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Abstract

Inaccuracy and information measures based on cumulative residual entropy are quite
useful and have received considerable attention in many fields, such as statistics, proba-
bility, and reliability theory. In particular, many authors have studied cumulative residual
inaccuracy between coherent systems based on system lifetimes. In a previous paper
(Bueno and Balakrishnan, Prob. Eng. Inf. Sci. 36, 2022), we discussed a cumulative
residual inaccuracy measure for coherent systems at component level, that is, based
on the common, stochastically dependent component lifetimes observed under a non-
homogeneous Poisson process. In this paper, using a point process martingale approach,
we extend this concept to a cumulative residual inaccuracy measure between non-
explosive point processes and then specialize the results to Markov occurrence times.
If the processes satisfy the proportional risk hazard process property, then the measure
determines the Markov chain uniquely. Several examples are presented, including birth-
and-death processes and pure birth process, and then the results are applied to coherent
systems at component level subject to Markov failure and repair processes.

Keywords: Cumulative residual inaccuracy measure; Markov chains; occurrence times;
point processes; coherent systems
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1. Introduction

An alternate measure of entropy, based on the distribution function rather than the density
function of a random variable, called the cumulative residual entropy (CRE), was pro-
posed originally by Rao et al. [25]. It was subsequently extended to the cumulative residual
inaccuracy measure by Kumar and Taneja [19].

The main inaccuracy measure for the uncertainty of two positive and absolutely continuous
random variables, S and T , defined in a complete probability space (�, �, P) is that of Kerridge
[17], given by

H(S, T) =E[ − log g(T)] = −
∫ ∞

0
f (x) log g(x)dx,

where f and g are the probability density functions of T and S, respectively.
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736 V. C. BUENO AND N. BALAKRISHNAN

In the case when S and T are identically distributed, the Kerridge inaccuracy measure gives
the well-known Shannon entropy [28], which plays an important role in many areas of science,
such as probability and statistics, financial analysis, engineering and information theory; see
Cover and Thomas [6]. The Shannon entropy is defined as

H(T) =E[− log f (T)] = −
∫ ∞

0
f (x) log f (x)dx.

A main drawback of the Shannon entropy is that for some probability distributions, it may
be negative, and then it is no longer an uncertainty measure. This drawback was removed in
the Varma entropy [29], which provides a generalization of order α and type β of both the
Shannon entropy and the Rényi entropy [27]. The Varma entropy is important as a measure
of complexity and uncertainty to describe many chaotic systems in physics, electronics, and
engineering. The Varma entropy is defined as

Hβ
α (X) = 1

β − α
ln

[∫ ∞

0
f α+β−1(x)dx

]
, β − 1 < α < β, β ≥ 1.

It can be shown that

lim
β→1

Hβ
α (X) = Hα(X) = 1

1 − α
ln

[∫ ∞

0
f α(x)dx

]
,

which is indeed the Rényi entropy. Also, for β = 1, if α → 1, the Varma entropy reduces to the
Shannon entropy.

Recently, Kumar and Taneja [18] introduced a generalized cumulative residual entropy of
order α and type β based on Varma entropy, and a dynamic version of it, given by

ξβ
α (X) = 1

β − α
ln

[∫ ∞

0
F

α+β−1
(x)dx

]
, β − 1 < α < β, β ≥ 1,

and

ξβ
α (X ; t) = 1

β − α
ln

[∫∞
t F

α+β−1
(x)dx

F
α+β−1

(t)

]
.

Several authors subsequently studied various properties of these information measures. For
example, Ebrahimi [9] proposed a measure of uncertainty about the remaining lifetime of a
system working at time t, given by H(Tt), where Tt = (T − t|T > t). Kayal and Sunoj [15] and
Kayal et al. [16] presented a generalization of it and discussed its theoretical properties.

Rao et al. [26] and Rao [25] provided an extension of the above measure, the cumula-
tive residual entropy for T , by using the survival functions of T instead of the probability
density function in the Shannon entropy. Asadi and Zohrevand [2] studied the corresponding
dynamic measure using the conditional survival function P(T − t > x|T > t). Di Crescenzo and
Longobardi [8] discussed an analogous measure, based on the distribution function, which is
known as the cumulative past entropy of T .

Kerridge’s measure of inaccuracy has also been extended in a similar way by Kumar and
Taneja [19, 20]. Kundu et al. [22] considered the measures of Kumar and Taneja [19, 20] and
obtained several properties for random variables that are left-, right-, and double-truncated.
Quite recently, bivariate extensions of cumulative residual (past) inaccuracy measures have
been discussed by Ghosh and Kundu [10] and Kundu and Kundu [21].
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Inaccuracy measure 737

The cumulative residual inaccuracy measure of Kumar and Taneja [19] between S and T is
defined as

ε(S, T) = −
∫ ∞

0
F(t) log G(t)dt =E

[∫ T

0
�S(s)ds

]
,

where F = 1 − F and G = 1 − G are the reliability functions of T and S, respectively, F and G
are the corresponding distribution functions, and �S(t) = − log G(t) is the cumulative hazard
function of lifetime S. It is important to note that the expression is valid in the set {t > S ∧ T},
where S ∧ T = min{S, T}, and by convention, we set 0 log 0 = 0.

Indeed, ε(S, T) represents the information content when one uses G(t), the survival function
asserted by the experimenter, instead of the true survival function F(t), because information is
missing or incorrect. Some transformation of this measure is present in the work of Psarrakos
and Di Crescenzo [24].

Our earlier paper [5] extended the definition to a symmetric inaccuracy measure based on
two component lifetimes T and S, which are finite positive absolutely continuous random vari-
ables defined in a complete probability space (�, �, P), with P(S �= T) = 1, through the family
of sub-σ -algebras (�t)t≥0 of �, where

�t = σ {1{S>s}, 1{T>s}, 0 ≤ s < t}
satisfies Dellacherie’s conditions of right-continuity and completeness; see [7]. Consider,
through the Doob–Meyer decomposition (see Aven and Jensen [3]), the unique �t-predictable,
integrable compensator processes (At)t≥0 and (Bt)t≥0 such that 1{T≤t} − At and 1{S≤t} − Bt

are 0-mean �t-martingales. Then, by the well-known equivalence results between distribu-
tion functions and compensator processes (see Arjas and Yashin [1]), it follows that At =
− log F(t ∧ T|�t) and Bt = − log G(t ∧ S|�t). Identifying �S(t) and Bt, in the set {S > t}, the
paper [5] then established that

ε(S, T) =E

[∫ T

0
Bsds

]
=E[1{S≤T}|T − S|].

Also, by using the same arguments as above, we have

ε(T, S) =E

[∫ S

0
Asds

]
=E[1{T≤S}(S − T)] =E[1{T≤S}|S − T|].

In the following definition, we now present a symmetric generalization of the Taneja–Kumar
inaccuracy measure.

