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Abstract
The star-shaped ordering between probability distributions is a common way to express aging properties. A well-
known criterion was proposed by Saunders and Moran [(1978). On the quantiles of the gamma and F distributions.
Journal of Applied Probability 15(2): 426–432], to order families of distributions depending on one real parameter.
However, the lifetime of complex systems usually depends on several parameters, especially when considering
heterogeneous components. We extend the Saunders and Moran criterion characterizing the star-shaped order when
the multidimensional parameter moves along a given direction. A few applications to the lifetime of complex
models, namely parallel and series models assuming different individual components behavior, are discussed.

1. Introduction

In many applications where two random variables represent the lifetime of different systems, it is of
interest to study their aging properties. This will allow to determine which system is performing better
with respect to some given property: the aging rate, lifetime expectancy, skewness of lifetimes, etc.
For this purpose, stochastic ordering between random variables provides a convenient way to describe
such comparisons. These orderings may be defined through relations between distributions, survival or
failure rate functions of the relevant random variables. The monographs by Shaked and Shantikumar
[18] or Marshall and Olkin [16], give a good account of various stochastic orders and their applications.

We will be interested in the star-shaped order, introduced by Barlow and Proschan [4] and defined
by a monotonicity property on a suitable transformation on the distribution functions, as expressed by
Definition 1 below. It can be easily seen that the definition is equivalent to allowing at most one crossing
between the distribution functions of scaled lifetimes, as referred in Proposition C.11 of Marshall and
Olkin [16] or 4.B.2 in Shaked and Shantikumar [18]. It follows from this characterization that the star-
shaped order may, thus, be interpreted as a comparison of the lifetime aging rate for systems that started
functioning simultaneously. From the practical point of view, since the distribution functions of the
lifetime variables under comparison often do not have an explicit formula, it may be technically difficult
to verify the star-shaped ordering. Thus, it becomes relevant to establish equivalent conditions for which
the monotonicity of the referred function holds. Using the sign technique referred to in Marshall and
Olkin [16] or Shaked and Shantikumar [18], Arab and Oliveira [1] analyzed the ordering relationships
within the Gamma and the Weibull families of distributions, later extended to the comparison of lifetimes
of parallel systems in Arab et al. [2]. However, when the underlying distributions depend on a large
number of parameters, this sign analysis becomes rather hard to control and often does not allow for a
conclusion. An alternative approach may be based on a criterion proposed by Saunders and Moran [17]
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when the distribution functions depend on a single real parameter. This criterion turned out to be useful
to exhibit order relations within parametric families of distributions (see [9] or [11,12] among many
others). As what concerns the lifetimes of more complex systems, the Saunders and Moran’s criterion
was used by Kochar and Xu [10] to obtain a characterization for parallel systems each one formed by
two types of components with exponentially distributed lifetimes. More recently, Arab et al. [2] proved
that the lifetimes of parallel systems with homogeneous and independent exponential components get
smaller (or age faster) with respect to the star-shaped order, as the number of components increases. We
note that, for the case of series and parallel systems with more than two heterogeneous and, especially,
nonexponentially distributed components, not much work seems to have been done regarding the star-
shaped comparability. Since these are complex models, depending on more than one parameter, the
Saunders and Moran’s [17] result cannot be used. Comparability with respect to star-shaped ordering
for multiparameter models has recently been addressed by Belzunce et al. [5] and Arriaza et al. [3],
who proved sufficient conditions allowing to order within a few parametric families of distributions,
including the generalized Gamma distribution and types I and II Beta generalized distribution. We
propose a different approach, exploring extensions of the Saunders and Moran’s criterion to order
models depending on several parameters.

This paper is structured as follows. In Section 2, we present the extension of the Saunders and Moran’s
[17] criterion to families of distributions depending on multidimensional parameters. In Section 3, we
discuss a few applications of the obtained criterion to complex systems with heterogeneous components,
describing conditions on the parameters so that the star-shaped comparability holds when the lifetimes of
the components satisfy suitable proportionality assumptions, including the popular proportional hazard
rate (PHR) and proportional reversed hazard rate (PRHR) models.

2. A criterion for the star-shaped order

Let F denote the family of distribution functions vanishing at 0 with support contained in [0, +∞). Let 𝑋
be a nonnegative random variable with distribution function 𝐹𝑋 ∈ F , density function 𝑓𝑋 , and survival
function 𝐹̄𝑋 . We start by defining the star-shaped order relation, following Shaked and Shantikumar [18].

Definition 1. Let 𝑋 and𝑌 be two nonnegative random variables with distribution functions 𝐹𝑋 , 𝐹𝑌 ∈ F ,
respectively. The random variable 𝑋 (or its distribution𝐹𝑋 ) is said to be smaller than𝑌 (or its distribution
𝐹𝑌 ) in the star-shaped order, denoted by 𝑋 ≤∗ 𝑌 (or 𝐹𝑋 ≤∗ 𝐹𝑌 ), if (1/𝑥)𝐹−1

𝑌 (𝐹𝑋 (𝑥)) is increasing with
𝑥 > 0 (or equivalently, 𝐹−1

𝑌 (𝑢)/𝐹−1
𝑋 (𝑢) is increasing with 𝑢 ∈ (0, 1)).

Remark 2. It is easy to verify that the star-shaped order is scale invariant, implying that in case of
families of distributions that have a scale parameter, we are able to choose the parameter in a convenient
way.

The decision about the star-shaped order often relies on sign variation techniques, as follows from
(4.B.2) from Shaked and Shantikumar [18]. Expectedly, the sign variation analysis raises technical
difficulties, especially when dealing with distributions involving a large number of parameters, such as
parallel systems, series systems, or order statistics. Saunders and Moran [17] proved a more tractable
condition for the star-shaped order to hold, providing a full characterization of such relation within a
family of distributions.

Theorem 3 ([17]). Let {𝐹𝑎 : 𝑎 ∈ 𝐼 ⊆ R} be a family of distributions such that 𝐹𝑎 ∈ F with den-
sity 𝑓𝑎 which does not vanish on any subinterval of its support. Then 𝐹−1

𝑎 (𝛼)/𝐹−1
𝑎 (𝛽) decreases

(resp., increases) with respect to 𝑎 ∈ 𝐽 ⊆ 𝐼, for each fixed 𝛼 > 𝛽, if and only if 𝐷 (𝑎, 𝑥) =
(1/𝑥 𝑓𝑎 (𝑥))(𝜕𝐹𝑎/𝜕𝑎)(𝑥) increases (resp., decreases) with 𝑥 on the support of 𝐹𝑎, for every fixed
𝑎 ∈ 𝐽 ⊆ 𝐼.
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The simple criterion for the star-shaped relationships that follows is derived as a direct consequence
of the monotonicity result presented above.

