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Abstract – Benthic macroinvertebrates are considered as a representative taxon that indicates the ecological
status of freshwater ecosystems. Numerous indices derived from community data have been proposed to
estimate either biological water quality or ecosystem health. In this study, metrics based on benthic macro-

invertebrates at the family level were screened using ecological informatics to provide a multi-metric
measurement that would be suitable for presenting ecological integrity across different levels of environmental
impact. Benthic macroinvertebrates were collected at a total of 720 sample sites from river basins and streams

in Korea in 2009. Based on four categories of community status (i.e., diversity, richness, tolerance, and
composition), 37 metrics were selected as initial candidates according to the literature. The candidate metrics
were evaluated according to parameters including discriminatory power, redundancy, and responsiveness

to stressors. Self-organizing map was utilized to assist the screening procedure by providing ordination,
clustering, and visualization of metric and environmental data. Six metrics were finally selected as a multi-
metric and were compared with conventional indicators for presenting the ecological integrity of streams.
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Introduction

Benthic macroinvertebrate communities play a key role
in the functioning of aquatic ecosystems by filling the gap
between producers (i.e., benthic algae) and higher con-
sumers (i.e., fishes). Characteristics including high diver-
sity, sedentariness of life style, and a relatively long life
span (i.e., season–year) in benthic macroinvertebrates
make them suitable for continuous monitoring of ecologi-
cal status in an integrative manner. Benthic macroinverte-
brates have been used as efficient indicator taxa for
ecological evaluation of environmental impact in aquatic
ecosystems (Hawkes, 1979; Rosenberg and Resh, 1993;
Barbour et al., 1996; Reynoldson et al., 1997; Wright et al.,
2000). Various biological indices have been developed to
present biological water quality including the Hilsenhoff
biotic index (Hilsenhoff, 1987), invertebrate community
index (Karr & Chu, 1999), biological monitoring working
party (BMWP) (Walley and Hawkes, 1996, 1997),
average score per taxon (Armitage et al., 1983), and
Ephemeroptera, Plecoptera, and Trichoptera (EPT)

richness (Lenat, 1988). Due to the high diversity and
abundance of benthic macroinvertebrates, numerous
metrics have been proposed to estimate ecological integrity
(Lenat, 1993; Barbour et al., 1995, 1996; Reynoldson et al.,
1997; Blocksom et al., 2002; Klemm et al., 2002). Up to
237 metrics (Whittier et al., 2007) have been reported and
accordingly evaluated in streams (Kerans and Karr, 1994;
Barbour et al., 1999; Klemm et al., 2002; Blocksom, 2003;
Böhmer et al., 2004; Ode et al., 2005; Whittier et al.,
2007; Stoddard et al., 2009) and in lakes (Blocksom et al.,
2002; Solimini et al., 2008; Taowu et al., 2008; Trigal et al.,
2009). The criteria used for selection were the degree
of gradient (i.e., presenting the overall impact of
an environment), discriminatory power (Blocksom et al.,
2002; Klemm et al., 2003), and the decrease in redundancy
among similar metrics (Klemm et al., 2003).

One difficulty in using metrics, however, lies in their
multitude: a large number of metrics should be decreased
to produce a small, but practical number of metrics to
present ecological integrity more promptly and effectively.
In this study, we demonstrated a screening procedure
using ecological informatics. The self-organizing map
(SOM) was utilized for extracting information from the*Corresponding author: tschon@pusan.ac.kr
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metric data. The SOM has been an efficient tool for
clustering and visualization of complex data without prior
knowledge, and has been extensively used for patterning
communities of benthic macroinvertebrates since the
1990s (Chon et al., 1996; Park et al., 2003; Song et al.,
2007). The SOM was utilized for assisting with the
screening procedure, covering discriminatory power,
estimating the degree of association, and evaluating
responsiveness to environmental impact. In this study, a
multi-metric is proposed to present ecological integrity in
streams across different levels of pollution.

Materials and methods

Process of metric evaluation

Metrics screening was conducted under guidelines to
secure objectivity in presenting ecological states, and to
achieve simplicity and promptness in evaluation. The
overall selection procedure is presented in a flow chart
(Fig. 1), which displays the discriminatory power estima-
tion (Barbour et al., 1996), for determining degree of
association and checking responsiveness to stressors
(Blocksom et al., 2002). To extract information from

community and environmental data, the SOMs were
applied three times during the screening procedure for:
(1) ordination of metrics for assisting the gradient
evaluation, (2) checking redundancy (i.e., degree of
association) among metrics through clustering, and (3)
evaluation of responsiveness to water quality data based
on visualization (Fig. 1). Detailed procedures will be
discussed along with the step-by-step screening processes
presented in the Results section.

