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From the Ideal Theorem to the class
number

Olivier Bordelles

Abstract. In this article, we provide an explicit upper bound for h KfRKdI;l/ ? which depends on an
effective constant in the error term of the Ideal Theorem.

1 Introduction

Let K be anumber field of degree n > 3, signature (ry, r2 ), discriminant (1) d, class
number h, regulator Ry, and let wx be the number of roots of unity in K. Let kg be
the residue at s = 1 of the Dedekind zeta-function {k(s) attached to K. Estimating h
is a long-standing problem in algebraic number theory. One of the classic way is the
use of the so-called analytic class number formula stating that

Wk 2\"
Ly R = 55 (2) " dif
and to use Hecke’s integral representation and the functional equation of the
Dedekind zeta-function to majorize xg. This is done in [7, 8] with additional

properties of log-convexity of some functions related to {x which enables Louboutin
to reach the following bound:

(12) IR <W(2)"(61"gd’<)n_ldl/2
' KRS\ n 4n—4 K-

Let rx(m) be the mth coefficient of (x, i.e., the number of nonzero integral ideals of
Ok of norm m, and denote Ak (x) to be the error term in the Ideal Theorem, i.e.,

(1.3) Ak(x) = Z rk(m) — kgx.

m<x

The aim of this work is to prove the following result.

Theorem 1.1  Let K be an algebraic number field of degree n > 3, and set y; = 214 and
yn =10 if n > 4. Assume that there exist « € (O, %) and a constant

1
Ck 2 " + —
K > eXp (max (y an 4oc2))
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such that, for x > 1,
(1.4) |Ak(x)] < Cxx'"%,

where Ak (x) is given in (1.3). Then

n-1 n-2
heRy < 3WK(2)”((zlalogCK) (54 log C) )dl/z

. K

(n-1)! (n-2)!
2 Tools

The first lemma is a Titchmarsh-like generalization of [12, Theorem 12.5] to number
fields established by Ayoub [1]. The result is stated for the quadratic case, but as it can
be seen in the proof and as the author points it out, it is still true for the general case
(see also [5, Lemma 13.3]).

Lemma 2.1 Let n >3 and ug be the infimum of the real numbers o for which the
integral
o0 +it)|?
[t ik,
—oo o+ it]?

converges. Then pg <1- % and, for all ux < o <1, we have

1 e |{x(o+it)) °° 2 -1-2
— e dr = f Ag(x)*x™ 7% dx.
27 [oo |o + it]? 0 k(%)

Proof Assume % og1-1 - By [3, Theorem 4], we have, for all € > 0,

[ (o + it)[2 dt « TnO=0)+e,

The exponent of T is less than 2 for 0 > 1—- % and note that 1- 2 > L since n > 3.

This implies that !

fT (o + i)} il dt < T
T/2

o+ if]?

for some 7 = 77(¢) > 0. Now replacing T by 27/ T and summing over j > 1 yields px <
1- % For the second part of the lemma, we start by using Perron’s formula [11, (2.3)

p. 217] yielding
, 1 2+ico (K(S)
- x* ds,
Z nger(n) 2mi /2‘7100 N s

where Z, means that if x is a positive integer, then 37 (x) comes instead of rx (x).
Moving the line of integration to some 1— (600)~ 2/ 3n773 < ¢ <1 sufficiently close
to 1, we get

, 1 e+ioo {e(s)
Z nger(n):nwatz—ni[C szds,

—ioco
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so that

c+iT CK

(2.1) Ag(x) = L lim S(S) x*ds.

271 T—o0 J—iT
Using [9] (see also [2, Theorem 7.18]), there exists an absolute constant ¢y > 0 such
that, for1- (600)>?n7*<c<o<landt>e,
(K(O' + it)

- < econsdlz( t600n7/2(1—0)3/2—1(10g t)2/3 < eCOnsdIz( t—l(log t)2/3’
o+1

50 that {x (s)s™" - 0 uniformly in the strip 1 - (600)*?17/> < ¢ < ¢ < 1as|t| - oo.
Hence, on integrating over the rectangle d + iT, ¢ + i T, with yx < d < ¢ <1, we infer
that (2.1) holds for any yx < ¢ < 1. Replacing in (2.1) x by 1/x, taking yx < ¢ < 1, and
using Parseval’s formula [5, Identity (A5)] yields

