-order
condition.

There are four control modes for the pursuer and the target spacecraft respectively:

pursuer

{
u(A)

1 , u(A)

2

} {
u(A)

1 , u(B)

2

}
{
u(B)

1 , u(A)

2

} {
u(B)

1 , u(B)

2

} target

{
u(A)

3 , u(A)

4

} {
u(A)

3 , u(B)

4

}
{
u(B)

3 , u(A)

4

} {
u(B)

3 , u(B)

4

} (33)

The correct and appropriate control strategy can be selected by considering the second-order
condition in Equation (18), that is, the following relationship exists:

∂2H

∂u2
P

=
[

H(P)

11 H(P)

12

H(P)

21 H(P)

22

]
≥ 0

∂2H

∂u2
E

=
[

H(E)

11 H(E)

12

H(E)

21 H(E)

22

]
≤ 0

The sub matrices in the above equation are as follows:

H(P)

11 = −TP cos u2

mPx2

(x2λ2 cos u1 + λ3 sin u1)

H(P)

12 = H(P)

21 = TP sin u2

mPx2

(x2λ2 sin u1 − λ3 cos u1)

H(P)

22 = − TP

mP

[
1

x2

(
λ3 sin u1 cos u2 + λ6

sin u2

cos x3

)
+ λ2 cos u1 cos u2

]

H(E)

11 = −TE cos u4

mEx8

(x8λ8 cos u3 + λ9 sin u3)

H(E)

12 = H(E)

21 = TE sin u4

mEx8

(x8λ8 sin u3 − λ9 cos u3)

H(E)

22 = − TE

mE

[
1

x8

(
λ9 sin u3 cos u4 + λ12

sin u4

cos x9

)
+ λ8 cos u3 cos u4

]

The above two second-order conditions are also equivalent to the following two inequalities:

H(P)

11 + H(P)

22 ≥ 0 H(P)

11 H(P)

22 − H(P)

12 H(P)

21 ≥ 0

H(E)

11 + H(E)

22 ≤ 0 H(E)

11 H(E)

22 − H(E)

12 H(E)

21 ≥ 0
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The appropriate control rate at any time can be selected from the four control schemes in Equation
(33) by the above two inequalities.

When the terminal interception time tf is free, the terminal condition for the Hamiltonian function of
the system is:

∂�

∂tf

+ H
(
tf

)= ∂
(
ϕ + υTψ

)
∂tf

+ H
(
tf

)= ∂tf

∂tf

+ H
(
tf

)= 1 + Hf = 0 (34)

Since a is time independent, its value is constant, i.e. ∀t, H = −1.
For bilateral optimal control, according to the above derivation, the control variables represented by

covariates and state variables are obtained, and the optimal control in continuous space is transformed
into Two Point Boundary Value Problem, that is to solve a series of nonlinear differential equations.

5.0 Hybrid optimisation method for optimal interception orbit
Because the dynamic equation of the two-point boundary value problem is a nonlinear equation, it is
difficult to obtain its analytical solution. Generally, numerical solutions are used to solve the problem,
such as the near extreme value method, difference method or shooting method. The exact solution must
have a good initial value to get the global optimal solution, otherwise it may fall into the local optimal
region. In order to solve this problem, this paper will use the hybrid optimisation algorithm of global
search to get the suboptimal solution and local optimisation to obtain the optimal value. That is, firstly,
the sub optimal solution of the optimisation problem is obtained by the global search of genetic algo-
rithm, and then it is regarded as the sequence quadratic program. The initial value of SQP algorithm
can overcome the disadvantage that SQP algorithm is sensitive to the initial parameters, it can meet the
requirements of convergence and accuracy as well. The flow chart of the proposed hybrid optimisation
method is given as follows in Fig. 9.

The design variable is defined as x = [
λ1,0, λ2,0, λ3,0, λ4, λ5,0, λ6,0, λ7,0, λ8,0,λ9,0, λ10, λ11,0, λ12,0, tf

]
,

where λ0 is the initial value of the covariate variables and tf is the end time of the game.
In order to transform the two-point boundary value problem into an optimisation problem without

constraints, the objective function of design optimisation is the square of the distance from the set of
functions composed of Equations (26), (30) and (34), is:

J =
13∑

i=1

kiηic
2
i (35)

Where ki is the weight, ηi = 0/1, when ηi = 0, the distance is less than ε, and ε is a specified
small value. In the process of solving, the equation condition is gradually satisfied with the distance
approaching 0.

After getting the initial values of the co-state variables and interception time by genetic algorithm,
the SQP algorithm is used for accurate optimisation. In order to solve the above problems, in addition to
the design variables and objective functions unchanged, the orbital heights of the pursuer and the target
spacecraft should be added as inequality constraints, that is, the orbital altitudes rP and rE of the two
spacecraft at any time should be greater than a certain safe altitude:

(
Re + hsafe

)− rP ≤ 0(
Re + hsafe

)− rE ≤ 0

Where Re is the earth radius, hsafe is the safe altitude. The above two inequalities require two spacecraft
will not enter the earth’s atmosphere during flight. Moreover, it must be satisfied at any time in the
integration process.
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Figure 9. Flow chart of hybrid optimisation method.

