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Abstract
This paper presents a low-profile six-beam antenna implemented by a compact two-layer 6 × 6
beamforming network (BFN) and a 6 × 2 slot antenna in substrate integrated waveguide (SIW)
technology.Themain components of the proposed 6 × 6 BFN are 3 × 3multi-aperture couplers,
interlayer hybrid couplers, and several phase shifters which are embedded on two microwave
substrates. The proposed antenna has been designed, simulated, and fabricated for the fre-
quency range of 28–32 GHz.The size of this antenna is 82 × 31.8 × 0.787 mm3, which can be a
suitable choice for 5G applications due to its compact dimensions compared to similar works.
Prototype testing shows that the proposed structure presents a stable beamforming perfor-
mance both in simulation and measurement with good agreement. The antenna generates six
radiation beams in directions ±9∘, ±30∘, and ±54∘ with good return losses and isolations.

Introduction

In recent years, multi-beam antennas (MBAs) with passive beamforming networks (BFNs) have
received attention for 5G/6G wireless communications [1–5]. Substrate integrated waveguide
(SIW) combines the advantages of the conventional waveguide and themicrostrip line, present-
ing low-profile, high-quality factor, low transmission loss, and easy processing characteristics.
So, MBAs with SIW lines have been quickly developed. Various structures of BFNs such as
quasi-optical networks and circuit BFNs are employed to achieve desired amplitude and phase
formulti-beam applications.The quasi-optical structures such as Ruze and Rotman lenses [6–8]
are not suitable for high-power applications. Therefore, circuit BFNs such as Nolen matrix [9],
Blass matrix [10], and Butler matrix [11] based on various couplers, crossovers, and phase
shifters are mostly used in MBA designs. Among circuit BFNs, Butler matrix is preferred over
other techniques, because it requires the least number of components and employs fewer phase
shifters than the Nolen and Blass matrices. For 5G applications, different types of Butler matri-
ces have been proposed such as 4 × 4 SIW Butler matrix [12, 13] . In its conventional form,
the Butler matrices are usually designed in the 4 × 4 [14, 15], 8 × 8 [16], and 16 × 16 [17, 18]
forms which can only feed 2n radiation elements (n = 1, 2, 3, …). Of course, some BFNs have
been suggested with the desired number of beams. For example, a SIW seven-beam antenna
based on a Rotman lens, and a modified SIW R-KR lens with 15 radiation beams are presented
in papers [19] and [20], respectively. However, the losses of these BFNs are relatively high and
they also have a narrow frequency bandwidth compared to circuit BFNs, especially the Butler
matrix. Recently, many research works have been carried out to overcome the limitation of
the number of beams of the Butler matrix. In paper [21], a compact SIW 3 × 3 Butler matrix
is designed with a combination of hybrid couplers and phase shifters for 5G mobile applica-
tions. Although the designed Butler matrix creates three radiation beams, its dimensions are
relatively large. Some works with different numbers of inputs and outputs are also presented
including 5 × 6 Butler matrix with circular polarization [22], 4 × 8 Butler matrix with side-
lobe suppression [23], and 2-D scanning multi-beam array utilizing 9 × 3 BFN [24]. Recently,
to increase the possible number of beams and reduce the dimensions of the BFNs, applying
couplers with junctions more than the hybrid coupler, such as 3 × 3 and 4 × 4 multi-aperture
couplers (MACs), were proposed in papers [25–27]. According to Kim et al. [28], a newmethod
was proposed to create six radiation beams. This work presents a novel single layer 6 × 6 cir-
cuit BFN consisting of several 3 × 3 MACs, hybrid couplers, crossovers, and phase shifters.
Miniaturization of BFNs especially Butler matrix is a required in millimeter-wave multi-beam
applications. Layering the structure is one of themethods tominiaturize the size of BFNs. In the
last decade, many Butler matrices have been proposed using multilayer configurations [28–30].
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Figure 1. Block diagram of the proposed two-layer 6 × 6 BFN. (The dashed lines are on the bottom layer).