Community data

The data used for measuring metrics were obtained
from a research project “the Survey and Evaluation of
Aquatic Ecosystem Health in Korea” supported by
The Ministry of Environment and National Institute of
Environmental Research, Korea. A total of 720 sites were
selected in streams including the four largest river water-
sheds in Korea: Han River (320 sites), Nakdong River
(130 sites), Keum River (130 sites), and Yeongsan–
Seomjin Rivers (140 sites). Benthic macroinvertebrates
were surveyed two times separately in spring (April) and
autumn (September) in 2009. Samples were collected with
a Surber sampler (30r30 cm2; mesh size 1 mm), in three
replications, in riffle areas of the streams. After fixation in
95% ethyl alcohol in the field, the samples were trans-
ported to the laboratory for sorting and identification, and
were stored in 80% ethyl alcohol. Densities were converted
to unit area (1 m2). Community indices including species
richness, diversity (Shannon and Weaver, 1949), evenness
(Pielou, 1975), dominance (McNaughton, 1967), and bio-
logical indicators such as Korean saprobic index (KSI)
(Won et al., 2006) and the revised BMWP (Walley and
Hawks, 1997) were measured based on the community
data.

Water quality indicators including biochemical oxygen
demand (BOD), NH3-N, NO3-N, total nitrogen (TN),
and PO4-P, total phosphorus (TP) were also obtained
from the same sample sites according to the guidelines of
the “National Surveys for Stream Ecosystem Health” in
Korea (MOE/NIER, 2008).

Initial candidate metrics

Considering that classification of macroinvertebrates
to the levels of genus and species requires an exceptionally
high level of effort (i.e., delay in classification), we focused
on family-based metrics in this study, and emphasized
promptness and objectivity in evaluation of ecological
integrity in situ. Based on the literature (Barbour et al.,
1999; Blocksom et al., 2002; Klemm et al., 2002; Klemm
et al., 2003; Böhmer et al., 2004; Ode et al., 2005; Hargett
and Zumberge, 2006; Purcell et al., 2009), 37 metrics were
initially chosen from community data of benthic macro-
invertebrates (Table 1). Kerans and Karr (1994) and
Klemm et al. (2003) proposed five categories of metrics
including richness, tolerance, composition, functional

Fig. 1. Screening procedure of a multi-metric based on benthic
macroinvertebrates in streams.
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feeding group, and habitat type, while Stoddard et al.
(2009) classified candidate metrics in six categories with
the addition of diversity. In this study, we chose four
categories: diversity, richness, tolerance, and composition,
because functional feeding groups and habitat types
frequently overlapped within the family level (e.g.,
Baetidae presenting scraper and collector–gatherer at the
same time). In each class, degree of responsiveness to
disturbance, simplicity of measurement, and data avail-
ability were further considered as additional criteria for
choosing the candidates. Additionally, direction of re-
sponse to stress was also considered; indicators showing
both positive (e.g., family biotic index (FBI), percent of
Chironomidae individuals), and negative (e.g., BMWP,
Shannon diversity index) responses to stressors were
included together in the list (Table 1).

SOM

We utilized the SOM for patterning of macroinverte-
brate communities (Ward, 1963; Park et al., 2003). The
output layer consists of LrM computation nodes in
the SOM. Each neuron is represented as j; the output
layer is arranged in two dimensions for convenience
of visual understanding. Suppose community data con-
taining S species and the density of species (i) is expressed
as a vector (xi). The vector (xi) is considered to be an
input layer to the SOM. In the network, each node (j) of
the output layer is connected to each node (i) of the
input layer. The connectivity is represented as the weights,
wij(t), which adaptively change in each iteration of
calculation, (t). Initially, the weight is randomly assigned
in small values. Each neuron of the network computes

Table 1. Initial candidate metrics of benthic macroinvertebrates based on the literature for selection of a multi-metric.

Class Abbreviation Metric Response to stress* Literature**
Diversity SMDIV Simpson diversity x 2, 3, 8

SHDIV Shannon diversity x 2, 3, 4, 5, 8
EVN Evenness x 8
DOM1 Dominance of 1st family + 1, 2, 5, 6, 7, 8
DOM2 Dominance of 1st and 2nd families + 2, 8