Theorem 4. Let {𝐹𝑎 : 𝑎 ∈ 𝐼 ⊆ R} be a family of distributions as in Theorem 3. Then 𝐹𝑎 ≤∗ 𝐹𝑏 , for
every 𝑎 ≤ 𝑏 such that 𝑎, 𝑏 ∈ 𝐽 ⊆ 𝐼 if and only if 𝐷 (𝑎, 𝑥) = (1/𝑥 𝑓𝑎 (𝑥))(𝜕𝐹𝑎/𝜕𝑎)(𝑥) is decreasing with
𝑥 on the support of 𝐹𝑎, for every 𝑎 ∈ 𝐽 ⊆ 𝐼.

Proof. Take 𝑎, 𝑏 ∈ 𝐽 ⊆ 𝐼, such that 𝑎 ≤ 𝑏. For 𝛼 ≥ 𝛽, we have that

𝐹𝑎 ≤∗ 𝐹𝑏 ⇔
𝐹−1
𝑏 (𝛽)

𝐹−1
𝑎 (𝛽)

≤
𝐹−1
𝑏 (𝛼)

𝐹−1
𝑎 (𝛼)

⇔
𝐹−1
𝑎 (𝛼)

𝐹−1
𝑎 (𝛽)

≤
𝐹−1
𝑏 (𝛼)

𝐹−1
𝑏 (𝛽)

,

which is equivalent to 𝐹−1
𝑎 (𝛼)/𝐹−1

𝑎 (𝛽) being increasing with respect to 𝑎. Taking into account Theorem
3, the conclusion follows. �

Note that Theorem 4 states a necessary and sufficient condition for the star-shaped order to hold
between distributions 𝐹𝑎 for every 𝑎 ∈ 𝐽. However, in general, distributions may depend on more than
one parameter, as happens for parallel or series systems with heterogeneous components and, in general,
coherent systems. Hence, it is natural to seek for extensions of Theorem 4 to families of distributions
indexed by higher dimensional parameters.

To state our result, we need to introduce some notations. Let 𝜇 ∈ 𝐼 ⊆ R𝑛 and 𝑣 ∈ R𝑛, and consider
𝜇 + 𝑡𝑣, 𝑡 ∈ R, the line that goes through 𝜇 and has vector 𝑣. We will denote by 𝐿 (𝜇,𝑣) = {𝜆𝑡 ∈ 𝐼 ⊆

R
𝑛 : 𝜆𝑡 = 𝜇 + 𝑡𝑣, 𝑡 ∈ R}. Moreover, given a family of distributions 𝐹𝜆, ∇𝐹𝜆 (𝑥) stands for the gradient of

𝐹𝜆 (𝑥) with respect to the parameter 𝜆 and by 〈𝑣,∇𝐹𝜆 (𝑥)〉, we denote the inner product between 𝑣 and
∇𝐹𝜆 (𝑥).

Theorem 5. Let {𝐹𝜆 : 𝜆 ∈ 𝐼 ⊆ R𝑛} be a family of distributions such that 𝐹𝜆 ∈ F and has density function
𝑓𝜆 which does not vanish on any subinterval of its support. Let 𝜇 ∈ 𝐼, 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) ∈ R𝑛 and
𝐽 ⊆ 𝐼. Then 𝐹𝜆𝑡

≤∗ 𝐹𝜆𝑡′
, for every𝜆𝑡 , 𝜆𝑡′ ∈ 𝐿 (𝜇,𝑣)∩𝐽 and 𝑡 ≤ 𝑡 ′, if and only if 𝑅(𝑥) = 〈𝑣,∇𝐹𝜆 (𝑥)〉/𝑥 𝑓𝜆 (𝑥)

is decreasing with 𝑥 on the support of 𝐹𝜆, for every 𝜆 ∈ 𝐿 (𝜇,𝑣) ∩ 𝐽.

Proof. We want to prove that 𝐺 𝑡 ≤∗ 𝐺 𝑡′ , for 𝑡 ≤ 𝑡 ′, where 𝐺 𝑡 (𝑥) = 𝐹𝜆𝑡
(𝑥), for every 𝑥 on the support

of 𝐹𝜆. By Theorem 4, this is equivalent to (1/𝑥𝑔𝑡 (𝑥))(𝜕𝐺 𝑡/𝜕𝑡)(𝑥) being decreasing with 𝑥, where
𝑔𝑡 (𝑥) = 𝐺 ′

𝑡 (𝑥) = 𝑓𝜆(𝑥). Therefore, we may conclude that 𝐹𝜆𝑡
≤∗ 𝐹𝜆𝑡′

if and only if 〈𝑣,∇𝐹𝜆 (𝑥)〉/𝑥 𝑓𝜆 (𝑥)
is decreasing with 𝑥, for every 𝜆 ∈ 𝐿 (𝜇,𝑣) ∩ 𝐽. �

Remark 6. Note that one could think, of comparing distributions whose parameters belong to some
general parametric curve, instead of straight lines, which would lead to an obvious extension of
Theorem 5.

In the case of families of distributions with two-dimensional parameters, the following version, using
the slope of the line 𝐿 (𝜇,𝑣) , is convenient.

Proposition 7. Let {𝐹𝜆 : 𝜆 ∈ 𝐼 ⊆ R2} be a family of distributions such that 𝐹𝜆 ∈ F and has density
function 𝑓𝜆 which does not vanish on any subinterval of its support. Let 𝜇 ∈ 𝐼, 𝑣 = (𝑣1, 𝑣2) ∈ R

2 and
𝐽 ⊆ 𝐼. If 𝑣1 < 0 (resp., 𝑣1 > 0), then 𝐹𝜆𝑡

≤∗ 𝐹𝜆𝑡′
, for every 𝜆𝑡 , 𝜆𝑡′ ∈ 𝐿 (𝜇,𝑣) ∩ 𝐽 where 𝑡 ≤ 𝑡 ′, if and only

if 𝑄(𝑥) = (1/𝑥 𝑓 (𝑥))((𝜕𝐹𝜆/𝜕𝜆1)(𝑥) + 𝑘 (𝜕𝐹𝜆/𝜕𝜆2)(𝑥)) is increasing (resp., decreasing) with 𝑥 on the
support of 𝐹𝜆, for every 𝜆 ∈ 𝐿 (𝜇,𝑣) ∩ 𝐽, where 𝑘 = 𝑣2/𝑣1.