In the present study, a low-profile SIW MBA fed by a compact
two-layer 6 × 6 BFN is proposed. According to the theory of uni-
form array antennas [31], to produce six radiation beams using six
linear elements, a BFN with the ability to distribute power with
equal amplitudes and phase differences of ±30∘, ±90∘, and ±150∘

is required. The conventional Butler matrix is not able to realize
these amplitudes and phases. As explained in paper [32], to realize
6 × 6 BFN, 3 × 3MACs can be combined with hybrid couplers and
phase shifters. In this paper, to present a compact 6 × 6 BFN, two
3 × 3 couplers placed on separate layers are used. Of course, other
passive components such as hybrid couplers and phase shifters are
also used to achieve the desired amplitudes and phases. The pro-
posed BFN is simpler than similar structures due to the use of
fewer components. Especially, by eliminating crossovers in the pro-
posed BFN, the complexity of the structure has been reduced. Since
crossovermanufacturing is a bit complicated, its design needsmore
precision [33]. Also, crossover is an element that has a good per-
formance only in the central frequency and may not have a good
output across the frequency bandwidth of the BFN. So, by elimi-
nating the crossover, it is possible to achieve more flat amplitudes
and phases in the BFN outputs. The operating frequency band of
the proposed design is from 28 to 32 GHz, which is suitable for 5G
applications. Six radiation beamswith a stable realized gain around
13 dBi are produced in directions ±9∘, ±30∘, and ±54∘. Details of
the paper are organized as follows:

The design process of the proposed 6 × 6 BFN is given
in the following section. The fabricated prototype of the pro-
posed six-beam antenna and experimental results are presented
in the “Antenna fabrication and measurement results” section,
and conclusions for this study are provided in the “Conclusion”
section.

Design process of the 6 × 6 two-layer BFN

According to the theory of uniform array antennas, to generate
six radiation beams, a BFN is needed that can excite the array
antenna elements with equal amplitudes and phase differences of
±30∘, ±90∘, and ±150∘ [32]. In this section, in order to real-
ize these values, a 6 × 6 two-layer BFN is designed. Obviously,
3 × 3 MACs can be an appropriate choice for a six-beam BFN.
In the proposed structure, to miniaturize the 6 × 6 BFN, two
microwave layers are used, and the main component of each layer
is a 3 × 3 MAC. Of course, other components such as 90∘ hybrid
couplers and phase shifters are also used to achieve the desired

amplitudes and phases. Figure 1 shows the block diagram of the
proposed 6 × 6 two-layer BFN. This BFN has six input ports
(ports 1–6) and six output ports (ports 7–12). Ports 1–3 and ports
4–6 are considered as top layer inputs and bottom layer inputs,
respectively.

The proposed topology is such that by exciting each input port,
the power is first distributed between two layers with equal ampli-
tude (1/2 ratio) and 90∘ phase difference, by interlayer hybrid
couplers. Then, each layer divides its received power equally
between the outputs using the 3 × 3 MAC (1/3 ratio). Therefore,
the condition of equal power distribution (dividing the input
power with a ratio of 1/6) between the outputs has been real-
ized, which is known as the first feature of BFNs. Suitable phase
shifters have been embedded to achieve the second condition of
the 6 × 6 BFN, i.e. phase difference of ±30∘, ±90∘, and ±150∘

between the successive outputs. In the following sections, the
theory of the proposed two-layer 6 × 6 BFN and the imple-
mentation of its components using SIW transmission lines are
given.

Theory of the proposed BFN

Asmentioned in the previous section and shown in Fig. 1, the 3 × 3
MAC is themain component of the proposed 6× 6BFN.Thedesign
process of the 3 × 3 coupler and its features are presented in paper
[25]. However, the performance of this coupler can be summarized
according to Table 1.