1 [Oo |CK(C+ it)|2 dt = [OOAK(I/X)ZxZC_ldX
0

21 oo |c+itP
=f Ax(u)*u™> " du
0

as required. [ ]

Corollary 2.2 Assume hypothesis (1.4), and let 0 < § < a < % Then

i/m |(K(1—8+it)|dt< 1 (I€K+ Cxk )
2m o I=0+itP T T 2/1-0\V6 Va-06)

Proof Using Lemma 2.1, (1.4) and the trivial bound |[Ag(x)| < kxx when x € [0,1)
1 © [Cx(1- 8 +it)? 2 [ o250 2 [T 2(6-a)1
— S dt < [ dx+C [ (0-a)-14
2 Jo |18+ it]? K Jo * SR A *
_ (s, Sk
2\ 8 a-4)’

and using the Cauchy-Schwarz inequality, we get

1 f‘x’ |k (1= 8 + it)| dar

E oo |1—8+it|2
L /°°|<*K(1—6+it)\2dt " I i \"”
T2 \Jow L-0+it] oo [1= 8+ it]?

() (e o)
22W1I-6\0 a-9 2V/1-0\V6 Va-46

as asserted. [ ]

Lemma 2.3  Uniformly for all x > 1 and all n € Z,, we have

x _ xlogx

> ri(m)log = <

m<x m (1’[—1)!

(logx +n—1)""7.
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Proof Let 7, be the nth Piltz-Dirichlet divisor function. We have rg(m) <

and from the bound [2, Exercise 78]

Y, Ta(m) < Z_:( )(logt)] (t>1),

mst - j!
so that
1
Z rK(m)log— [ t( rK(m)) dt

n-1

( ) / (logt)’ dt

J=0

j=0 k=j+1
k min(n-1,k-1) ) _
Z( logx) (- l)f(n . 1)
j=0 J

k _
= —x Z(_l)k+min(n—1,k—1) (logx) ( n-2
=1

k!
"1 (logx)* (n - 2)
=x
kz1 k! k-1
xlogx

S (n-1)

(logx +n-1)""7,

where we used [4, Identity (1.5)] in the 6th line, and the fact that, for 0 < k < n

1 nkll
G G L6+0
1 1 n—k-1 n—k=2
g(n—l)!(n k-2 ;(”k))
(n )n—k—z
(n-1)!

min(n -1,k -1)

1371

T, (m)

-3,

by the GM-AM inequality stating that (a; ... aN)l/N <N7'(a +--+ay), where

ay > 0, and this bound also holds when k = n — 2.

Lemma24 Ifn>30<a<= andlogCK > Yy, then

(oc’1 logCK)n_2 N e (n=1)+1_ /logCK.
(n-2)! Va(l-a)

https://doi.org/10.4153/50008439523000425 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439523000425

1372 O. Bordelles

Proof  Squaring the inequality of the lemma, it is equivalent to show

aZn—SEZa(n—1)+2
(log Cx)* > > ((n - 2)1)* x —
-

2n-5 2a(n—1)+2
2) s & e

The function « € (0, = — is nondecreasing, so that

aZn—SeZa(n—1)+2 22n—5e6—4/nn6—2n

1-« S n-2
and, therefore, it suffices to show

6-4/n pn6-2n

-2 )“_5((”_2)!)2"2_5-

logCx > 2 (
Using Stirling’s bound, the inequality of the lemma is guaranteed as soon as

1
12n° —84n2 +143n—48 ( (n - 2)2”_4 ) =5
b

1 _
log CK > 2(27-[) -5 ¢ 6n(n—2)(2n-5) nzn_ﬁ

and since the right-hand side is a nonincreasing function in # > 3, it then suffices
that log Cx > s,,, where s3 := 47e'7/® ~ 213,7 and s, = 243 7'/3¢13/36 ~ 53 whenever
n24. u

3 Proof of the main result

By (1.1), it is sufficient to show that

s (o st

(n-1) (n-2)!