Richness FAM Number of families x 1, 2, 5, 6, 7, 8
FEPT Number of EPT families x 1, 2, 3, 4, 5, 6, 7, 8
FEPH Number of Ephemeroptera families x 1, 2, 3, 5, 6, 7, 8, 8
FPLE Number of Plecoptera families x 1, 2, 3, 4, 5, 6, 7, 8
FTRI Number of Trichoptera families x 1, 2, 3, 4, 5, 6, 7, 8
FCRU Number of Crustacea families x 3
FMOL Number of Mollusca families x 3
% FEPT Percent of EPT families x 2, 6, 7, 8
% FEPH Percent of Ephemeroptera families x 2, 6, 7, 8
% FPLE Percent of Plecoptera families x 2, 6, 7, 8
% FTRI Percent of Trichoptera families x 2, 3, 6, 7, 8
% FCRU Percent of Crustacea families x 3
% FMOL Percent of Mollusca families x 3

Tolerance FBI Family biotic index + 1, 2, 6, 8
FINT Number of intolerance families x 1, 2, 3, 5, 6, 8
FTOL Number of tolerance families + 5, 8
FFAC Number of facultative families ¡ 8
% FINT Percent of intolerance families x 2, 6, 8
% FTOL Percent of tolerance families + 2, 3, 5, 6, 8
% FFAC Percent of facultative families ¡ 2, 8
% NINT Percent of intolerance individuals x 5, 8
% NTOL Percent of tolerance individuals + 1, 3, 5, 8
% NFAC Percent of facultative individuals ¡ 8

Composition % NEPT Percent of EPT individuals x 1, 3, 4, 5, 6, 8
% NEPH Percent of Ephemeroptera individuals x 1, 2, 3, 5, 6, 7, 8
% NPLE Percent of Plecoptera individuals x 2, 3, 4, 5, 6, 7, 8
% NTRI Percent of Trichoptera individuals x 2, 5, 6, 7, 8
% NCHI Percent of Chironomidae individuals + 1, 2, 5, 6, 7, 8
% NNINS Percent of non-insect individuals ¡ 3, 6, 8
% NCRU Percent of Crustacea individuals ¡ 3, 4, 5
% NOLI Percent of Oligochaeta individuals + 5, 6, 7, 8
% NMOL Percent of Mollusca individuals ¡ 5

*+ , positive; x , negative; ¡ , both.

**1: Barbour et al. (1999), 2: Klemm et al. (2002), 3: Klemm et al. (2003), 4: Böhmer et al. (2004), 5: Ode et al. (2005), 6: Hargett and
ZumBerge (2006), 7: Purcell et al. (2009), and 8: Blocksom et al. (2002).
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the summed distance between the weights, and the
distance dj(t) at the output node (j) is calculated as shown
below:

dj tð Þ ¼
XS�1

i¼0

xi � wij tð Þ
� �2

: ð1Þ

The neuron responding maximally to a given input vector
was chosen to be the winning neuron, the weight vector of
which has the shortest distance to the input vector. The
winning neuron, and possibly its neighboring neuron(s), is
allowed to learn by changing the connecting weights in a
manner to further reduce the distance between the weight
and the input vector as shown below:

wij tþ 1ð Þ ¼ wij tð Þ þ a tð Þ xi � wij tð ÞZj

� �
; ð2Þ

where Zj is assigned to 1 for the winning (and its
neighboring) neuron(s), while it is assigned 0 for the rest
neurons, and a(t) denotes the fractional increment of the
correction.

After training, the Ward’s linkage method (Ward,
1963) was applied to the weights of the SOM for clustering
the patterned nodes. The initialization and training pro-
cesses followed suggestions by the SOM Toolbox by
allowing optimization in a logarithm (Zurada, 1992;
Chon et al., 1996; Vesanto et al., 2000) developed by the
Laboratory of Information and Computer Science at the
Helsinki University of Technology (http://www.cis.hut.fi/
projects/somtoolbox/) under Matlab environments (The
Mathworks Inc., 2001). A detailed description regarding
application of the SOM to ecological data is provided by
Park et al. (2003).

The input values having greatly different values in
densities are avoided for training. The data were trans-
formed by a natural logarithm to emphasize the differ-
ences in low densities. Subsequently, the transformed data
were proportionally normalized between 0 and 1 in the
range of the maximum and minimum density for each
species collected during the survey period.

Results

Environmental factors

Differences of environmental factors (mainly consisting
of water quality indicators) measured in the sampling sites
were patterned by the SOM (108=12r9 nodes) (Fig. 2a).
The clusters were formed according to different levels of
pollution along with the vertical gradient. Based on the
Ward’s linkage method (Ward, 1963) seven clusters were
observed (Fig. 2b). The less polluted sites were grouped in
clusters 1 and 3 in the upper area, while the polluted sites
were placed in the bottom area in clusters 2, 4, 5, and 7
(Fig. 2a).