The hybrid couplers also distribute their input power with
an equal ratio and a 90∘ phase difference between their outputs.
According to the phases generated by 3 × 3 couplers and hybrid
couplers, the output phases of the proposed BFN (phases of ports
7–12 in Fig. 1) are obtained according to Table 2. As can be seen
in Fig. 1, to adjust the output phase differences on desired values,
phase shifters𝜑1,𝜑2,𝜑3, and 𝜃1 have been added in the structure of

Table 1. Amplitude and phase of 3 × 3 MAC outputs (phase reference is
Output 1)

Excited port Output 1 Output 2 Output 3

Port 1 1/3e
j0 1/3e

−j150 1/3e
−j240

Port 2 1/3e
j0 1/3 e−j30 1/3e

j0

Port 3 1/3e
j0 1/3 e+j90 1/3e

+j240
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Table 2. Output phases of the proposed 6 × 6 BFN based on the excitation of input ports

Port 7 Port 8 Port 9 Port 10 Port 11 Port 12

Port1 𝜑1 + 𝜃1 −90 + 𝜃1 𝜑1 − 150 −90−150 𝜑1 − 240 + 𝜃1 −90 − 240 + 𝜃1

Port 2 𝜑2 + 𝜃1 −90 + 𝜃1 𝜑2 − 30 −90−30 𝜑2 + 𝜃1 −90 + 𝜃1

Port 3 𝜑3 + 𝜃1 −90 + 𝜃1 𝜑3 + 90 −90+90 𝜑3 + 240 + 𝜃1 −90 + 240 + 𝜃1

Port 4 −90 + 𝜑1 + 𝜃1 𝜃1 −90 + 𝜑1 − 150 −150 −90 + 𝜑1 − 240 + 𝜃1 −240 + 𝜃1

Port 5 −90 + 𝜑2 + 𝜃1 𝜃1 −90 + 𝜑2 − 30 −30 −90 + 𝜑2 + 𝜃1 𝜃1

Port 6 −90 + 𝜑3 + 𝜃1 𝜃1 −90 + 𝜑3 + 90 +90 −90 + 𝜑3 + 240 + 𝜃1 +240 + 𝜃1

(a) 

(b) 

(c) 
Figure 2. SIW-proposed BFN: (a) top layer, (b) bottom
layer, and (c) 3D view.
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the proposed BFN. Phase shifters 𝜑1, 𝜑2, and 𝜑3 create a phase dif-
ference between each path of the top layer with its adjacent path at
bottom layer. Phase shifter 𝜃1 generates a phase difference between
outputs of the 3 × 3 MACs used in the top and bottom layers.
By exciting port 1, the phase difference of successive outputs can
be calculated according to the following relations:

Δ𝜑7,8 = 𝜑1 + 90∘

Δ𝜑8,9 = 𝜃1 − 𝜑1 + 60∘

Δ𝜑9,10 = 𝜑1 + 90∘ , Δ𝜑i,j = ∢porti − ∢portj
Δ𝜑10,11 = −𝜑1 − 𝜃1
Δ𝜑11,12 = 𝜑1 + 90∘

(1)

whereΔ𝜑i,j is equal to the phase difference between port i and port
j. In the proposed BFN, when port 1 is excited, the phase difference
of the outputs should be equal to 150∘. As a result, 𝜑1 and 𝜃1 can
be concluded according to Eq. (2):

Δ𝜑7,8 = Δ𝜑8,9 = Δ𝜑9,10 = Δ𝜑10,11 = Δ𝜑11,12

= 150∘ ⇒ 𝜑1 + 90∘ = 𝜃1 − 𝜑1 + 60∘ = 𝜑1 + 90∘

= −𝜑1 − 𝜃1 = 𝜑1 + 90∘ = 150∘ ⇒ 𝜑1 = 60∘ , 𝜃1 = 150∘

(2)

Similarly, for the excitation of port 2, the phase difference of the
outputs should be equal to 90∘:

Δ𝜑7,8 = Δ𝜑8,9 = Δ𝜑9,10 = Δ𝜑10,11 = Δ𝜑11,12

= 90∘ ⇒ 𝜑2 + 90∘ = 𝜃1 − 𝜑2 − 60∘ = 𝜑2 + 90∘

= −120∘ − 𝜑2 − 𝜃1 = 𝜑2 + 90∘

= 90∘ ⇒ 𝜑2 = 0∘ , 𝜃1 = 150∘ (3)

If port 3 is excited the output phase difference should be set
to 30∘:

Δ𝜑7,8 = Δ𝜑8,9 = Δ𝜑9,10 = Δ𝜑10,11 = Δ𝜑11,12

= 30∘ ⇒ 𝜑3 + 90∘ = 𝜃1 − 𝜑3 − 180∘ = 𝜑3 + 90∘

= −240∘ − 𝜑3 − 𝜃1 = 𝜑3 + 90∘

= 30∘ ⇒ 𝜑3 = −60∘ , 𝜃1 = 150∘ (4)

Due to the symmetry in the proposed structure, by exciting
ports 4–6, the output phase differences are set to the values of −30∘,
−90∘, and −150∘, respectively.