Proof. According to Theorem 5, we have that, 𝐹𝜆𝑡
≤∗ 𝐹𝜆𝑡′

, for every 𝜆𝑡 , 𝜆𝑡′ ∈ 𝐿 (𝜇,𝑣) ∩ 𝐽, where 𝑡 ≤ 𝑡 ′, if
and only if 𝑅(𝑥) = (1/𝑥 𝑓𝜆 (𝑥))((𝜕𝐹𝜆/𝜕𝜆1)(𝑥)𝑣1 + (𝜕𝐹𝜆/𝜕𝜆2)(𝑥)𝑣2) is decreasing with 𝑥 > 0, for every
𝜆 ∈ 𝐿 (𝜇,𝑣) ∩𝐽. Factorizing 𝑅(𝑥) by 𝑣1 and taking into account the sign of 𝑣1, the conclusion follows. �
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3. Applications

We now apply the results proved in the previous section to prove comparability, with respect to the star-
shaped order, for some models that are popular in reliability theory. Throughout this section, 𝑋1, . . . , 𝑋𝑛

will represent the lifetimes of the components of a complex system. The lifetime of a parallel system is
𝑋(𝑛) = max(𝑋1, . . . , 𝑋𝑛), while the lifetime of a series system is given by 𝑋(1) = min(𝑋1, . . . , 𝑋𝑛).

3.1. Parallel systems with dependent components

First, we provide a condition for the star-shaped order to hold between parallel systems, for which their
lifetime components are dependent and identically distributed. We say that the joint distribution of
(𝑋1, . . . , 𝑋𝑛) follows an 𝑛-dimensional FGM (Farlie–Gumbel–Morgenstern, cf. [14]) distribution if

𝐹(𝑋1 ,...,𝑋𝑛) (𝑥1, . . . , 𝑥𝑛) =
𝑛∏
𝑖=1

𝐹 (𝑥𝑖)

(
1 +

∑
1≤ 𝑗<𝑘≤𝑛

𝑎 𝑗𝑘 𝐹̄ (𝑥 𝑗 )𝐹̄ (𝑥𝑘 )

)
, (1)

where |
∑

1≤ 𝑗<𝑘≤𝑛 𝑎 𝑗𝑘 | ≤ 1. Then, the distribution function of 𝑋(𝑛) is given by

𝐹𝑐 (𝑥) = 𝐹𝑛 (𝑥)(1 + 𝑐𝐹̄2 (𝑥)), (2)

where 𝑐 =
∑

1≤ 𝑗<𝑘≤𝑛 𝑎 𝑗𝑘 ∈ [−1, 1]. Note that the constant 𝑐 describes the strength of dependence among
the random variables, while its sign reveals the direction of the dependence, that is, if 𝑐 > 0 (𝑐 < 0),
the components are positively (negatively) dependent.

Proposition 8. Let {𝐹𝑐 : 𝑐 ∈ [−1, 1]} be a family of distributions defined as in (2). Then 𝐹𝑎 ≤∗ 𝐹𝑏 ,
whenever −1 ≤ 𝑎 < 𝑏 ≤ 𝑛/(𝑛 + 2), if 𝑄1(𝑥) = 𝐹 (𝑥)𝐹̄ (𝑥)/𝑥 𝑓 (𝑥) is decreasing with 𝑥 on the support of
𝐹𝑐 .

Proof. According to Theorem 4, we need to prove that 𝐷 (𝑐, 𝑥) = (1/𝑥 𝑓𝑐 (𝑥))(𝜕𝐹𝑐/𝜕𝑐)(𝑥) is decreasing
with 𝑥 > 0, for −1 ≤ 𝑐 ≤ 𝑛/(𝑛 + 2). After simplifications, we have 𝐷 (𝑐, 𝑥) = 𝑄1(𝑥)ℎ(𝑥), where ℎ(𝑥) =
𝐹̄ (𝑥)/(𝑛(1 + 𝑐) − 2𝑐(𝑛 + 1)𝐹 (𝑥) + 𝑐(𝑛 + 2)𝐹2 (𝑥)). Since (𝜕𝐹𝑐/𝜕𝑐)(𝑥) ≥ 0, we have that 𝐷 (𝑐, 𝑥) ≥ 0.
Now, taking into account that obviously𝑄1(𝑥) ≥ 0, it follows that ℎ(𝑥) ≥ 0, for 𝑥 > 0. If 𝑐 = 0, then ℎ is
decreasing, and the conclusion follows. Finally, assume that |𝑐 | ≤ 1 and 𝑐 ≠ 0. Given that 𝐹 is increasing
and nonnegative, the monotonicity of ℎ is the same as the monotonicity of the companion function

ℎ̃(𝑥) =
1 − 𝑥

𝑛(1 + 𝑐) − 2𝑐(𝑛 + 1)𝑥 + 𝑐(𝑛 + 2)𝑥2 ,

for 𝑥 ∈ (0, 1). Differentiating, it is easily seen that ℎ̃′ has the same sign as 𝑁 (𝑥) = −𝑛(1 + 𝑐) + 2𝑐(𝑛 +
1) − 2𝑐(𝑛 + 2)𝑥 + 𝑐(𝑛 + 2)𝑥2. When 𝑐 > 0, 𝑁 (𝑥) ≤ 𝑁 (0) = 𝑐(𝑛 + 2) − 𝑛 ≤ 0, while when 𝑐 < 0,
𝑁 (𝑥) ≤ 𝑁 (1) ≤ 0. Thus, ℎ̃′(𝑥) ≤ 0, implying that ℎ is decreasing. Taking into account that 𝑄1 is a
positive decreasing function, the conclusion follows. �

Remark 9. Moreover, Proposition 8 implies that, with respect to systems with independent components,
negatively dependent components results in faster aging of parallel systems, while positive dependence
mean slower aging rates.