The profiles of water quality indicators were visualized
on the SOM (Fig. 2c); BOD, TN and NO3-N spanned a
broad range in the map. BOD tended to show the vertical
gradient, while the water quality factors such as TN, and
NO3-N presented the diagonal gradients. The values for
NH3-N and PO4-P, however, appeared only in a limited
range on the map (Fig. 2c).

Metrics clustering

The initial 37 candidate metrics were used to form an
input data matrix to be trained with the SOM in two ways:
patterning sample sites (variables; 37 metrics, and cases;
sample sites), and revealing association of metrics by
transposing the data matrix (Fig. 1).

Gradient

Similar to the case of environmental factors (Fig. 2a),
the sampling sites were classified based on the metrics
(Figs. 3a and 3b), and the classification revealed differ-
ences of their pollution levels. A division was observed
between the clusters presenting the severely polluted sites
(clusters 2, 6, and 7) in the bottom area, and the clusters
presenting the intermediately polluted sites (clusters 4

Fig. 2. Clustering of the sampling sites on the SOM based on water quality indicators. (a) Clusters, (b) dendrogram based on Ward’s

linkage method, and (c) profiles of water quality indicators.
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and 5) in the middle area of the map. Each cluster was
presented by different groups of metrics. Cluster 1, for
instance, accommodated the largest group of the sampling
sites with high diversity and species richness, whereas
cluster 6 covered communities with comparatively low
diversity indices.The clusterswere also characterizedbydif-
ferent taxa. Plecoptera, Ephemeroptera, and Trichoptera
were abundant in clusters 1–5, whereas Oligochaeta and
Chironomidae were more collected in clusters 2 and 6.
Mollusca were frequently observed in cluster 7.

For comparison of SOM classification in metric and
water quality factors, the number of clusters was fixed to
seven clusters in each dataset. The order of clusters was
arranged according to the order of high value (e.g., level of
water quality indicators in the y-axis in Fig. 4). The
gradients in metrics and water quality indicators were

accordingly observed (Fig. 4). As expected, the gradients
of water quality indicators were observed when the same
variables were visualized across the clusters (Fig. 4b). It
was notable that the gradient in metric (Fig. 4a) was also
similar to the gradient shown in the water quality
indicators. This indicated that the SOM patterning based
on metrics and water quality factors showed similar trends
in presenting the level of environmental impact.

Discriminatory power

Profiles of the metric data were further visualized
on the SOM using weight vectors of each metric in the
trained SOM (Fig. 3c). Dark gray indicates high value
for each metric, whereas light one presents low value.
Values were rescaled in minimum and maximum to

Fig. 3. Clustering of the sampling sites on the SOM based on the metrics. (a) Clusters, (b) dendrogram based on Ward’s linkage
method, and (c) profiles of metrics in different groups (SOMs for group vii in Fig. 3c are examples for metrics belonging to this group).

Fig. 4.Differences in water quality indicators across different clusters on the SOM trained with metrics (a) and water quality indicators
(b). Error bar indicates standard error.
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visualize distribution gradient. We made seven groups of
candidate metrics based on their distribution gradient
patterns for the selection of metric for further screening.
Vertical distribution (groups i and ii) was initially
considered for showing a higher level of discriminatory
power explained in the next section. Horizontal (group iii)
and diagonal (groups iv and v) distributions could be
secondarily considered for selecting the candidates. Some
metrics such as % NMOL and % FMOL were only in a
limited area (group vii), whereas two metrics %NTRI and
% NFAC (group vi) distributed widely without showing
clear distribution gradient.

Discriminatory power is defined as the ability to
discriminate between unpolluted and polluted sites (i.e.,
showing wider and higher separation). The scoring was
proposed by Barbour et al. (1996). The degree of impact
was scored 0 to 3, from minimum to maximum, in each
metric according to a Box-and-Whisker plot (Barbour
et al., 1996; Blocksom et al., 2002). Scoring of discrimina-
tory power has been applied to macroinvertebrates
(Blocksom et al., 2002; Klemm et al., 2002). When the
metrics were measured with the sampled data in between
maximum and minimum values, interquartile ranges could
be determined. If the metric showed no overlap of
interquartile ranges between unpolluted and polluted sites,
“3” was scored as the maximum discriminatory power.
When both medians of polluted or unpolluted sites were
outside of interquartile ranges, even though interquartile

ranges were overlapped, “2” was scored. If only one
median of polluted or unpolluted sites was outside of
interquartile ranges, “1” was scored. When both medians
of polluted or unpolluted sites were inside of interquartile
ranges, “0” was scored (Blocksom et al., 2002).