Definition 1. Let S and T be continuous positive random variables defined in a complete
probability space (�, �, P). Then the cumulative residual inaccuracy measure is defined as

CRIS,T = CRIT,S = ε(S, T) + ε(T, S) =E

[∫ T

0
Bsds

]
+E

[∫ S

0
Asds

]

=E[1{S≤T}|T − S|] +E[1{T≤S}|S − T|] =E[|T − S|].
Thus, CRIT,S can be seen as a dispersion measure when using a lifetime S asserted by the

experimenter’s information as the true lifetime T . Provided we identify random variables that
are equal almost everywhere, CRIS,T is a metric in the L1 space of random variables. Hence, if
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738 V. C. BUENO AND N. BALAKRISHNAN

we have CRIT,S = 0, we can conclude that the survival function asserted by the experimenter
is indeed the true one.

Remark 1. If, in Definition 1, T and S are independent and identically distributed, then
E[|T − S|] is known as the Gini mean difference (GMD), introduced by Gini [11]. As a dis-
persion measure it can be compared with the variance of T − S. This point generated a debate
between Gini and the Anglo-Saxon statisticians. The most popular presentation of the vari-
ance is as a second central moment of the distribution. The most popular form of the GMD
is the expected absolute difference between two random variables that are independent and
identically distributed. However, as shown by Hart [14] and the covariance presentation, the
GMD can also be defined as a central moment. Had both sides known about the alternative
representations of GMD, this debate, which was a source of conflict between the Italian school
and what Gini viewed as the Western schools, could have been averted; see Gini [11, 12]. The
interested reader can find many results concerning GMD in La Haye and Zizler [23].

Remark 2. It is of interest to obtain the same result considering the appropriate integration
domain from 0 to the maximum ( max{S, T} = S ∨ T) of the series system ( min{S, T} = S ∧ T)
compensator process As + Bs; see Aven and Jensen [3]:

E

[∫ S∨T

0
(As + Bs)ds

]
=E

[∫ S∨T

0

(∫ s

0
dAu

)
ds +

∫ S∨T

0

(∫ s

0
dBu

)
ds

]

=E

[∫ S∨T

0

(∫ S∨T

u
ds

)
dAu +

∫ S∨T

0

(∫ S∨T

u
ds

)
dBu

]

=E

[∫ S∨T

0
(S ∨ T − u)dAu +

∫ S∨T

0
(S ∨ T − u)dBu

]

=E[(S ∨ T − T)1{T≤S∨T} + (S ∨ T − S)1{S≤S∨T}]
=E[(S − T)1{T≤S} + 0 + (T − S)1{S≤T}] =E[|T − S|].

In the framework of univariate point processes and martingale theory, we analyze here an
inaccuracy measure between two point processes related to Markov chains. The rest of this
paper consists of two sections. Section 2 deals with the cumulative inaccuracy measure concept
for non-explosive point processes and its applications to a minimal repair point process and to
a minimally repaired coherent system. In Section 3, the cumulative inaccuracy measure is
specialized to point process occurrence times relating to Markov chains. Special attention is
paid to the case when the processes satisfy proportional risk process properties, in which case
we characterize the Markov chain through the cumulative inaccuracy measure. We demonstrate
the theoretical results with several examples of applications to birth-and-death processes and
pure birth processes. We also apply the results to a coherent system, observed physically, at
component level, subjected to fail and repair according to a Markovian property.

2. Inaccuracy measure between point processes

2.1. Cumulative inaccuracy measure between non-explosive point processes

A univariate point process over R+ can be described by an increasing sequence of random
variables or by means of its corresponding counting process.

Definition 2. A univariate point process is an increasing sequence T = (Tn)n≥0, with T0 = 0,
of positive extended random variables, 0 ≤ T1 ≤ T2 ≤ . . ., defined in a complete probability
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space (�, �, P). The inequalities are strict unless Tn = ∞. If T∞ = limn→∞ Tn = ∞, the point
process is said to be non-explosive.

Another equivalent way of describing a univariate point process is through a counting
process N = (Nt)t≥0 with

NT
t (w) =

∑
k≥1

1{Tk(w)≤t},

which is, for each realization w, a right-continuous step function with N0(w) = 0. As (Nt)t≥0
and (Tn)n≥0 carry the same information, the associated counting process is also called a point
process.

The mathematical description of our observations is given by the internal family of sub-σ -
algebras of �, denoted by (�T

t )t≥0, where

�T
t = σ {1{Ti>s}, i ≥ 1, 0 < s < t}

satisfies the Dellacherie conditions of right-continuity and completeness.
For a mathematical basis for applied stochastic processes, one may refer to Aven and Jensen

[3]. In particular, an extended and positive random variable τ is an �T
t -stopping time if,

and only if, {τ ≤ t} ∈ �T
t , for all t ≥ 0; an �T

t -stopping time τ is said to be predictable if an
increasing sequence (τn)n≥0 of �T

t -stopping times, τn < τ , exists such that limn→∞ τn = τ ;
an �T

t -stopping time τ is totally inaccessible if P(τ = σ < ∞) = 0 for every predictable
�T

t -stopping time σ .
In what follows, we assume that relations between random variables and measurable

sets always hold with probability one, which means that the term P-almost surely can be
suppressed.

The point process (NT
t )t≥0 is adapted to (�T

t )t≥0 and E[NT
t |�T

s ] ≥ NT
s for s < t; that is, NT

t is
an uniformly integrable �T

t -submartingale. Then, from the Doob–Meyer decomposition, there
exists a unique right-continuous nondecreasing �T

t -predictable and integrable process (AT
t )t≥0,

with AT
0 = 0, such that (MT

t )t≥0, with NT
t = AT

t + MT
t , is a uniformly integrable �T

t -martingale.
In many cases, the �T

t -compensator, (AT
t )t≥0, of a counting process (NT

t )t≥0 can be represented
in the form of an integral as

AT
t =

∫ t

0
λT

s ds

for some non-negative (�T
t -progressively measurable) stochastic process (λT

t )t≥0, called the
�T

t -intensity of (NT
t )t≥0.

The compensator process is expressed in terms of conditional probabilities, given the avail-
able information, and it generalizes the classical notion of hazard. Intuitively, it corresponds to
whether the failure is going to occur now, on the basis of all observations available up to but
not including the present time.

Following Aven and Jensen [3], the compensator process is given by the following theorem.

Theorem 1. Let (NT
t )t≥0 be an integrable point process and (�T

t )t≥0 its internal history.
Suppose that for each n there exists a regular conditional distribution of Tn+1 − Tn, given
the past �T

Tn
, of the form

Gn(w, A) = P(Tn+1 − Tn ∈ A|�T
Tn

)(w) =
∫

A
gn(w, s)ds,
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740 V. C. BUENO AND N. BALAKRISHNAN

where gn(w, s) is a measurable function. Then the process given by λT
t = �∞

n=0λ
n
t , where

λn
t = gn(t − Tn)

Gn([t − Tn, ∞))
1{Tn<t≤Tn+1} = gn(t − Tn)

1 − ∫ t−Tn
0 gn(s)ds

1{Tn<t≤Tn+1},

is called the �T
t -intensity of NT

t , and

NT
t −

∫ t

0
λT

s ds

is an �T
t -martingale.