Remark 10. The decreasingness assumption on 𝑄1 is a technical assumption in Proposition 8. We
provide some additional information showing that it is satisfied by Gamma distributions with shape
parameter smaller than 1. Note that verifying that 𝑄1 is decreasing is equivalent to proving that, for
every 𝑐 > 0, 𝐻 (𝑥) = 𝐹̄ (𝑥)𝐹 (𝑥)−𝑐𝑥 𝑓 (𝑥) changes sign at most once, and if the sign change occurs, it is in
the order “+,−”, as 𝑥 goes from 0 to +∞, where 𝐹 is the distribution function of a Gamma distribution
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with shape parameter 𝛼 < 1 and scale parameter 𝜆 = 1. To conclude about the sign variation of 𝐻, we
need to study its derivative.

𝐻 ′(𝑥) =
𝑥𝛼−1𝑒−𝑥

Γ(𝛼)
(−𝐹 (𝑥) + 𝐹̄ (𝑥) − 𝑐𝛼 + 𝑐𝑥) =

𝑥𝛼−1𝑒−𝑥

Γ(𝛼)
𝑉 (𝑥).

As 𝑥 > 0, the sign of 𝐻 ′ is the same as the sign of 𝑉 . Differentiating again, we obtain 𝑉 ′(𝑥) =
−2(𝑥𝛼−1𝑒−𝑥/Γ(𝛼)) + 𝑐, and 𝑉 ′′(𝑥) = 2(𝑥𝛼−2𝑒−𝑥/Γ(𝛼))𝐾 (𝑥), where 𝐾 (𝑥) = −𝛼 + 1 + 𝑥. Thus, 𝐾
is increasing. Furthermore, 𝐾 (0) = −𝛼 + 1 and lim𝑥→+∞ 𝐾 (𝑥) = +∞. Since 𝛼 < 1, it follows that
𝐾 (𝑥) > 0, for 𝑥 > 0 therefore, 𝑉 ′′(𝑥) > 0, for 𝑥 > 0 thus, 𝑉 ′ is increasing. Moreover, lim𝑥→0+ 𝑉

′(𝑥) =
−∞ and lim𝑥→+∞𝑉

′(𝑥) = 𝑐; hence, 𝑉 ′ has sign variation “−, +”, for 𝑥 > 0. Consequently, 𝑉 has
monotonicity “↘↗”. Now, as lim𝑥→0+ 𝑉 (𝑥) = 1 − 𝑐𝛼, and lim𝑥→+∞𝑉 (𝑥) = +∞, the sign variation of
𝑉 may be “+,−, +”, “−, +”, or “+”. In the first case, 𝐻 has monotonicity “↗↘↗”, so, given that
lim𝑥→0+ 𝐻 (𝑥) = 0 and lim𝑥→+∞ 𝐻 (𝑥) = 0, 𝐻 has sign variation “+,−”. If 𝑉 has sign variation “−, +”,
𝐻 will have monotonicity “↘↗”, implying that 𝐻 (𝑥) < 0, for 𝑥 > 0. Finally, the case where 𝑉 (𝑥) ≥ 0
cannot happen, since lim𝑥→0+ 𝐻 (𝑥) = 0 and lim𝑥→+∞ 𝐻 (𝑥) = 0. Thus, 𝐻 changes sign at most once in
the order “+,−”, and therefore 𝑄1 is increasing.

Remark 11. For other families of distributions, such as Pareto (with support (0, +∞)) or Weibull
distributions, it is easy to verify that𝑄1 is also decreasing, regardless of the value of the shape parameter,
proceeding analogously as in Remark 10.

3.2. Complex systems based on PHR and PRHR models

We now prove some ordering relationships for two models that have received extensive usage when
modeling lifetime or survival time data: the PHR model, introduced by Cox [6], and the PRHR model,
introduced by Gupta et al. [7]. The PRHR model was used, for example, by Tsodikov et al. [19] to
describe a stochastic model of spontaneous carcinogenesis, where the progression time of the tumor
was modeled by a PRHR model, while Lane et al. [15] modeled bank failure through a PHR model.
We recall the definition of these models: a PHR (resp., PRHR) model with baseline distribution 𝐹 has a
distribution function satisfying 𝐹̄𝑎 (𝑥) = 𝐹̄𝑎 (𝑥) (resp., 𝐹𝑎 (𝑥) = 𝐹𝑎 (𝑥)), for 𝑎 > 0. Hence, the PHR and
PRHR models introduce a family of distributions depending on one parameter. We first characterize
the star-shaped ordering for each of these models as a straightforward consequence of the Saunders and
Moran’s criterion, Theorem 4.

Proposition 12. Let 𝐹 ∈ F with a density that does not vanish on any subinterval of its support, be some
baseline distribution. Then 𝐹𝑎 ≤∗ 𝐹𝑏 , for every 0 < 𝑎 ≤ 𝑏 if and only if 𝑔̄(𝑥) = ln(𝐹̄ (𝑥))𝐹̄ (𝑥)/𝑥 𝑓 (𝑥) is
increasing with 𝑥 on the support of 𝐹, in the case of the PHR model, or 𝑔(𝑥) = ln(𝐹 (𝑥))𝐹 (𝑥)/𝑥 𝑓 (𝑥) is
decreasing with 𝑥 on the support of 𝐹, in the case of the PRHR model.

Proof. Consider the case of PHR model. According to Theorem 4, we have 𝐷 (𝑎, 𝑥) =
(1/𝑥 𝑓𝑎 (𝑥))(𝜕𝐹𝑎/𝜕𝑎)(𝑥) = −(1/𝑎)𝑔̄(𝑥). Hence, since 𝑎 > 0, the conclusion follows. The PRHR case
follows analogously. �

Remark 13. The sample maxima and minima from independent, identically distributed random
variables are typical examples of PHR and PRHR models.