In this study, discriminative power was applied to
values of metrics visualized on the SOM (Fig. 3c).
According to the scoring system, metrics that scored “3”
in discriminatory power, or most highly scored metrics in
the same class, were selected for further evaluation. We
used the KSI (Won et al., 2006) as the standard indicator
for the reference index. Unpolluted sites corresponding
to an oligosaprobic condition were <0.7 in KSI values,
while polluted sites were >3.1, being equivalent to
a-mesosaprobic conditions in a saprobity range while the
maximum value was up to 4.6 (Won et al., 2006).
According to the observed values in determining water
quality in the minimal and maximal ranges, the sampling
sites with maximal KSI values ranging from the 75 percen-
tile to the 100 percentile were defined as polluted sites,
while the sampling sites presenting the KSI values less than
the 25 percentile were considered as unpolluted sites.

Within each group of metrics shown in Figure 3c, the
metrics were arranged in the order of high scores based on
discriminatory power. The class of metrics presenting
diversity, richness, tolerance, and composition were
considered together for screening. The list of the selected
metrics is presented in Table 2.

Table 2. Overall procedure and list of the screened metrics in evaluation of discrimination power, degree of association, and

response to stress.

Class

Metrics
Response to environmental factors

Association
Discrimination

power Score
Combined
evaluation

Increase/
decrease Sensitivity Multi-metric

Diversity SMDIV 2 SMDIV x sensitive SMDIV
SHDIV 2
EVN 1
DOM1 2
DOM2 2

Richness FAM 2
FEPT FEPT 3 FEPT x most sensitive among richness class FEPT

FEPH 3
FPLE 3
FTRI FTRI 3 FTRI x less sensitive than FEPT
% FEPT % FEPT 3 % FEPT x less sensitive than FEPT
% FPLE 3

Tolerance FBI 2
FINT FINT 3 FINT x less sensitive than % FINT
FTOL FTOL 3 FTOL + less sensitive than % FTOL

FFAC 0
% FINT % FINT 3 % FINT x most sensitive to stress % FINT
% FTOL % FTOL 3 % FTOL + less sensitive than % FTOL
% NINT 0
% NTOL % NTOL 3 % NTOL + better than % FTOL % NTOL

Composition % NEPT % NEPT 3 % NEPT x less sensitive than FEPT
% NEPH % NEPH 3 % NEPH x most sensitive in composition class % NEPH

% NTRI 2
% NCHI 2
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Association of metrics

In addition to patterning of the sampling sites, the
metrics were classified by the SOM to reveal degree of
association among metrics (Fig. 5). Considering that the
metrics presented within each cluster would be similar,
either one or several metrics could be selected to represent
the whole group of metrics within each cluster. Using this
method, redundancy among the similar metrics could be
minimized. Correlation coefficients between the metrics
were used to screen metrics within the clusters (Table 3).
The metrics showing the highest ranges of correlations
with other metrics were selected as the candidates.
Relatively higher levels of correlation coefficients were
observed in clusters 2 and 3 (Table 3). The metrics
presenting the majority of correlation coefficients >0.4
were chosen in this case. In cluster 1, the metrics, however,
showing correlation coefficients >0.2 were selected as
candidates for the next procedure, because correlation
coefficients were generally lower in this cluster compared
with other clusters. Through this process, 20 metrics were
chosen, including number of families (FAM), FBI,
Shannon diversity (SHDIV), and percent of tolerance
families (% FTOL) (Table 2).

Integrated evaluation

After the selection of metrics through SOM patterning,
the metrics were subsequently screened after combining
two datasets (i.e., gradient and association) (Fig. 1). The
metrics selected through this process mostly showed the
highest score of “3” as their discriminating power
(Table 2). In addition to these metrics, one index,
Simpson diversity (SMDIV), was chosen to represent the
class of diversity, because metrics in diversity were not
selected for discriminating power (Table 2). Direction of
response to stress (i.e., positive or negative) was also
presented together in the list.

Response to stress

The selected metrics were additionally screened accord-
ing to degree of responsiveness to environmental impact
(i.e., compatibility to physic-chemical factors) (Fig. 1). For
this purpose, water quality indicators patterned by the
SOM were used as a reference for selecting metrics. After
training with water quality indicators, the metric data were
superposed according to different clusters based on the
SOM (Fig. 6). Statistical differences of the metric values in
different clusters were evaluated through a multiple
comparison with the Tukey HSD test. Metrics showing
the higher degree of significance between clusters were
regarded as more responsive to environmental impact
(Fig. 6). For example, the number of EPT families (FEPT)
was significantly different in four groups (A–D), while the
percent of EPT families (% FEPT) was different in three
groups (A–C). Consequently, FEPT was regarded as being
more responsive to environmental impact than % FEPT.
Through this process, five metrics were finally selected to
form a new multi-metric as listed in Table 2: percent of
intolerance families (% FINT), percent of tolerance
individuals (% NTOL), FEPT, SMDIV, and percent of
Ephemeroptera individuals (% NEPH). A new scoring
system was coined as macroinvertebrate integrity score in
stream (MISS), based on the screening procedure pre-
sented in this study.