We note that the compensator process

AT
t = AT

Tn
+
∫ t−Tn

0
λn

s ds

is defined by its parts.
Our aim now is to define a cumulative residual inaccuracy measure between two indepen-

dent non-explosive point processes, T and S, and then to proceed to using a superposition
process.

Definition 3. The superposition of two univariate point processes T = (Tn)n≥0 and S =
(Sn)n≥0, defined in a complete probability space (�, �, P) with compensator processes (At)t≥0
and (Bt)t≥0, respectively, is the marked point process (Vn, Un)n≥1, where V = (Vn)n≥0, with
V0 = 0, is a univariate point process and U = (Un)n≥0, the indicator process, is a sequence
of random variables taking values in a measurable space ({0, 1}, σ ({0, 1}), resulting from
pooling together the time points of events occurring in each of the two separate point pro-
cesses. Here 0 stands for an occurrence of the process T, Un = Tk for some k, in which case
Vn = max1≤j≤n{(1 − Uj) · Vj}, and 1 stands for an occurrence of the process S, Un = Sj for
some j, in which case Vn = max1≤j≤n{Uj · Vj}.

Now, we define

Nt(0) =
∞∑

n=1

1{Un=0}1{Vn ≤ t}

as the number of occurrences of the process T and

Nt(1) =
∞∑

n=1

1{Un=1}1{Vn ≤ t}

as the number of occurrences of the process S on the superposition process.
The observed history is thus

�V
t = σ {Ns(0), Ns(1), 0 ≤ s < t} = σ {(Vn, Un), Vn < t}.

Theorem 2. Let (Vn, Un)n≥1 be a marked point process, the superposition of two univari-
ate point processes T = (Tn)n≥0 and S = (Sn)n≥0, defined in a complete probability space
(�, �, P) with �V

t -compensator processes (At)t≥0 and (Bt)t≥0, respectively. Furthermore, let
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Nt(0) and Nt(1) be the �t-submartingales defined as the number of occurrences of the processes
T and S, respectively. Then Nt(0) has �t-compensator

∞∑
n=1

∫ t

0
1{Un=0}dAn

s ,

and Nt(1) has �t-compensator
∞∑

n=1

∫ t

0
1{Un=1}dBn

s .

Proof. To prove this theorem, we use the known result that the integration of an �t-
predictable process with respect to an integrable �t-martingale of bounded variation is an
�t-martingale.

Observe that the deterministic process

1{Un=0}(w, s) = 1{Un=0}(w)

is left-continuous and, therefore, �t-predictable, implying that∫ t

0
1{Un=0}(s)dMn

s ,

where Mn
t = 1{Tn≤t} − An

t , is an �t-martingale.
As the sum of �t-martingales is an �t-martingale, we readily have that

∞∑
n=1

∫ t

0
1{Un=0}dMn

s =
∞∑

n=1

∫ t

0
1{Un=0}d1{Tn≤s} −

∞∑
n=1

∫ t

0
1{Un=0}dAn

s

is an �t-martingale. As the compensator is unique, the proof is readily completed. The proof
for the Nt(1) process follows in an analogous manner. �
Remark 3. In view of Theorem 2.2 and Definition 3, we observe, without loss of generality,
the compensator definition modifications as

Bt = BSn +
∫ t−Sn

0
dBs = BV∗

n
+
∫ t−V∗

n

0
dBs, Vn < t ≤ Vn+1,

where V∗
n = max1≤j<n{Uj · Vj}, and

At = ATn +
∫ t−Tn

0
dAs = AV∗

n
+
∫ t−V∗

n

0
dAs, Vn < t ≤ Vn+1,

where V∗
n = max1≤j<n{(1 − Uj) · Vj}.

In view of Definition 1, in the introduction, we define a cumulative inaccuracy measure
between two univariate point processes at any �t-stopping time τ , in particular, at time t, as
follows.

Definition 4. Let T = (Tn)n≥0 and S = (Sn)n≥0 be univariate point processes with �V
t -

compensator processes (At)t≥0 and (Bt)t≥0, respectively, defined in a complete probability
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742 V. C. BUENO AND N. BALAKRISHNAN

space (�, �, P). Let (Vn)n≥0 be their superposition process. Then the cumulative residual
inaccuracy measure at time t between T and S is given by

CRIt(N
T, NS) =E

[∫ t

0

∞∑
n=1

∫ s

0
1{Un=0}dAn

uds +
∫ t

0

∞∑
n=1

∫ s

0
1{Un=1}dBn

uds

]
.

It is important to observe that, under Theorem 2.2, the indicator process is essential in
Definition 4.

An interpretation of Definition 4 is given by the following theorem.

Theorem 3. Let T = (Tn)n≥0 and S = (Sn)n≥0 be two non-explosive univariate point processes,
and let V = (Vn)n≥0 be their superposition process. Then

∫ t

0
Asds +

∫ t

0
Bsds = �

NV
t

n=1[1{Un=1} + 1{Un=0}]|Vn − Vn−1| = �
NV

t
n=1|Vn − Vn−1|,

where

{Uk = 1} =
∞⋃

j=1

{Tj ≤ Sk−1 ∧ t}
⋃

{Tj−1 < Sk ≤ Tj ∧ t},

{Uk = 0} =
∞⋃

k=1

{Sk ≤ Tj−1 ∧ t}
⋃

{Sk−1 < Tj ≤ Sk ∧ t}.

Proof. We let (τT
n )n≥0 be an increasing sequence of �t-stopping times as the localizing

sequence of the stopped martingale (NT)
t∧τT

n
− At∧τT

n
)t≥0, and let (τS

n )n≥0 be an increasing

sequence of �t-stopping times as the localizing sequence of the stopped martingale (NS
t∧τS

n
−

Bt∧τS
n

)t≥0. We then apply the optimal sampling theorem; see Aven and Jensen [3].

Note that τn = τT
n ∨ τS

n is also an �t-stopping time and that the point process (Sk)k≥0 defines
a partition of �+, that is, �+ = ∪∞

k=0(Sk−1, Sk]. Therefore, we can write

∫ τn

0
Asds =

NT
τn∑

k=1

∫ Sk∧τn

Sk−1

Asds =
NT

τn∑
k=1

∫ Sk∧τn

Sk−1

(∫ s

0
dAu

)
ds

=
NT

τn∑
k=1

[∫ Sk−1

0

(∫ Sk∧τn

Sk−1

ds

)
dAu +

∫ Sk∧τn

Sk−1

(∫ Sk∧t

u
ds

)
dAu

]

=
NT

τn∑
k=1

[∫ Sk−1

0
(Sk ∧ τn − Sk−1)dAu +

∫ Sk∧τn

Sk−1

(Sk ∧ τn − u)dAu

]
.