Remark 14. It can be verified that the function 𝑔 and 𝑔̄ considered in the previous proposition are
monotone for several families of distributions popular in reliability or aging models, such as the Gamma,
Weibull, or Pareto (with support (0, +∞)). For Weibull and Pareto distributions, the monotonicity of
both functions does not depend on the value of the shape parameter. However, the same does not happen
for Gamma distributions. Although 𝑔 is increasing, for every shape parameter 𝛼 > 0, the function 𝑔̄ is
increasing if 𝛼 < 1 and decreasing if 𝛼 > 1. Verifying this may be accomplished as in Remark 10.
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3.3. Complex systems with heterogeneous components

Throughout this subsection, we characterize the star-shaped ordering of a few different types of hetero-
geneous systems, looking both at parallel and series systems. A first model looks at parallel systems
with components whose lifetimes distributions are subject to different scale changes. Let 𝐹 ∈ F be a
distribution function, with density function that does not vanish on any subinterval of its support and
consider random variables 𝑋𝑖 with distribution function 𝐹𝑖 (𝑥) = 𝐹 (𝜆𝑖𝑥), where 𝜆𝑖 > 0, for 𝑖 = 1, . . . , 𝑛.
The distribution function of 𝑋(𝑛) is

𝐹𝜆(𝑥) =
𝑛∏
𝑖=1

𝐹 (𝜆𝑖𝑥), 𝜆 = (𝜆1, . . . , 𝜆𝑛). (3)

First, recall below a definition concerning a special class of functions.

Definition 15 ([8]). A function 𝑓 : R2 → R is said to be totally positive of order 2 (TP2) if for every
real numbers 𝑥1 < 𝑥2 and 𝑦1 < 𝑦2, 𝑓 (𝑥1, 𝑦2) 𝑓 (𝑥2, 𝑦1) ≤ 𝑓 (𝑥1, 𝑦1) 𝑓 (𝑥2, 𝑦2).

Proposition 16. Let {𝐹𝜆 : 𝜆 ∈ (0, +∞)𝑛, 𝜆1 < 𝜆2 < · · · < 𝜆𝑛} be a family of distributions defined as
in (3). Let 𝜇, 𝑣 ∈ (0, +∞)𝑛. If 𝐺 (𝑎, 𝑥) = 𝐹 (𝑎𝑥)/ 𝑓 (𝑎𝑥) is TP2 for 𝑎 > 0, then 𝐹𝜆𝑡

≤∗ 𝐹𝜆𝑡′
, for every

𝜆𝑡 , 𝜆𝑡′ ∈ 𝐿 (𝜇,𝑣) ∩ 𝐽 where 𝑡 ≤ 𝑡 ′ and 𝐽 = {𝜆 ∈ (0, +∞)𝑛 : 𝑣𝑖𝜆 𝑗 − 𝜆𝑖𝑣 𝑗 ≤ 0, 𝑖 < 𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑛}.

Proof. According to Theorem 5, we need to prove that 𝑅(𝑥) = (1/𝑥 𝑓𝜆 (𝑥))
∑𝑛

𝑖=1 𝑣𝑖 (𝜕𝐹𝜆/𝜕𝜆𝑖)(𝑥) is
decreasing with 𝑥, where 𝑓𝜆 is the density function of 𝐹𝜆. We have that

𝜕𝐹𝜆
𝜕𝜆

(𝑥) = 𝑥 𝑓 (𝜆𝑖𝑥)
𝑛∏
𝑗=1
𝑖≠ 𝑗

𝐹 (𝜆 𝑗𝑥) and 𝑓𝜆(𝑥) =
𝑛∑
𝑖=1

𝜆𝑖 𝑓 (𝜆𝑖𝑥)
𝑛∏
𝑗=1
𝑖≠ 𝑗

𝐹 (𝜆 𝑗𝑥).

Thus, 𝑅(𝑥) =
∑𝑛

𝑖=1 𝑣𝑖𝑃𝑖 (𝑥)/
∑𝑛

𝑖=1 𝜆𝑖𝑃𝑖 (𝑥), where 𝑃𝑖 (𝑥) = 𝑓 (𝜆𝑖𝑥)
∏𝑛

𝑗=1,𝑖≠ 𝑗 𝐹 (𝜆 𝑗𝑥). Differentiating 𝑅,
we get that the sign of 𝑅′ is the same as the sign of

𝐾 (𝑥) =
𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

(𝑣𝑖𝜆 𝑗 − 𝜆𝑖𝑣 𝑗)(𝑃
′
𝑖 (𝑥)𝑃 𝑗 (𝑥) − 𝑃𝑖 (𝑥)𝑃

′
𝑗 (𝑥)).

Since, for 𝑖 < 𝑗 and 𝑖, 𝑗 = 1, . . . , 𝑛, we have that 𝑣𝑖𝜆 𝑗 −𝜆𝑖𝑣 𝑗 ≤ 0, we need to prove that 𝑃′
𝑖 (𝑥)𝑃 𝑗 (𝑥) −

𝑃𝑖 (𝑥)𝑃
′
𝑗 (𝑥) ≥ 0, for 𝑖 < 𝑗 . The function 𝑃′

𝑖 (𝑥)𝑃 𝑗 (𝑥) − 𝑃𝑖 (𝑥)𝑃
′
𝑗 (𝑥) is the numerator of the derivative

of 𝐿(𝑥) = 𝑃𝑖 (𝑥)/𝑃 𝑗 (𝑥) = 𝑓 (𝜆𝑖𝑥)𝐹 (𝜆 𝑗𝑥)/ 𝑓 (𝜆 𝑗𝑥)𝐹 (𝜆𝑖𝑥). Given that, for 𝑖 < 𝑗 , 𝜆𝑖 < 𝜆 𝑗 and 𝐺 (𝑎, 𝑥) is
TP2, for every 𝑎 > 0, it follows that 𝐿 is increasing. Hence, the proof is concluded. �

Remark 17. The Gamma distribution is one of the common families in reliability or aging models
that verify the TP2 property. In fact, proving that 𝐺 (𝑎, 𝑥) is TP2 is the same as proving that 𝐾 (𝑥) =
𝑓 (𝑎𝑥)𝐹 (𝑏𝑥)/ 𝑓 (𝑏𝑥)𝐹 (𝑎𝑥) = (𝑎/𝑏)𝛼−1 (𝑒𝑏𝑥𝐹 (𝑏𝑥)/𝑒𝑎𝑥𝐹 (𝑎𝑥)) is increasing with 𝑥, for 0 < 𝑎 < 𝑏.
Again, this is verified in an analogous way as in Remark 10. Other families of distributions that satisfy
the TP2 property assumed in Proposition 16 are, for example, Weibull and Pareto (with support (0, +∞)).

The following corollary complements the ordering result proved in Kochar and Xu [10], where only
two types of components with exponential lifetimes were allowed in each parallel system.