Two-layer BFN implementation by SIW-lines

Figure 2 shows the structure of the proposed BFN implemented
using SIW-lines.

As can be seen in Fig. 2, the components of the proposed
dual-layer BFN include interlayer hybrid couplers, 3 × 3 MACs,
interlayer crossovers, 60∘ interlayer phase shifter, −60∘ interlayer
phase shifter, and single-layer phase shifters. The design process
of the SIW 3 × 3 MAC and its simulation results are completely
given in our previous work in paper [25]. According to the pre-
sented theory, the interlayer hybrid couplers should be able to
distribute the input power between the two layerswith equal ampli-
tude and 90∘ phase difference. This feature is realized by using the

Figure 3. (a) Structure of the SIW interlayer hybrid coupler, and (b) simulation
results.

slots that are embedded between the two layers. The SIW inter-
layer hybrid coupler and simulation results are shown in Fig. 3(a)
and (b), respectively. The simulated S-parameters show that by
exciting each input port of this coupler (e.g., port 1), the power
is almost equally divided between the through and coupled ports
(|S21| = |S31| ≅ 3 dB) and there is a good return loss and
isolation between the input and isolated ports.

Two types of phase shifters are used in the proposed struc-
ture: interlayer phase shifters that create a phase difference between
the top and bottom layers, and single-layer phase shifters that are
used separately in each layer and create a phase difference between
the paths of each layer. The 60∘ interlayer phase shifter should
be generated a 60∘ phase difference between the paths caused
by the exciting of ports 1 and 4. As can be seen in Fig. 2, this
phase difference is produced using “equal length unequal width
lines”. Similarly, by placing these lines in the path of the bottom
layer, −60∘ phase difference is generated between ports 3 and 6.
Finally, to realize the desired phase difference and also to place
all the output ports on the same level (to connect the BFN to a
broadside array antenna), single-layer phase shifters are designed
in the top and bottom layers according to Fig. 2(a) and (b),
respectively.

Several crossovers are used at the end of the bottom layer so
that the power of this layer is coupled to the top layer. Also, two
hybrid couplers have been cascaded to implement the crossover.
The proposed BFN (Fig. 2(c)) is simulated by HFSS software and
its S-parameters are obtained according to Fig. 4. As can be seen in
graphs of Fig. 4, in the frequency range of 28–32 GHz, by exciting
each of the ports 1–3, the input power is distributed almost equally
between the BFN outputs (ratio of 1/6 or −7.8 dB). Also, the return
loss and isolation between the inputs have desirable values. Due to
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Figure 4. Simulated S-parameters of the proposed two-layer BFN: (a) excitation of port 1, (b) excitation of port 2, and (c) excitation of port 3.

the similarity of the top layer and the bottom layer, the simulation
results for the excitation of ports 4–6 are also similar to those of
ports 1–3.

Figure 5 shows the phase differences of successive outputs when
ports 1–3 of the proposed BFN are excited. At the central frequency
(f = 30 GHz), the simulated phase differences are approximately
equal to the values of + 150∘, +90∘, and +30∘ for the excitation of
ports 1–3, respectively. Due to the symmetry in the proposed struc-
ture, these phase differences for ports 4–6 are about −30∘, −90∘,
and −150∘, respectively. By comparing these values with the theo-
retical results, it can be concluded that the proposed structure has
produced the necessary phase differences to create six radiation
beams.

Antenna fabrication and measurement results

As explained in the previous section, the outputs of the bot-
tom layer are transferred to the top layer so that all outputs are
placed on the same level. In this case, this BFN can be con-
nected to the SIW slot arrays. We use a 6 × 2-slot array antenna

with a similar design process to the array antenna presented in
paper [32].The fabricated prototype of the proposed two-layer six-
beam antenna is shown in Fig. 6. This antenna is fabricated and
assembled using Rogers RT/duroid 5870 substrate with a thick-
ness of 0.787 mm, a dielectric constant of 2.33, and a loss tangent
of 0.0012.