However, the compensator differential dAu is defined by parts and can be written as

dAu =
∞∑

j=1

1{Tj−1 < u ≤ Tj}dAu(j),
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where dAu(j) is the differential compensator of 1{Tj≤t} defined in (Tj−1, Tj], and 0 otherwise. It
then follows that

∫ t

0
Asds =

NT
τn∑

k=1

NS
τn∑

j=1

[∫ Sk−1∧Tj

Tj−1

(Sk ∧ τn − Sk−1)dAu(j) +
∫ Sk∧τn∧Tj

Sk−1∨Tj−1

(Sk ∧ τn − u)dAu(j)

]

=
NT

τn∑
k=1

NS
τn∑

j=1

[
(Sk ∧ τn − Sk−1)1{Tj≤Sk−1∧Tj} + (Sk ∧ τn − Tj)1{Sk−1∨Tj−1<Tj≤Sk∧τn∧Tj}

]

=
NT

τn∑
k=1

NS
τn∑

j=1

[(Sk ∧ t − Sk−1)1{Tj≤Sk−1} + (Sk ∧ τn − Tj)1{Sk−1<Tj≤Sk∧τn}].

Using similar arguments we can prove that

∫ τn

0
Bsds =

NT
τn∑

k=1

NS
τn∑

j=1

[(Tj ∧ τn − Tj−1)1{Sk≤Tj−1} + (Tj ∧ τn − Sk ∧ t)1{Tj−1<Sk≤Tj∧τn}].

Hence we have ∫ τn

0
Asds +

∫ τn

0
Bsds

=
NT

τn∑
k=1

NS
τn∑

j=1

[(Sk ∧ t − Sk−1)1{Tj≤Sk−1} + (Sk ∧ τn − Tj)1{Sk−1<Tj≤Sk∧τn}]

+
NT

τn∑
k=1

NS
τn∑

j=1

[(Tj ∧ τn − Tj−1)1{Sk≤Tj−1} + (Tj ∧ τn − Sk ∧ t)1{Tj−1<Sk≤Tj∧τn}]

= �
NV

τn
n=1[1{Un=1} + 1{Un=0}]|Vn − Vn−1| = �

NV
τn

n=1|Vn − Vn−1|,
which is the sum of the inter-arrival times of the superposition process, where

{Uk = 1} =
∞⋃

j=1

{Tj ≤ Sk−1 ∧ τn}
⋃

{Tj−1 < Sk ≤ Tj ∧ τn},

{Uk = 0} =
∞⋃

k=1

{Sk ≤ Tj−1 ∧ τn}
⋃

{Sk−1 < Tj ≤ Sk ∧ τn}. �

As (NV
t∧τ )t≥0 is uniformly integrable, we let limn→∞ τn = ∞, and provided that we identify

random variables that are equal almost everywhere, the quantity CRI∞(NT, NS) = �∞
k=1|Vk −

Vk−1|, as t goes to infinity, can be seen as a dispersion measure in the L1 space of sequences
of random variables when using the point process S, which represents the information asserted
by the experimenter about the true point process T.
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2.2. Application to minimal repair point processes

A repair is minimal if the intensity λT
t is not affected by the occurrence of failures, or, in

other words, if we cannot determine the failure time points from observation of λT
t . Formally,

we have the following definition.

Definition 5. Let T = (Tn)n≥0 be a univariate point process with an integrable point process NT

and corresponding �t-intensity (λT
t )t≥0. Let �λT

t = σ (λT
s , 0 ≤ s ≤ t) be the filtration generated

by λT . Then the point process T is said to be a minimal repair process (MRP) if none of the
variables Tn, n ≥ 0, for which P(Tn < ∞) > 0 is an �λT

t -stopping time.

If T is a non-homogeneous Poisson process, λt = λ(t) is a time-dependent deterministic
function, and this means that the age does not get changed as the result of a failure. Here,
�λT

t = {�, ∅} for all t ∈R
+, and the failure times Tn are not �λT

t -stopping times.

Example 1. Let (Tn)n≥0 be a Weibull process with parameters β and θ1. Let (Sn)n≥0 be a
Weibull process with parameters β and θ2 asserted by the experimenter.

In practice, we consider the ordered lifetimes T1, . . . , Tn with a conditional reliability
function given by

Gi(ti|t1, . . . , ti−1) = exp

[
−
(

ti
θ1

)β

+
(

ti−1

θ1

)β
]

for 0 ≤ ti−1 < ti, where the ti are the ordered observations. The �T -compensator process is then

At =
n∑

j=1

[(
tj
θ1

)β

−
(

tj−1

θ1

)β
]

+
[(

t

θ1

)β

−
(

tn
θ1

)β
]

=
(

t

θ1

)β

, tn ≤ t < tn+1.

Furthermore, with respect to (Sn)n≥0, the �S-compensator process is

Bt =
n∑

j=1

[(
sj

θ2

)β

−
(

sj−1

θ2

)β
]

+
[(

t

θ2

)β

−
(

sn

θ2

)β
]

=
(

t

θ2

)β

, sn ≤ t < sn+1.

Note that the compensator process in a minimal repair point process is independent of the
occurrence times, in which case the indicator process does not apply. Therefore, the cumulative
inaccuracy measure at time t is given by

CRIt(N
T , NS) =E

[∫ t

0
Asds +

∫ t

0
Bsds

]
=E

[∫ t

0

(
s

θ1

)β

ds +
∫ t

0

(
s

θ2

)β

ds

]

= tβ+1

β + 1

(
θ

β

1 + θ
β

2

θ
β

1 θ
β

2

)
.

Example 2. (Application to a coherent system minimally repaired at component level.)
Suppose we observe, as in Barlow and Proschan [4], the lifetimes of a system with three com-
ponents, U1, U2, and U3, which are independent and identically exponentially distributed with
parameter λ, through the filtration

�t = σ {1{U1>s}, 1{U2>s}, 1{U3>s}, 0 ≤ s ≤ t}.

https://doi.org/10.1017/apr.2023.44 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.44


Inaccuracy measure 745

The system with lifetime T1 = U1 ∧ (U2 ∨ U3) has intensity λ
T1
t = λ + λ1{U2∧U3≤t}, and

clearly T1 is not an �λT1
t -stopping time.

At system failure T1, the component that causes the system to fail is repaired minimally.
As the component lifetimes are independent and identically distributed, the additional lifetime,
given by the lifetime U4, is independent of and distributed identically to U1, U2, and U3, and
the repaired system then has lifetime T2 = T1 + U4.