Corollary 18. Let {𝐹𝜆 : 𝜆 ∈ (0, +∞)𝑛, 𝜆1 < 𝜆2 < · · · < 𝜆𝑛} be a family of distributions defined as in
(3), with 𝐹 (𝑥) = 1 − 𝑒−𝑥 . Let 𝜇, 𝑣 ∈ (0, +∞)𝑛. Then 𝐹𝜆𝑡

≤∗ 𝐹𝜆𝑡′
, for every 𝜆𝑡 , 𝜆𝑡′ ∈ 𝐿 (𝜇,𝑣) ∩ 𝐽 where

𝑡 ≤ 𝑡 ′ and 𝐽 = {𝜆 ∈ (0, +∞)𝑛 : 𝑣𝑖𝜆 𝑗 − 𝜆𝑖𝑣 𝑗 ≤ 0, 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 < 𝑗}.
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Proof. Taking into account Proposition 16, we only need to prove that 𝐺 (𝑎, 𝑥) = 𝐹 (𝑎𝑥)/ 𝑓 (𝑎𝑥) is TP2,
for 𝑎 > 0. But this is equivalent to proving that, for 𝑎 < 𝑏,

𝐾 (𝑥) =
𝑓 (𝑎𝑥)𝐹 (𝑏𝑥)

𝑓 (𝑏𝑥)𝐹 (𝑎𝑥)
=
𝑒𝑏𝑥 − 1
𝑒𝑎𝑥 − 1

is increasing with 𝑥 > 0, which is easily seen to be true. �

We now have a look into complex systems based on components whose lifetimes follow a PRHR
model. Assume that the lifetimes 𝑋𝑖 have distribution function 𝐹𝑖 (𝑥) = 𝐹𝜆𝑖 (𝑥), for some baseline
function 𝐹 ∈ F with density 𝑓 that does not vanish on any interval of the support of 𝐹, where 𝜆𝑖 > 0,
for every 𝑖 = 1, . . . , 𝑛. Then, the distribution function of 𝑋(1) is

𝐹𝜆 (𝑥) = 1 −

𝑛∏
𝑖=1

(1 − 𝐹𝜆𝑖 (𝑥)), 𝜆 = (𝜆1, . . . , 𝜆𝑛). (4)

Proposition 19. Let {𝐹𝜆 : 𝜆 ∈ (0, +∞)𝑛, 𝜆1 < 𝜆2 < · · · < 𝜆𝑛} be a family of distributions defined as in
(4). Let 𝜇, 𝑣 ∈ (0, +∞)𝑛. If 𝑔(𝑥) = ln(𝐹 (𝑥))𝐹 (𝑥)/𝑥 𝑓 (𝑥) is decreasing with 𝑥 on the support of 𝐹, then
𝐹𝜆𝑡

≤∗ 𝐹𝜆𝑡′
, for every 𝜆𝑡 , 𝜆𝑡′ ∈ 𝐿 (𝜇,𝑣) ∩ 𝐽 where 𝑡 ≤ 𝑡 ′ and 𝐽 = {𝜆 ∈ (0, +∞)𝑛 : 𝑣𝑖𝜆 𝑗 − 𝜆𝑖𝑣 𝑗 ≤ 0, 𝑖 <

𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑛}.

Proof. Taking into account Theorem 5, we need to prove that 𝑅(𝑥) = (1/𝑥 𝑓𝜆 (𝑥))
∑𝑛

𝑖=1 𝑣𝑖 (𝜕𝐹𝜆/𝜕𝜆𝑖)(𝑥)
is decreasing for every 𝜆 ∈ 𝐽. We have that

𝜕𝐹𝜆
𝜕𝜆𝑖

(𝑥) = ln(𝐹 (𝑥))𝐹𝜆𝑖 (𝑥)
𝑛∏
𝑗=1
𝑖≠ 𝑗

(1 − 𝐹𝜆𝑖 (𝑥)),

and

𝑓𝜆(𝑥) = 𝑓 (𝑥)
𝑛∑
𝑖=1

𝜆𝑖𝐹
𝜆𝑖−1(𝑥)

𝑛∏
𝑗=1
𝑖≠ 𝑗

(1 − 𝐹𝜆𝑖 (𝑥)).

Hence, 𝑅(𝑥) = 𝑔(𝑥)ℎ(𝑥), where ℎ(𝑥) =
∑𝑛

𝑖=1 𝑣𝑖𝑃𝑖 (𝑥)/
∑𝑛

𝑖=1 𝜆𝑖𝑃𝑖 (𝑥), with 𝑃𝑖 (𝑥) =
𝐹𝜆𝑖−1(𝑥)

∏𝑛
𝑗=1,𝑖≠ 𝑗 (1−𝐹𝜆 𝑗 (𝑥)). It is easily seen that the first term in 𝑅′(𝑥) = 𝑔′(𝑥)ℎ(𝑥)+𝑔(𝑥)ℎ′(𝑥) is neg-

ative. Observe that, since 𝑣𝑖 > 0, for every 𝑖 = 1, . . . , 𝑛, it follows that ℎ(𝑥) ≥ 0. Hence, to prove that 𝑅 is
decreasing, it is enough to establish that ℎ is increasing, given that 𝑔 is a negative decreasing function. The
sign of ℎ′ is easily seen to be the same as the sign of

∑𝑛−1
𝑖=1

∑𝑛
𝑗=𝑖+1(𝑣𝑖𝜆 𝑗−𝜆𝑖𝑣 𝑗 )(𝑃

′
𝑖 (𝑥)𝑃 𝑗 (𝑥)−𝑃𝑖 (𝑥)𝑃

′
𝑗 (𝑥)).

Given that 𝑣𝑖𝜆 𝑗 − 𝜆𝑖𝑣 𝑗 ≤ 0, it remains to prove that 𝑃′
𝑖 (𝑥)𝑃 𝑗 (𝑥) − 𝑃𝑖 (𝑥)𝑃

′
𝑗 (𝑥) ≤ 0, for every

𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 < 𝑗 . Observe that 𝑃′
𝑖 (𝑥)𝑃 𝑗 (𝑥) − 𝑃𝑖 (𝑥)𝑃

′
𝑗 (𝑥) is the numerator of the derivative of

𝐾 (𝑥) = 𝑃𝑖 (𝑥)/𝑃 𝑗 (𝑥) = 𝐹𝜆𝑖−𝜆 𝑗 (𝑥)((1 − 𝐹𝜆 𝑗 (𝑥))/(1 − 𝐹𝜆𝑖 (𝑥))). Hence, we need to prove that 𝐾 is
decreasing. Given that 𝐹 is increasing and nonnegative, the monotonicity of 𝐾 is the same as the
monotonicity of the companion function