The simulated and measured S-parameters of the six-beam
antenna were achieved by HFSS V17.0 and an Agilent network
analyzer, respectively. Also, the radiation patterns and gains are
measured in an anechoic chamber. The simulated and measured
S-parameters of the proposed antenna are presented in Fig. 7. The
measurement and simulation results are slightly different, which
may be caused by assembly and processing errors. In both simu-
lated andmeasured results, the return losses (|S11|, |S22|,…, |S66|)
and isolation coefficients (|S21|, |S31|, …., |S61|) of all ports are
better than 10 dB at 28–32 GHz.

Radiation patterns and gains of the antenna are shown in
Figs. 8 and 9, respectively. As can be seen in Fig. 8, the simu-
lated andmeasured radiation patterns are represented by solid lines
and dashed lines, respectively. Good agreement can be observed
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Figure 5. Phase differences of successive outputs when ports 1–3 are excited.

Figure 6. The prototype of the two-layer six-beam antenna: (a) top view and
(b) bottom view.

between simulation and measurement results. The antenna gener-
ates six beams in the directions of ±9∘, ±30∘, and ±54∘. The six
beams of the proposed antenna cover a switching range between
−54∘ and + 54∘. The measured gains are around 11.8, 12.9, and
13.1 dBi for ports 1–3, respectively. In Table 3, the results of
the proposed work are compared with other similar structures.

Figure 7. S-parameters of the proposed antenna: (a) reflection and (b) isolation.

Figure 8. Simulated and measured radiation patterns of the antenna.

According to Table 3, due to the use of the SIW-MAC configu-
ration, the proposed structure has a higher frequency bandwidth
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Table 3. Comparison of the proposed structure with similar works

Reference [19] [2] [34] [35] [30] [32] This work

Configurations Rotman lens Horn Butler matrix Butler matrix Butler matrix MAC MAC

No. of beams 7 5 8 8 8 6 6

Bandwidth 3.5%
28−29 GHz

3.57%
27.5−28.5 GHz

7.14%
27−29 GHz

16.4%
56−66 GHz

10.1%
28−31 GHz

13.3%
28−32 GHz

13.3%
28−32 GHz

No. of layers 1 1 1 1 2 1 2

Angle coverage 100∘ 94∘ 110∘ 112∘ 110∘ 150∘ 154∘

BFN area (𝜆g
2) 7 × 7.87 3.3 × 3 8.8 × 10.6 15 × 8 10 × 4 10 × 3.38 7.44 × 3.38

Figure 9. Simulated and measured gain of the antenna.

than papers [19] and [2], which have Rotman lens and horn con-
figurations, respectively. Also, the coverage range of the proposed
antenna is about 154∘, which is more than the others. The size of
the proposed BFN is 72 × 31.8 × 0.787 mm3, which is reduced
compared to similar works, especially reduced by 22% compared
to the BFN in paper [32]. The total size of the two-layer six-beam
antenna is 82 × 31.8 × 0.787 mm3 which can be a very suitable
option for fifth and sixth generation communication applications.
The proposed BFN consists of fewer components and a sim-
pler design than similar works. Only 15 elements are used in
this structure, while the structure presented in paper [32] con-
sists of 23 elements. The proposed antenna creates six beams;
however, the structure can also be extended for higher number of
beams.

Conclusion

In this paper, a compact two-layer six-beam antenna using 3 × 3
MACs is designed, simulated, fabricated, and tested in the fre-
quency range of 28–32 GHz that is suitable for 5G applications.
The proposed antenna has the ability to generate six radiation
beams, while its size is very compact compared to similar works.
Six radiation beams in the bandwidth of 13.3% have been real-
ized with stable beamforming performance. Due to the advantages
of the proposed BFN such as the ability to create six radia-
tion beams, compact structure, simple design, and good radi-
ating performance, it would be an attractive candidate in 5G
applications.
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