We allow for repeated minimal repairs considering a sequence of random variables,
(Un)n≥1, that are independent and identically exponentially distributed with parameter λ. Then
T1 = U1 ∧ (U2 ∨ U3) and Tn+1 = Tn + Un+3, n ≥ 2, successively, constituting a minimal repair
point process with compensator

At =
∫ t

0
λT

s ds =
∫ t

0

[
λ + λ1{U2∧U3≤s}

]
ds = 2λt − λ(U2 ∧ U3) if t ≤ T,

where T is the actual system lifetime.
Let us now consider another minimally repaired coherent system, S1, asserted by the exper-

imenter, with the same structure function, but component lifetimes V1, V2, and V3, which
are independent and identically exponentially distributed with parameter λ∗ and compensator
process

Bt =
∫ t

0
λS

s ds = 2λ∗t − λ∗(V2 ∧ V3) if t ≤ S,

where S is the actual system lifetime.
Then, in the set {t ≤ T ∧ S}, the cumulative inaccuracy measure at time t is given by

CRIt(N
T , NS) =E

[∫ t

0
Asds +

∫ t

0
Bsds

]
=

E

[∫ t

0
[2λs − λ(U2 ∧ U3)ds +

∫ t

0
[2λ∗s − λ∗(V2 ∧ V3)]ds

]

= λt2 + λtE[U2 ∧ U3] + λ∗t2 + λtE[V2 ∧ V3] = (λ + λ∗)t2 − t.

Clearly, the expression for CRIt(NT , NS) can be negative. However, we observe that,
always, the superposition process is minimally repaired with an exponential lifetime with mean

1
λ+λ∗ . We then consider t ≥ 1

λ+λ∗ , resulting in a positive CRIt(NT , NS).
Also, in the minimally repaired coherent system, the compensator process is independent

of occurrence times, in which case the indicator process does not apply.

3. Inaccuracy measure between point processes related to Markov chains

3.1. Inaccuracy measure between occurrence times in Markov chains

Let (Xt)t≥0 be an E-valued process defined in a probability space (�, �, P) and adapted to
some history (�t)t≥0. The observations are through its internal history

�X
t = σ {Xs, s ≤ t}

for all t ≥ 0, and �X
t ⊆ �t for all t ≥ 0. Then �X∞ records all the events linked to the process

(Xt)t≥0.
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The process (Xt)t≥0 is said to be an �t-Markov process if, and only if, for all t ≥ 0, σ (Xs, s >

t) and �t are independent, given Xt. In particular, if E is the set of natural numbers N+, we call
(Xt)t≥0 an �t-Markov chain. In what follows, we consider a right-continuous Markov chain
with left limits.

The �t-Markov chain is associated with a sequence of its sojourn times (Tn+1 − Tn)n≥0,
with T0 = 0, and its infinitesimal characteristics Q = [qi,j], (i, j) ∈ N+ × N+. If, for each natural
number i, we have

qi =
∑
j �=i

qi,j < ∞,

then the chain is said to be stable and conservative. We set qi,i = −qi.
The interpretation of the terms qi and qi,j is as follows:

P(Tn+1 − Tn > t|�X
Tn

) = e−tqXTn , t > 0,

P(XTn+1 = i, Tn+1 − Tn > t|�X
Tn

) = e−tqXTn

(
qXTn ,i

qXTn

)
, t > 0.

We are now interested in the cumulative inaccuracy process between point processes related
to Markov chain occurrence times, with

• NX
t (k, l) denoting the number of transitions from state k to state l in the interval (0, t],

• NX
t (l) denoting the number of transitions into state l during the interval (0, t], and

• NX
t denoting the number of transitions in (0, t].

Now, the occurrence observation times are through the internal family of sub-σ -algebras
of �,

�T
t = σ {NT

s , 0 ≤ s < t} ⊆ �X
t ⊆ �t,

and satisfy the Dellacherie conditions of right-continuity and completeness. This family of
counts leads to the same information as the sequence of occurrence times T and hence pro-
vides an equivalent point process description. Clearly, from the sojourn times interpretation,
the Tn, n > 0, are totally inaccessible �t-stopping times. In a certain way, absolutely continuous
lifetimes are totally inaccessible �T

t -stopping times.
Let (Xt)t≥0 be a right-continuous N+-valued �t-Markov chain with left-hand limits which is

stable and conservative, with associated sequence of occurrence times T = (Tn)n≥1 and matrix
of infinitesimal characteristics Q = [qi,j], i, j ∈ N+. Then a martingale property of this process
is given in the following theorem.

Theorem 4. Let (Xt)t≥0 be a right-continuous N+-valued �t-Markov chain with left-hand lim-
its, which is stable and conservative with associated matrix Q = [qi,j], i, j ∈ N+. Let f be a
non-negative function from N+ × N+ to �+, with

E

⎡
⎣∫ t

0

∑
j �=Xu

qXu,j|f (Xu, j)|du

⎤
⎦< ∞.

Then ∑
0<u≤t

f (Xu− , Xu) −
∫ t

0

∑
j �=Xu

qXu,jf (Xu, j)du

is an �t-martingale.
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Proof. The argument to be used is the Lévy formula, which states that if f is a non-negative
function from N+ × N+ to R

+, then for any 0 ≤ s ≤ t we have

E

[ ∑
s<u≤t

f (Xu− , Xu)|σ (Xs)

]
=E

⎡
⎣∫ t

s

∑
j �=Xu

qXu,jf (Xu, j)du|σ (Xs)

⎤
⎦ .

�
By the �t-Markov property of Xt, i.e., the conditional independence of �s and (Xu, u > s)

given Xs, conditioning on σ (Xs) in the above equation becomes equivalent to conditioning with
respect to �s, and so

E

[ ∑
s<u≤t

f (Xu− , Xu)|�s

]
=E

⎡
⎣∫ t

s

∑
j �=Xu

qXu,jf (Xu, j)du|�s

⎤
⎦ .

Now, if f : N+ × N+ →R
+ is such that

E

⎡
⎣∫ t

0

∑
j �=Xu

qXu,j|f (Xu, j)|du

⎤
⎦< ∞,

we have

E

⎡
⎣ ∑

0<u≤t

f (Xu− , Xu)|�s

⎤
⎦−E

⎡
⎣ ∑

0<u≤s

f (Xu−, Xu)|�s

⎤
⎦

=E

[ ∑
s<u≤t

f (Xu− , Xu)|�s

]
=E

⎡
⎣∫ t

s

∑
j �=Xu

qXu,jf (Xu, j)du|�s

⎤
⎦

=E

⎡
⎣∫ t

0

∑
j �=Xu

qXu,jf (Xu, j)du|�s

⎤
⎦−E

⎡
⎣∫ s

0

∑
j �=Xu

qXu,jf (Xu, j)du|�s

⎤
⎦ .

As
∫ s

0

∑
j �=Xu

qXu,jf (Xu, j)du is �s-measurable, we can conclude that

E

⎡
⎣ ∑

0<u≤t

f (Xu− , Xu) −
∫ t

0

∑
j �=Xu

qXu,jf (Xu, j)du|�s

⎤
⎦

=
∑

0<u≤s

f (Xu− , Xu) −
∫ s

0

∑
j �=Xu

qXu,jf (Xu, j)du;

that is, ∑
0<u≤t

f (Xu− , Xu) −
∫ t

0

∑
j �=Xu

qXu,jf (Xu, j)du

is an �t-martingale.