𝐾̃ (𝑥) = 𝑥𝜆𝑖−𝜆 𝑗
1 − 𝑥𝜆 𝑗

1 − 𝑥𝜆𝑖
=
𝑥−𝜆 𝑗 − 1
𝑥−𝜆𝑖 − 1

, for 𝑥 ∈ (0, 1),

which is easily seen to be decreasing on (0, 1). �

Assuming the components follow a PHR model, we may derive a similar result about 𝑋(𝑛) . Consider
that 𝑋𝑖 has survival function 𝐹̄𝑖 (𝑥) = 𝐹̄𝜆𝑖 (𝑥), where 𝜆𝑖 > 0, for every 𝑖 = 1, . . . , 𝑛 and 𝐹 is a baseline
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distribution as above. Then, the distribution function of 𝑋(𝑛) is, with 𝜆 = (𝜆1, . . . , 𝜆𝑛),

𝐹𝜆 (𝑥) =
𝑛∏
𝑖=1

(1 − 𝐹̄𝜆𝑖 (𝑥)). (5)

Proposition 20. Let {𝐹𝜆 : 𝜆 ∈ (0, +∞)𝑛, 𝜆1 < 𝜆2 < · · · < 𝜆𝑛} be a family of distributions defined as in
(5). Let 𝜇, 𝑣 ∈ (0, +∞)𝑛. If 𝑔̄(𝑥) = ln(𝐹̄ (𝑥))𝐹̄ (𝑥)/𝑥 𝑓 (𝑥) is increasing with 𝑥 on the support of 𝐹, then
𝐹𝜆𝑡

≤∗ 𝐹𝜆𝑡′
, for every 𝜆𝑡 , 𝜆𝑡′ ∈ 𝐿 (𝜇,𝑣) ∩ 𝐽 where 𝑡 ≤ 𝑡 ′ and 𝐽 = {𝜆 ∈ (0, +∞)𝑛 : 𝑣𝑖𝜆 𝑗 − 𝜆𝑖𝑣 𝑗 ≤ 0, 𝑖 <

𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑛}.

Proof. The proof is analogous to that of Proposition 19, taking into account that

𝜕𝐹𝜆
𝜕𝜆𝑖

(𝑥) = − ln(𝐹̄ (𝑥))𝐹̄𝜆𝑖 (𝑥)
𝑛∏
𝑗=1
𝑖≠ 𝑗

(1 − 𝐹̄𝜆𝑖 (𝑥)),

𝑓𝜆(𝑥) = 𝑓 (𝑥)
𝑛∑
𝑖=1

𝜆𝑖 𝐹̄
𝜆𝑖−1(𝑥)

𝑛∏
𝑗=1
𝑖≠ 𝑗

(1 − 𝐹̄𝜆𝑖 (𝑥)),

where 𝑓 is the density function of 𝐹, and 𝑅(𝑥) = −𝑔̄(𝑥)ℎ(𝑥), where ℎ(𝑥) =
∑𝑛

𝑖=1 𝑣𝑖𝑃𝑖 (𝑥)/
∑𝑛

𝑖=1 𝜆𝑖𝑃𝑖 (𝑥),
with 𝑃𝑖 (𝑥) = 𝐹̄𝜆𝑖−1(𝑥)

∏𝑛
𝑗=1,𝑖≠ 𝑗 (1 − 𝐹̄𝜆 𝑗 (𝑥)). Thus, we now need to prove that ℎ′(𝑥) ≤ 0, in order to

conclude that 𝑅′(𝑥) ≤ 0. Since 𝑣𝑖𝜆 𝑗 − 𝜆𝑖𝑣 𝑗 ≤ 0, for 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ≠ 𝑗 , this follows after proving
that 𝑃′

𝑖 (𝑥)𝑃 𝑗 (𝑥) − 𝑃𝑖 (𝑥)𝑃
′
𝑗 (𝑥) ≥ 0, for 𝑖 < 𝑗 , which is easily achieved analogously as in the proof of

Proposition 19. �

The previous result is an extension of Theorem 3.3 in Kochar and Xu [13], where the authors
considered one of the systems to be formed by homogeneous components.

Remark 21. The conclusions in Propositions 19 and 20 may reverse the direction of the ordering, if the
monotonicities assumed for 𝑔 and 𝑔̄ are reversed and we redefine the set as 𝐽 = {𝜆 ∈ (0, +∞)𝑛 : 𝑣𝑖𝜆 𝑗 −

𝜆𝑖𝑣 𝑗 ≥ 0, 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 < 𝑗}.

Remark 22. As referred in Remark 10, it can verified that the functions 𝑔 and 𝑔̄ considered in Propo-
sitions 19 and 20, respectively, are monotone for several families of distributions popular in reliability
or aging models, such as the Gamma, Lomax, Weibull, Pareto, or power.

3.4. Parallel systems with homogeneous distributions

Arab et al. [2] proved in their Corollary 7.2, that parallel homogeneous systems with components
that have exponential lifetimes age faster as the number of components increases. We may prove this
also holds when the components have exponentiated Weibull lifetimes 𝑋1, . . . , 𝑋𝑛, whose distribution
function is given by 𝐹 (𝑥) = (1 − 𝑒−(𝜆𝑥)

𝛽
)𝛼, for 𝑥 > 0, where 𝛼, 𝛽 > 0 are shape parameters and 𝜆 > 0

is a scale parameter. The distribution function of 𝑋(𝑛) is given by

𝐹𝑋 (𝑥) = (1 − 𝑒−(𝜆𝑥)
𝛽

)𝑎, (6)

where 𝑎 = 𝛼𝑛, for 𝑛 ≥ 1. Taking into account Remark 2, we may, without loss of generality, consider
𝜆 = 1.