Assume 7 > 3,and let 0 < § < & < 2 and x > 1 satisfying

n

(3.1)

(3.2) 8(1-8)>x7%
and
(3.3) x> et as,

By another Perron’s formula (see, for instance, [11, (2.9) p. 220]), we have

2 ric(m)log = = L fzmo k(s) x* ds.

vt m  2mi Jrmieo  §2

Shifting the contour integration to the line o = 1 — § and picking up the residue of the
integrand at the unique simple pole s = 1, we obtain by Cauchy’s theorem

1 1-0+ioo s
> rK(m)logianer—,f CK(Z )xsds
mex m 2mwi J1-8-ico S
= kgx + Is(x),
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and using Corollary 2.2, we get

K70 oo (g (1- 8+ it)]
o< B [ 0],
()l <5 L, 10+ it]

< x175 (FEK + CK )
Tav/1-6\VE Va-3d)
Therefore, using (3.2), we derive

X x0 x1-8 Cxk
mzszer(m)loga > KgX (1— 2\/m) - Tm

)

Srrx X0 Ck
T2 2 J0-8)(a-0)
and Lemma 2.3 yields
2 X x“SCK

KK < — re(m)log — + ——— —

: xmz x(m)log JA-0)(a-9)

-8
< 2logx (logx +n—1)""+ X Gk

S (n-1)!

NEDICED)

whenever x and § satisfy (3.2). Now choose

1
(3.4) d=a-—.
log x
Note that (3.2) is satisfied if (alogx —1) (1+ (1-a)logx) > e*(logx)*x~2*. But
using (3.3), we get

(alogx—1) (1+(1-a)logx) > > e*(logx)*x 2%

1602

Therefore, with the choice (3.4), we derive

ki < 2log x (logx + 1 - 1),,_2 . eCgx % logx
-1 /- g1
< 2logx (logx +n—1)""7+ eCrx ™ /log x
(n-1) Vi-a
provided that (3.3) is fulfilled. We next choose
x = C}(/ael_”.

This yields

5 (oc’llogCK)n_1 (oc’llogCK)n_2 e+ flog Cx + a(1-n)
KK < - +
K (n-1)! (n-2)! Va(l-a)

<y (oc’llogCK)n_1 B (oc’llogCK)n_2 . e+, flog Cx
Va(l-a)

(n-1)! (n-2)!
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Now, since log C > y, > 10 > 10 — 2 > 54(n - 1), we derive using Lemma 2.4

(n-1'  (n-2  (n-2)!
(cx‘llogCK)n_2
(n-2)!
>eo¢(n—1)+l\/10g—CK
Va(l-a)

(oc’llogCK)n_1 4(0c’llogCK)n_2 (a7 logCK)n_2 (ocllogCK _4)
n-1

>

and, therefore,

(oc’llogCK)n_1 2(oc’llogCK)n_2
”K<3( T (n-2)!

which is (3.1). Now substituting this bound into (1.1) yields the desired result. m|

4 Example

Improving a result in Sunley’s thesis [10], Lee [13] proved that, for all x > 0,

|Ak(x)] € Ok dF (log dK)n_lxl_ﬁ

with @ := 0,17 ( bn-2 ) 2,26" g4n+26/n yn+l/2 (44,39 x 0,082" n! + nl—fl) Hence, one

n—-1
can take o = —>- and
n+1

CK = ®K d? (lOgdK)n_l.

The hypothesis log Cx > max (y,, , an + 4—;2) is easily fulfilled, and noticing that, for
any n > 3,

n+l

+ log Ok < 3n*logn,

1,2
2n”logn <

we infer that Theorem 1.1 yields the following result.

Corollary 4.1  Let K be an algebraic number field of degree n > 3. Then

n-1 n—2
3WK 2\ (ilogdK+LK) (%lOgdK+€K) 1/2
hiRy < 22K (f) - v,
2 \m (n-1)! (n-2)!
" Lk ._l( 2_1)1 log dw + 3n210gn
where e (T n oglogdxk %nzlogn.
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Note that Stirling’s bound yields
3wk (2)'2 1 (elogdK eLk )"_1
hgR -
s 2\/2n \m {\/n—l in -4 i n-1
e (elogd et )
Vn-2\4n-8 n-2 K

which may be more easily compared to (1.2). It finally should be pointed out that Lee
slightly improved in [6] the value of Ck, showing that

0.54 (3n - 1)px(n) « 32

Ck =
K (n-1)2(log mg )"

with mg = (n*n/4)"(n!)"% and, if n > 13,

x n!

pr(n):=(n+1)"" "= (2+2+
Note that the author also gives the value of px(#) in the range 2 < n < 13. Although
an improvement over the previous value of Cg, this result is somewhat irrelevant on
ours, while the calculations of Lx and ¢k are more tedious.

+i)1/2 4.13n+¥.

1
n 8n2
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