Example 3. Let (Xt)t≥0 be a birth-and-death process with parameters λn and μn, such that
E[X0] < ∞. If

∑∞
n=0

∫ t
0 λnP(Xs = n)ds < ∞, the number of upward jumps in (0, t] is N+

t =∑∞
n=0 Nt(n, n + 1).
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From Theorem 3.1, we have that

Nt(n, n + 1) − λn

∫ t

0
1{Xs=n}ds

is an �t-martingale.
As
∑∞

n=0

∫ t
0 λnP(Xs = n)ds < ∞, we have that

∞∑
n=0

Nt(n, n + 1) −
∞∑

n=0

λn

∫ t

0
1{Xs=n}ds

is an �t-martingale.
It then follows from Definition 4 that the cumulative inaccuracy measure at time t between

N+
t and N+∗

t is

CRIt(N
+
t ), N+∗

t ) = E

[ ∞∑
n=0

∫ t

0

(
λn

∫ s

0
1{UXu =0}1{Xu=n}du

)
ds

]

+E

[ ∞∑
n=0

∫ t

0
λ∗

n

(∫ s

0
1{UXu=1}1{Xu=n}du

)
ds

]
.

Furthermore, the number of downward jumps in (0, t] is N−
t =∑∞

n=0 Nt(n, n − 1), associated
with the �t-martingale

Nt(n, n − 1) − μn

∫ t

0
1{Xs=n}ds.

As E[X0] < ∞ and E[
∑∞

n=0 Nt(n, n + 1)] < ∞, we have

E

[ ∞∑
n=1

Nt(n, n − 1)

]
≤E

[ ∞∑
n=0

Nt(n, n + 1)

]
+E[X0] < ∞.

So we have ∞∑
n=1

Nt(n, n − 1) −
∞∑

n=1

μn

∫ t

0
1{Xs=n}ds

as an �t-martingale.
It then follows from the definition that the cumulative inaccuracy measure at time t between

N−
t and N−∗

t is

CRIt(N
−
t ), N−∗

t ) =E

[ ∞∑
n=1

∫ t

0
μn

(∫ s

0
1{UXu =0}1{Xu=n}du

)
ds

]

+E

[ ∞∑
n=1

∫ t

0

∞∑
n=1

μ∗
n

(∫ s

0
1{UXu=1}1{Xu=n}du

)
ds

]
.

The cumulative inaccuracy measure at time t of the birth-and-death process is

CRIt(Nt, N∗
t ) = CRIt(N

+
t , N+∗

t ) + CRIt(N
−
t , N−∗

t ).
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A birth-and-death process is a pure birth process if μn = 0 for all n. If the birth rate λn = λ,
for all n, the pure birth process is simply a Poisson process.

As above, we have that

Nt =
∞∑

n=0

Nt(n, n + 1) −
∞∑

n=0

λ

∫ t

0
1{Xs=n}ds

is an �t-martingale.
To evaluate the cumulative inaccuracy measure at time t between the counting process N∗

t
related to the Markov chain (X∗

t )t≥0 with parameter λ∗—which represents the experimenter’s
information about the true Markov chain (Xt)t≥0 having parameter λ—and the counting process
Nt which corresponds to the latter, using Definition 4 we obtain

CRIt(Nt, N∗
t )

=E

[ ∞∑
n=0

∫ t

0

(∫ s

0
1{Un=0}λ1{Xu=n}du

)
ds

]
+E

[ ∞∑
n=0

∫ t

0

(∫ s

0
1{Un=1}λ∗1{Xu=n}du

)
ds

]

=
∞∑

n=0

∫ t

0

(∫ s

0

λ

λ + λ∗ λP(Xu = n)du

)
ds +

∞∑
n=0

∫ t

0

(∫ s

0

λ∗

λ + λ∗ λ∗
P(Xu = n)du

)
ds

=
∞∑

n=0

∫ t

0

(∫ s

0

λ

λ + λ∗ λe−λu (λu)n

n! du

)
ds +

∞∑
n=0

∫ t

0

(∫ s

0

λ∗
λ + λ∗ λ∗e−λ∗u (λ∗u)n

n! du

)
ds.

Remark 4. From the above discussion on the Poisson process example, we can observe the
importance and essence of the indicator process in Definition 4.

Example 4. If in particular, in Theorem 3.1, we choose f to be f (i, j) = 1{i=k}1{j=l}, then∑
0<u≤t

f (Xu− , Xu) = Nt(k, l)

is the number of transitions from state k to state l in the interval (0, t]. The �t-compensator of
Nt(k, l) is qk,l

∫ t
0 1{Xu=k}du, and

E

[
qk,l

∫ t

0
1{Xu = k}du

]
= qk,l

∫ t

0
P(Xu = k)du ≤ qk,lt < ∞,

by hypothesis.
To evaluate the cumulative inaccuracy measure at time t between the counting process

N∗
t (k, l) related to the Markov chain (X∗

t )t≥0 with infinitesimal matrix Q∗ = [q∗
i,j], i, j ∈ N+—

which represents the experimenter’s information about the true Markov chain (Xt)t≥0 having
infinitesimal matrix Q = [qi,j], i, j ∈ N+—and the counting process Nt(k, l) which corresponds
to the latter, using Definition 4 we obtain

CRIt(N(k, l), N(k, l)∗) =E

[∫ t

0
qk,l

(∫ s

0
1{Uk=0}1{Xu=k}du

)
ds

]

+E

[∫ t

0
q∗

k,l

(∫ s

0
1{Uk=1}1{Xu=k}du

)
ds

]
.
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Once again, as in Remark 2, we observe the importance and essence of the indicator process
in Definition 4.

Example 5. Another interesting choice of f is given by f (i, j) = 1{j=l}, in which case

∑
0<u≤t

f (Xu− , Xu) = Nt(l)

is the number of transitions into state l during the interval (0, t]. The �t-compensator of Nt(l) is∫ t

0

∑
i �=l

qi,l1{Xu=i}du,

provided ∑
i �=l

∫ t

0
qi,l1{Xu=i}du < ∞.

To evaluate the cumulative inaccuracy measure at time t between the counting process
N∗

t (l) related to the Markov chain (X∗
t )t≥0 with infinitesimal matrix Q∗ = [q∗

i,j], i, j ∈ N+,
which represents the experimenter’s information about the true Markov chain (Xt)t≥0 that has
infinitesimal matrix Q = [qi,j], i, j ∈ N+, and the counting process Nt(l) which corresponds to
the latter, using Definition 4 we have

CRIt(N(l), N∗(l)) =E

⎡
⎣∫ t

0

⎛
⎝∫ s

0

∑
i �=l

1{Ui=0}qi,l1{Xu=i}du

⎞
⎠ ds

⎤
⎦

+E

⎡
⎣∫ t

0

⎛
⎝∫ s

0

∑
i �=l

1{Ui=1}q∗
i,l1{Xu=i}du

⎞
⎠ ds

⎤
⎦ .