Scoring and evaluation

After final screening, actual MISS scores could be
given from field data. There are two criteria in scoring
multi-metrics (Simon and Lyons, 1995; Blocksom et al.,
2002): (a) setting value according to reference conditions
or based on distribution across all sampling sites (Simon
and Lyons, 1995); and (b) converting the value of metrics
either by discrete values of “1, 3, or 5” (Kerans and Karr,
1994) or by continuous values of “0–1” (Blocksom, 2003)

Fig. 5. Clustering of metrics on the SOM trained with the transposed dataset used in Figure 3. (a) Clusters and (b) dendrogram based

on Ward’s linkage method.
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or “0–10” (Stoddard et al., 2009). We chose metric
distributions across all sampling sites, because the field
data reflected various environmental impacts resulting
from minimal to maximal impact of pollution. The scores
were expressed in continuous values ranging from 0 to 1 in
this study, to be readily comparable with other biological
and non-biological indicators.

MISS scores and other indices were arranged along
with the ranks in Figure 7. MISS appeared to be most
suitable for presenting the integrity in a linear shape,
compared with other indices. In the case of “percent of
EPT taxa (% EPT)”, linearity was observed in the high
ranks, but showed numerous zero values at the lowest
ranks (i.e., no values given at the extremely polluted sites).
This type of index would not be feasible for identifying the

severely polluted states. FBI also showed a linear gradient
to the intermediate range from the highest rank; however,
it abruptly ended at the lowest range of the ranks.
Shannon diversity index appeared to be linear, but was
not strongly discriminative at the lowest ranks (Fig. 7).
The profiles of “KSI” appeared to be non-linear in the
middle range of the ranks between 150 and 300. MISS and
BMWP were consistently linear across a broad range.
However, discrimination in BMWP was not clearly
observed at the severely polluted sites, as illustrated by
showing the abrupt end at the lowest ranks when the
gradients at the lowest ranks were enlarged (Fig. 8). In
MISS, however, a gradual decrease was consistently
observed even in the range of the lowest ranks. Overall,
the gradient of MISS appeared to be more distinctive

% FEPH % NEPH % FEPT % NEPT % FFAC % NFAC % FINT % FTOL % NTOL FAM

Cluster 3 % NCHI x0.21** x0.50** x0.31** x0.61** x0.08* x0.51** x0.33** 0.32** 0.75** x0.37**

% FEPH 0.55** 0.78** 0.48** 0.33** 0.22** 0.51** x0.57** x0.38** 0.34**

% NEPH 0.61** 0.80** 0.17** 0.25** 0.55** x0.54** x0.69** 0.50**

% FEPT 0.70** 0.21** 0.25** 0.81** x0.75** x0.54** 0.52**

% NEPT 0.21** 0.54** 0.64** x0.63** x0.85** 0.57**

% FFAC 0.42** x0.10* x0.46** x0.26** 0.38**

% NFAC 0.14** x0.34** x0.68** 0.30**

% FINT x0.72** x0.54** 0.50**

% FTOL 0.66** x0.64**

% NTOL x0.53**

*P<0.05, **P<0.01.

Table 3. Correlation coefficients between metrics within clusters defined in the SOM in Figure 5. Metrics in bold are the selected

metrics for the next step of evaluation.

Clusters Variables

%

NCRU

%

FMOL

%

NMOL

%

NOLI

%

FPLE

%

NPLE FCRU DOM2 DOM1 EVN FMOL FPLE SHDIV FTOL

Cluster 1 % FCRU 0.71** 0.12** 0.04 0.00 x0.07 x0.03 0.85** 0.14** 0.11** 0.00 x0.05 x0.06 x0.16** x0.10**

% NCRU 0.13** 0.05 x0.03 x0.05 x0.03 0.54** 0.08* 0.08* x0.01 x0.02 x0.05 x0.11** x0.10*

% FMOL 0.62** 0.05 x0.03 x0.05 x0.03 x0.05 x0.03 0.24** 0.37** x0.13** 0.01 0.13**

% NMOL x0.06 x0.12** x0.01 0.08* x0.12** x0.12** 0.23** 0.45** x0.12** 0.10** 0.23**