Table 1. Six elements of the track of the pursuer and the target

Orbital Semimajor Track Ascending node Argument of True
elements axis (km) Eccentricity inclination right ascension Perigee anomaly
Pursuer 6,978.165 0.044 30◦ 10◦ 20◦ 30◦

Target Satellite 7,378.165 0 10◦ 30◦ 0◦ 10◦

Table 2. Initial values of state variables for pursuer and target

Geocentric Velocity
State variables distance (km) (km/s) Path angle Longitude Latitude Azimuth
Pursuer 6,709 7.8554 1.2141◦ 55.9047◦ 22.5210◦ 20.3606◦

Target satellite 7,378.165 7.3503 0 39.8511◦ 1.7279◦ 9.8511◦

6.0 Simulation results and analysis
In order to facilitate the calculation, normalisation is carried out. Set unit distance DU = 1RE =
6378.165 (km), unit time TU =√

R3
E/μ = 806.8 (s), unit acceleration AU = DU/TU2 = g = 9.798 ×

10−3
(
km/s2

)
, gravitational constant μ = 1. Set TP/mP = 0.1AU, TE/mE = 0.05AU, hsafe = 100km, the

orbital parameters of the pursuer and the target satellite are shown in Table 1.
It can be seen from Table 1 that the pursuer operates on an elliptical orbit with an eccentricity of

0.044, and the target runs on a circular orbit with an orbit height of 1,000 km. The corresponding state
variables can be obtained through the transformation relationship in Section 2, as shown in Table 2.
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Table 3. Covariate variables and sub optimal solution of interception end time

Covariate variables λ1 (λ7) λ2 (λ8) λ3 (λ9) λ4 (λ10) λ5 (λ11) λ6 (λ12) tf / (TU)

Pursuer 0.9852 0.9421 −0.4665 −0.8804 −0.0685 0.5469 3.1609s
Target satellite 1.1375 0.6117 −1.0480 −0.2259 1.9673 1.1966

Figure 10. Convergence rate comparison.

Figure 11. Intercepting trajectory of pursuer and target.

Firstly, 12 covariates are estimated initially, and the upper and lower limits of the value range are
given. Then, the genetic algorithm is used to solve the initial problem, where the population size is set to
50, the mating probability and mutation probability are the default values of the algorithm, which are 0.8
and 0.2, respectively. Then the optimal fitness function and average fitness function of each generation
in the global optimisation process can be obtained, and the sub-optimal solutions of covariate and time
are shown in Table 3.

Moreover, the average convergence performances of two algorithms (GA-SQP based on differen-
tial games: GA-SQP-DG, UOC: unilateral optimal control method) are given in this section. Jinitial_g,
Jgeneration(i) are assumed as the average cost in the initial generation and in ith generation, and the ratio
indicated as Jgeneration(i)

/
Jinitial_gis adopted to display the result.

The comparison result is shown in Fig. 10.
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Figure 12. The relative distance between the pursuer and the target.

Figure 13. Angle-of-attack of pursuer.

As shown in Fig. 10, the vertical axis designates the average cost value of 50 runs at each generation
normalised by the average cost of the initial generation. The horizontal axis designates the generation
number. It is noticeable that the convergence rate of GA-SQP-DG is faster than that of UOC.

Taking the results obtained by genetic algorithm in Table 3 as the initial value of SQP algorithm, the
accurate solutions of covariate variables and intercept end time are obtained by optimisation.

Figures 11 and 12 show the transfer orbit and the relative distance change between the two spacecraft
under the optimal strategy. As can be seen from the figures, the pursuer can successfully intercept the
target in a limited time, and the intercepting orbit is in the same direction as the target’s orbit.

Figures 13–15 show the time-dependent thrust angles of the pursuer and the target satellite during
interception.

Figures 15–21 show the change of the state variables of the pursuer and the target satellite with time
during the interception process. As can be seen from the figures, only the final position is required to be
the same at the end of interception, that is, (ri, ξi, φi) is consistent. The size of (γi, vi, ζi) is not required.
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Figure 14. Angle of sideslip of pursuer.

Figure 15. Thrust angle of target satellite.

7.0 Conclusions
A detailed study of intercepting satellite trajectory optimisation method based on differential game is
achieved with J2 perturbation.

We established a hybrid method which combines SQP with GA to manage the given pursue-evasion
problem. The corresponding saddle point solutions for the bilateral optimisation are derived based on
differential game theory, then the sub-optimal solution is obtained by GA, set both interception time and
fuel consumption as the performance index, then SQP is adopted to transform the given solution into the
change of thrust angle of the two spacecraft in the pursuit process, which is the optimal control strategy
of both sides.

Based on simulation studies, the effectiveness and practicality the proposed hybrid algorithm are both
verified.
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Figure 16. Geocentric distance of pursuer and target.

Figure 17. Longitude of pursuer and target.
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Figure 18. Latitude of pursuer and target.

Figure 19. Flight path angle of pursuer and target.
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Figure 20. Velocity of pursuer and target.

Figure 21. Azimuth angle of pursuer and target.
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In our future research, the influence of other disturbance items to the relative kinematics model will
be considered.
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