Here again, as in Remark 2, we observe the importance and essence of the indicator process
in Definition 4.

3.2. Markov chain characterization through cumulative inaccuracy measure for a pro-
portional risk process

A Markov chain characterization through the cumulative inaccuracy measure for a propor-
tional risk process can be obtained as follows.

Let (Xt)t≥0 be a right-continuous N+-valued �t-Markov chain that is stable and conserva-
tive, with left-hand limits, associated occurrence times T = (Tn)n≥0 with T0 = 0, and matrix
of infinitesimal characteristics Q = [qi,j], (i, j) ∈ N+ × N+. Let the sequence of occurrence
times S = (Sn)n≥0, with S0 = 0, and the matrix of infinitesimal characteristics Q∗ = [q∗

i,j],
(i, j) ∈ N+ × N+, be asserted as information about the true Markov chain. We say that T and S
satisfy the proportional risk hazard process if q∗

i,j = αqi,j, 0 < α ≤ 1, for all (i, j) ∈ N+ × N+.

Theorem 5. If T and S satisfy the proportional risk hazard process, then the cumulative
residual inaccuracy measure at time t, CRIt(NT, NS), uniquely determines the process (Xt)t≥0.

Proof. Let(Xt)t≥0 be a right-continuous N+-valued �t-Markov chain with associated occur-
rence times Tk and infinitesimal characteristics Qk = [qk

i,j], (i, j) ∈ N+ × N+, and let Sk be the
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occurrence times with infinitesimal characteristics Qk∗ = [qk∗
i,j ], (i, j) ∈ N+ × N+, for k = 1, 2.

We then have
CRIt(N

1, N1∗) = CRIt(N
2, N2∗)

↔E

⎡
⎣∫ t

0

∫ s

0

∑
j �=Xu

1{UXu =0}q1
Xu,jf (Xu, j)duds

⎤
⎦

+E

⎡
⎣∫ t

0

∫ s

0

∑
j �=Xu

1{UXu=1}α1q1∗
Xu,jf (Xu, j)duds

⎤
⎦

=E

⎡
⎣∫ t

0

∫ s

0

∑
j �=Xu

1{UXu =0}q2
Xu,jf (Xu, j)duds

⎤
⎦

+E

⎡
⎣∫ t

0

∫ s

0

∑
j �=Xu

1{UXu=1}α2q2∗
Xu,jf (Xu, j)duds

⎤
⎦ .

However, as the infinitesimal characteristics qk
X

Tk
n
,X

Tk
n+1

are associated with occurrence times

Tk, we have ∑
n

qk
X

Tk
n
,X

Tk
n+1

= 1,

implying that ∑
n

qX
Sk
n
,X

Sk∗
n+1

= 0,

and
qk

X
Sk
n
,X

Sk
n+1

= 0

for all n and k = 1, 2; that is, the process does not jump at time Sn:∫ t

0

∫ s

0

∑
j �=Xu

1{UXu =1}αkqk
Xu,jf (Xu, j)duds] = 0, k = 1, 2.

Hence, the result follows from the equivalence equations given by

CRIt(N
1, N1∗) = CRIt(N

2, N2∗)

↔E

⎡
⎣∫ t

0

∫ s

0

∑
j �=Xu

1{UXu =0}q1
Xu,jf (Xu, j)duds

⎤
⎦

=E

⎡
⎣∫ t

0

∫ s

0

∑
j �=Xu

1{UXu =0}q2
Xu,jf (Xu, j)duds

⎤
⎦

↔E

⎡
⎣∫ t

0

∫ s

0

∑
j �=Xu

1{UXu =0}[q1
Xu,j − q2

Xu,j]f (Xu, j)duds

⎤
⎦= 0
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↔E

⎡
⎣∫ t

0

∫ s

0

∑
j �=Xu

1{UXu =0}[q1
Xu,j − q2

Xu,j](1{q1
Xu,j>q2

Xu,j}

⎤
⎦

+E

[
1{q1

Xu,j≤q2
Xu,j})f (Xu, j)duds

]
= 0 ↔

E

⎡
⎣∫ t

0

∫ s

0

∑
j �=Xu

1{UXu =0}[q1
Xu,j − q2

Xu,j]1{q1
Xu,j>q2

Xu,j}f (Xu, j)duds

⎤
⎦=

E

⎡
⎣∫ t

0

∫ s

0

∑
j �=Xu

1{UXu=0}[q2
Xu,j − q1

Xu,j]1{q1
Xu,j≤q2

Xu,j}f (Xu, j)duds

⎤
⎦

↔E

⎡
⎣∫ t

0

∫ s

0

∑
j �=Xu

1{UXu =0}|q1
Xu,j − q2

Xu,j|(1{q1
Xu,j>q2

Xu,j} − 1{q1
Xu,j≤q2

Xu,j})f (Xu, j)duds

⎤
⎦= 0.

As {q1
Xu,j

> q2
Xu,j

} ∩ {q1
Xu,j

≤ q2
Xu,j

} = ∅ and the integrand is positive in the above equation,

we have |q1
Xu,j

− q2
Xu,j

| = 0 for all (i, j) ∈ N+ × N+, and thus Q1 = Q2 characterize the same
process (Xt)t≥0. �

3.3. Cumulative inaccuracy measure between coherent systems

We now consider a coherent system with n independent components, as in Barlow and
Proschan [4], subject to failures and repairs according to a birth-and-death process. The state
of component i, for 1 ≤ i ≤ n, denoted by Xt(i), assumes values in the space {0, 1}, where 1
represents an operating state and 0 a repair state. Starting from an operating state, component
i continues operating for a length of time that is exponentially distributed with parameter λ(i),
and starting from a repair state, component i continues in repair for a length of time that is
exponentially distributed with parameter μ(i). We observe

σ {Xs(i), 1 ≤ i ≤ s, 0 ≤ s < t}.
The coherent system is known to depend on its component vector Xt =

(Xt(1), Xt(2), . . . , Xt(n)) through its structure function

φt = φ(Xt) = φ(Xt(1), Xt(2), . . . , Xt(n)),

which is a monotone increasing function, and each component in the system is relevant; that
is, there is a time t and a configuration of component states Xt such that

φ(1i, Xt) − φ(0i, Xt) = 1,

where a 1 (resp. 0) in position i denotes an operating (resp. repair) state.
If we set Nt(i) to be the number of failed components i up to time t, from the Doob–Meyer

decomposition we know that

Nt(i) −
∫ t

0
λ(i)Xs(i)ds

is an �t-martingale. Furthermore, the number of system failures up to t is given by

Nt(φ) =
n∑

i=1

∫ t

0
[φ(1i, Xs) − φ(0i, Xs)]dNs(i).
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Let us now consider the process φ(1i, Xs− ) − φ(0i, Xs− ) to be a predictable version of
φ(1i, Xs) − φ(0i, Xs). Because at a jump of Nt(i) no other components change their status,
we have that

Nt(φ) −
n∑

i=1

∫ t

0
[φ(1i, Xs) − φ(0i, Xs)]λ(i)Xs(i)ds

= Nt(φ) −
n∑

i=1

∫ t

0
[φ(1i, Xs− ) − φ(0i, Xs− )]λ(i)Xs(i)ds

=
n∑

i=1

∫ t

0
[φ(1i, Xs) − φ(0i, Xs)][dNs(i) − λ(i)Xs(i)ds]

is an �t-martingale; that is, the �t-compensator of Nt(φ) is

n∑
i=1

∫ t

0
[φ(1i, Xs) − φ(0i, Xs)]λ(i)Xs(i)ds.