% NOLI x0.15** x0.09* x0.04 0.32** 0.23** x0.20** x0.13** x0.15** x0.32** 0.24**

% FPLE 0.43** x0.04 x0.28** x0.23** 0.18** x0.23** 0.96** 0.30** x0.34**

% NPLE x0.02 x0.10** x0.07 0.07 x0.09* 0.38** 0.11** x0.17**

FCRU 0.07 0.07 x0.01 0.02 x0.02 x0.08* x0.06

DOM2 0.89** x0.77** x0.14** x0.32** x0.96** 0.07

DOM1 x0.86** x0.08 x0.25** x0.92** 0.06

EVN x0.03 0.19** 0.79** x0.13**

FMOL x0.19** 0.16** 0.46**

FPLE 0.34** x0.30**

SHDIV x0.05

%

NNINS

%

FTRI

%

NTRI FEPH FEPT FFAC FBI FINT SMDIV FTRI

Cluster 2 % NINT x0.40** 0.46** 0.14** 0.54** 0.66** 0.33** x0.76** 0.72** 0.52** 0.57**

% NNINS x0.37** x0.34** x0.39** x0.44** x0.30** 0.46** x0.42** x0.17** x0.38**

% FTRI 0.54** 0.37** 0.68** 0.30** x0.45** 0.66** 0.29** 0.85**

% NTRI 0.26** 0.37** 0.27** x0.46** 0.36** 0.14** 0.45**

FEPH 0.87** 0.79** x0.53** 0.73** 0.53** 0.59**

FEPT 0.72** x0.62** 0.93** 0.55** 0.89**

FFAC x0.42** 0.56** 0.43** 0.58**

FBI x0.64** x0.55** x0.54**

FINT 0.54** 0.86**

SMDIV 0.43**
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in a linear shape across a broad range of environmental
impact.

MISS showed strong correlation with other indices in
the range of 0.50–0.89 (P<0.01), showing the highest
value with BMWP and the lowest value with KSI, and
negative correlation in lower ranges with chemical en-
vironmental factors including BOD in the range of x0.11
to x0.26 (Table 4). Among biological indices, other
indices also were significantly correlated with each other.
However, their relation was lower than that with MISS.

Multi-metric indicator

Taxonomic sufficiency at the family level was efficiently
illustrated by producing a multi-metric indicator (MISS)

for presenting ecological integrity across different levels
of environmental impact. The family-level metrics could
overcome the problem of species level identification of
benthic macroinvertebrates, which results in technical
difficulties, increased time, and cost (Resh et al., 1995;
Waite et al., 2004). Taxonomic resolution was compared
using macroinvertebrates for bioassessment, and led to the
possibility of using the family or genus levels for monitor-
ing (Pond et al., 2008; Trigal-Domı́nguez et al., 2010). For
the rapid assessment of streams using a macroinvertebrate
community, efficient use of metrics at the family level was
regarded as an adequate description of water quality
(Barbour et al., 1999). Green et al. (2000) used family-level
data for investigating the impact of mining on the streams
in a mountain. In this study, we confirmed that a multi-
metric-based assessment on the family level was efficient

Fig. 6. Differences of the selected metrics at different clusters on the SOM trained with water quality indicators. Error bar indicates

standard error. Different characters on each metric indicate significant differences among clusters based on the multiple comparison
with Tukey HSD test (P<0.05).

Table 4. Correlation coefficients between biological indices and water quality indicators.

Variables
Shannon
index % EPT FBI BMWP KSI BOD T-N NH3-N NO3-N T-P PO4-P

MISS 0.68** 0.82** x0.78** 0.89** x0.50** x0.25** x0.26** x0.15** x0.25** x0.11** x0.13**
Shannon index 0.51** x0.61** 0.71** x0.40** x0.19** x0.22** x0.12** x0.24** x0.13** x0.15**
% EPT x0.53** 0.70** x0.45** x0.27** x0.27** x0.18** x0.25** x0.15** x0.16**
FBI x0.60** 0.43** 0.20** 0.18** 0.10* 0.18** 0.08* 0.08*
BMWP x0.43** x0.19** x0.22** x0.12** x0.23** x0.09* x0.11**
KSI 0.45** 0.41** 0.34** 0.40** 0.32** 0.32**
BOD 0.70** 0.61** 0.61** 0.60** 0.60**
T-N 0.82** 0.94** 0.70** 0.71**
NH3-N 0.67** 0.67** 0.66**
NO3-N 0.62** 0.64**
T-P 0.98**

*P<0.05, **P<0.01.
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in presenting ecological integrity in streams across
different levels of environmental impact (Figs. 7 and 8,
Table 4).