Also, using the same arguments, we can prove that the number of system repairs up to t,
given by Mt(φ), has �t-compensator

∫ t

0

n∑
i=1

[φ(1i, Xs) − φ(0i, Xs)]μ(i)(1 − Xs(i))ds.

The total operating and repair process, (Nt(φ) + Mt(φ))t≥0, has compensator

n∑
i=1

∫ t

0
[φ(1i, Xs) − φ(0i, Xs)]λ(i)Xs(i)ds +

n∑
i=1

∫ t

0
[φ(1i, Xs) − φ(0i, Xs)]μ(i)(1 − Xs(i))ds,

and the cumulative inaccuracy measure at time t between (Nt(φ) + Mt(φ))t≥0 and (N∗
t (φ) +

M∗
t (φ))t≥0, with parameters λ∗ and μ∗ proposed by the experimenter, is then given by

CRIt(Nt(φ) + Mt(φ), N∗
t (φ) + M∗

t (φ))

=E

[
n∑

i=1

∫ t

0

(∫ s

0
[φ(1i, Xu) − φ(0i, Xu)]1{UXu=0}λ(i)Xu(i)du

)
ds

]

+E

[
n∑

i=1

∫ t

0

(∫ s

0
[φ(1i, Xu) − φ(0i, Xu)]1{UXu=1}μ(i)(1 − Xu(i))du

)
ds

]

+E

[
n∑

i=1

∫ t

0

(∫ s

0
[φ(1i, Xu) − φ(0i, Xu)]1{UXu=0}λ∗(i)Xu(i)du

)
ds

]

+E

[
n∑

i=1

∫ t

0

(∫ s

0
[φ(1i, Xu) − φ(0i, Xu)]1{UXu=1}μ∗(i)(1 − Xu(i))du

)
ds

]
.

Example 6. Let φt = min{Xt(1), . . . , Xt(n)} be an n-component series system, subject to fail-
ures and repairs according to a birth-and-death process. As before, Xt(i) assumes values in the
space {0, 1}, where 1 denotes an operating state and 0 a repair state. Starting from an operating
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state, component i continues operating for a length of time that is exponentially distributed
with parameter λ, and starting from a repair state, component i continues in repair for a length
of time that is exponentially distributed with parameter μ.

The number of system failures up to t is given by

Nt(φ) =
n∑

i=1

∫ t

0
φ(1i, Xs)dNs(i),

and the �t-compensator of Nt(φ) is

n∑
i=1

∫ t

0
φ(1i, Xs)λXs(i)ds.

Also, the number of system repairs up to t, given by Mt(φ), has �t-compensator

n∑
i=1

∫ t

0
φ(1i, Xs)μ(1 − Xs(i))ds.

The total operating and repair process, (Nt(φ) + Mt(φ))t≥0, has compensator

n∑
i=1

[∫ t

0
φ(1i, Xs)λXs(i)ds +

∫ t

0
φ(1i, Xs)μ(1 − Xs(i))ds

]
,

and the cumulative inaccuracy measure at time t between (Nt(φ) + Mt(φ))t≥0 and (N∗
t (φ) +

M∗
t (φ))t≥0, with parameters λ∗ and μ∗ proposed by the experimenter, is then given by

CRIt(Nt(φ) + Mt(φ), N∗
t (φ) + M∗

t (φ))

=E

[
n∑

i=1

∫ t

0

∫ s

0
φ(1i, Xu)1{UXu=0}λXu(i)duds

]

+E

[∫ t

0

∫ s

0
φ(1i, Xu)1{UXu =1}μ(1 − Xu(i))duds

]

+E

[
n∑

i=1

∫ t

0

∫ s

0
φ(1i, Xu)1{UXu=0}λ∗Xu(i)du

]

+E

[∫ t

0

∫ s

0
φ(1i, Xu)1{UXu=1}μ∗(1 − Xu(i))duds

]

=
n∑

i=1

∫ t

0

∫ s

0

[
λ

λ + μ
λP(Xu(i) = 1) + μ

λ + μ
μP(Xu(i) = 0)

]
duds

+
n∑

i=1

∫ t

0

∫ s

0

[
λ∗

λ∗ + μ∗ λ∗
P(Xu(i) = 1) + μ∗

λ∗ + μ∗ μ∗
P(Xu(i) = 0)

]
duds.
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If the components are in a stationary state, with P(X0(i) = 1) = λ
λ+μ

or P(X∗
0 (i) = 1) =

λ∗
λ∗+μ∗ , we have

CRIt(Nt(φ) + Mt(φ), N∗
t (φ) + M∗

t (φ))

=
n∑

i=1

∫ t

0

∫ s

0

[(
λ

λ + μ

)2

λ +
(

μ

λ + μ

)2

μ

]
duds

+
n∑

i=1

∫ t

0

∫ s

0

[(
λ∗

λ∗ + μ∗

)2

λ∗ +
(

μ∗

λ∗ + μ∗

)2

μ∗
]

duds

= n

[(
λ

λ + μ

)2

λ +
(

μ

λ + μ

)2

+
(

λ∗

λ∗ + μ∗

)2

λ∗ +
(

μ∗

λ∗ + μ∗

)2

μ∗
]

t2

2
.

4. Concluding remarks

In the framework of univariate point processes and martingale theory, a convenient way
of working on dependence problems, we analyze here an inaccuracy measure between two
univariate non-explosive point processes. In the first part, we deal with the concept of the
cumulative inaccuracy measure for non-explosive point processes, and we consider its appli-
cations to a minimal repair point process and to a minimally repaired coherent system. Next,
we specialize the cumulative inaccuracy measure to point process occurrence times relative
to Markov chains. Special attention is paid to the case when the processes satisfy the propor-
tional risk process properties, in which case we can characterize the Markov chain through the
cumulative inaccuracy measure. We demonstrate the theoretical results using several exam-
ples of applications to birth-and-death processes and pure birth processes. We also apply the
results to a coherent system, observed physically, at the component level, subjected to failure
and repair according to a Markovian property. We are currently examining the comparison of
point process cumulative residual inaccuracy measures through stochastic inequalities; we aim
to use conditional classes of distributions studied extensively in reliability theory. We hope to
report these findings in a future paper.
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