The efficiency of MISS was demonstrated for discrimi-
nating ecological integrity, especially in the lowest range
of the ranks (i.e., severely polluted sites). Although the
BMWP values were linear in presenting water quality from
intermediate to clean areas, discriminatory power was
weaker at the severely polluted sites compared with MISS
(Fig. 8). This result demonstrated feasibility of the multi-
metric for presenting ecological integrity across a broad
range of pollution. Since the multi-metric was composed
of different single indices, each of the metrics would cover
different sensitivity ranges in response to environmental
impact. This type of diverse range covered by multi-
metrics would help provide consistency in responding
to disturbances, including severe pollution. The metric,
% NTOL, was used in MISS, and this metric played the
key role in differentiating the effect of severe pollution.
The metric % NTOL includes densities of Chironomidae
and Oligochaeta, which are highly tolerant to oxygen

depletion; these taxa effectively responded to severe
pollution.

Since the proposed multi-metric was limitedly applied
to field data in one nation, during one year in this study,
more field tests are required to confirm the feasibility of
the proposed metric for large-scale use across different
levels of disturbance. In addition, the metric needs to be
more closely compared with other indices in different
regimes of ecosystem quality indicators such as saprobity
and physico-chemical factors. For instance, the states of
xenosaprobity and oligosaprobity could be compared with
the multi-metric for expressing ecosystem health, and
the water quality indices such as BOD or conductivity
could be checked to be compatible with ecological
integrity in different purposes of water usage (e.g.,
drinking or biodiversity conservation). Guidelines may be
needed to determine which indices should be recom-
mended for the purpose of ecosystem management in the
future. Since multi-metrics are based on biological proper-
ties, the metrics would be consequently more suitable
for presenting ecological integrity regarding community

Fig. 7. Illustration of the values of MISS and biological indices according to rank.

Fig. 8. Illustration of the values of BMWP and MISS in the lowest ranks of 50 sites.
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structure (e.g., maintenance of species diversity) or
ecosystem function (e.g., maintaining high energy ef-
ficiency). In order to obtain in-depth views on ecosystem
health assessment, however, more studies are required to
elucidate the complex relationships between the metrics
and the related ecological processes regarding community
dynamics and ecosystem functioning through large-scale
and long-term surveys in the future.

Conclusion

A multi-metric (MISS) based on the family-level
classification of benthic macroinvertebrate communities
was proposed as a suitable indicator for presenting
ecological integrity across different levels of environmental
impact. The screening processes aided by the SOM
training were useful in extracting information from
complex communities by estimating discrimination power,
degree of redundancy, and responsiveness to stress. The
proposed metric needs to be further tested regarding its
relationship to community dynamics and ecosystem
functioning through large-scale and long-term surveys in
the future.

Acknowledgements. This study was financially supported by
the Ministry of Environment and the National Institute of
Environmental Research (Korea), and the results of this study

form part of the “Survey and Evaluation of Aquatic Ecosystem
Health in Korea, 2009”. The authors would like to thank all of
survey members involved in the project for their help in sampling

and analysis. We also thank reviewers for their constructive
comments in improving the manuscript.

References

Armitage P.D., Moss D., Wright J.F. and Furse M.T., 1983. The
performance of a new biological water quality score system
based on macroinvertebrates over a wide range of unpolluted
running-water sites. Water Res., 17, 333–347.

BarbourM.T., Stribling J.B. andKarr J.R. 1995. Themultimetric
approach for establishing biocriteria and measuring biologi-
cal conditions. In: Davis W.S. and Simon T.P. (eds.),
Biological Assessment and Criteria, Tools for Water Re-
source Planning and Decision Making, Lewis Publishers, FL.

Barbour M.T., Gerritsen J., Griffith G.E., Frydenborg R.,
McCarron E., White J.S. and Bastian M.L., 1996. A frame-
work for biological criteria for Florida streams using benthic
macroinvertebrates. J. N. Am. Benthol. Soc., 15, 185–211.

BarbourM.T., Gerritsen J., Snyder B.D. and Stribling J.B., 1999.
Rapid bioassessment protocols for use in streams and
wadeable rivers: periphyton, benthic macroinvertebrates and
fish, Environmental Protection Agency, Washington, DC.

Blocksom K.A., 2003. A performance comparison of metric
scoring methods for a multimetric index for Mid-Atlantic
Highlands streams. Environ. Manage., 31, 670–682.

Blocksom K.A., Kurtenbach J.P., Klemm D.J., Fulk F.A. and
Cormier S.M., 2002. Development and evaluation of the
Lake Macroinvertebrate Integrity Index (LMII) for

New Jersey lakes and reservoirs. Environ. Monit. Assess.,
77, 311–333.
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