Proposition 23. Let {𝐹(𝛽,𝑎) : 𝑎 > 0, 𝛽 > 0} be a family of distributions defined as in (6). Let
(𝛽′, 𝑎′), (𝛽, 𝑎̃) ∈ (0, +∞)2, such that 𝛽′ ≥ 𝛽, and 𝑣 = (𝛽, 𝑎̃) − (𝛽′, 𝑎′). If 𝛽′ = 𝛽, then 𝐹𝑎′ ≤∗ 𝐹𝑎̃,

https://doi.org/10.1017/S0269964821000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964821000449


Probability in the Engineering and Informational Sciences 57

for every 𝑎′ ≥ 𝑎̃. If 𝛽′ > 𝛽, then 𝐹𝜆𝑡
≤∗ 𝐹𝜆𝑡′

, for every 𝜆𝑡 , 𝜆𝑡′ ∈ 𝐿 ( (𝛽′,𝑎′) ,𝑣) where 𝑡 ≤ 𝑡 ′, if and only if
𝜆𝑡 , 𝜆𝑡′ ∈ 𝐽 = {(𝛽, 𝑎) ∈ (0, +∞)2 : (𝑎̃ − 𝑎′)/(𝛽 − 𝛽′) ≥ −𝑎/𝛽}.

Proof. If 𝛽′ = 𝛽, then the family of distributions 𝐹(𝛽,𝑎) follows a PRHR model. Thus, taking into
account Proposition 12, since

ln(𝐹 (𝑥))𝐹 (𝑥)
𝑥 𝑓 (𝑥)

=
(𝑒𝑥 − 1) ln(1 − 𝑒−𝑥)

𝑥

is increasing with 𝑥 > 0, the conclusion follows. Consider now 𝛽′ > 𝛽. By Proposition 7, we need to
prove that

𝑄(𝑥) =
1

𝑥 𝑓(𝛽,𝑎) (𝑥)

(
𝜕𝐹(𝛽,𝑎)

𝜕𝛽
(𝑥) + 𝑘

𝜕𝐹(𝛽,𝑎)

𝜕𝑎
(𝑥)

)

is increasing with 𝑥 > 0, for every (𝛽, 𝑎) ∈ 𝐿 ( (𝛽′,𝑎′) ,𝑣) , if and only if 𝑘 = (𝑎̃ − 𝑎′)/(𝛽 − 𝛽′) ≥ −𝑎/𝛽.
We begin by studying the case where 𝑘 ≥ 0. Taking into account Lemma 8 in Arab and Oliveira [1], we
need to prove that, for every 𝑐 ∈ R, 𝑄(𝑥) − 𝑐 changes sign at most once, as 𝑥 goes from 0 to +∞, and if
the sign change occurs it is in the order “−, +”. Note 𝑄(𝑥) − 𝑐 and 𝐻 (𝑥) = (1 − 𝑒−𝑥

𝛽
)𝑎−1𝑃(𝑥), where

𝑃(𝑥) = (𝑎𝑒−𝑥
𝛽

𝑥𝛽 ln(𝑥) + 𝑘 (1 − 𝑒−𝑥
𝛽

) ln(1 − 𝑒−𝑥
𝛽

) − 𝑐𝑎𝛽𝑥𝛽𝑒−𝑥
𝛽

)

have, for each 𝑥 > 0, the same sign. Hence, it is enough to characterize the sign of 𝑃. We look at the sign
of 𝑃′, that coincides, for 𝑥 > 0, with the one of 𝑉 (𝑥) = (−𝑎𝑥𝛽 ln(𝑥) + 𝑎 ln(𝑥) + 𝑎/𝛽 + 𝑘 ln(1 − 𝑒−𝑥

𝛽
) +

𝑘 − 𝑐𝑎𝛽 + 𝑐𝑎𝛽𝑥𝛽). Differentiating 𝑉 , we have 𝑉 ′(𝑥) = 𝑥𝛽−1𝐾 (𝑥), where 𝐾 (𝑥) = −𝑎𝛽 ln(𝑥) − 𝑎 + 𝑎/𝑥𝛽 +
𝑘𝛽/(𝑒𝑥

𝛽
− 1) + 𝑐𝑎𝛽2. Thus, 𝐾 ′(𝑥) = −𝑎𝛽/𝑥 − 𝑎𝛽/𝑥𝛽+1 − 𝑘𝛽2𝑥𝛽−1𝑒𝑥

𝛽
/(𝑒𝑥

𝛽
− 1)2. Since 𝑘 ≥ 0, we have

that𝐾 ′(𝑥) ≤ 0, implying that𝐾 is decreasing. Given that, lim𝑥→0+ 𝐾 (𝑥) = +∞ and lim𝑥→+∞ 𝐾 (𝑥) = −∞,
it follows that the sign variation of 𝐾 , which is the same as sign variation of 𝑉 ′, is “+,−”. Therefore,
𝑉 has monotonicity “↗↘”. Moreover, lim𝑥→0+ 𝑉 (𝑥) = lim𝑥→+∞𝑉 (𝑥) = −∞, which implies that 𝑉
has sign variation “−, +,−” or “−”. In the first case, we have that 𝑃 has monotonicity “↘↗↘”. Since
lim𝑥→0+ 𝑃(𝑥) = lim𝑥→+∞ 𝑃(𝑥) = 0, the sign variation of 𝑃, which coincides with the sign variation of
𝐻, is “−, +”. In the second case, where 𝑉 (𝑥) ≤ 0, then 𝑃 would be decreasing. But this is impossible,
given the behavior of 𝑃 near 0 and at +∞. Suppose now that −(−𝑎/𝛽) ≤ 𝑘 = (𝑎̃ − 𝑎′)/(𝛽 − 𝛽′) ≤ 0.
Differentiating 𝑄, we obtain

𝑄 ′(𝑥) =
((𝛽𝑘𝑥𝛽 − 𝛽𝑘)𝑒𝑥

𝛽
+ 𝛽𝑘) ln(1 − 𝑒−𝑥

𝛽
) + (𝛽𝑘 + 𝑎)𝑥𝛽

𝑥𝛽+1𝑎𝛽
.

Some elementary calculus arguments show that𝑄 ′(𝑥) ≥ 0, implying that𝑄 is increasing with 𝑥 > 0.
If 𝑘 ≤ −𝑎/𝛽, 𝑄 cannot be a monotone function, since lim𝑥→0+ 𝑄(𝑥) = lim𝑥→+∞𝑄(𝑥) = +∞. Therefore,
the proof is concluded. �

Remark 24. According to Proposition 23, given (𝛽, 𝑎̃) and (𝛽′, 𝑎′), we do not only have that 𝐹(𝛽,𝑎) ≤∗

𝐹(𝛽,𝑎̃) , for (𝛽, 𝑎) ∈ 𝐽 ∩ 𝐿 ( (𝛽′,𝑎′) ,𝑣) , but we also have that the distributions depending on the parameters
in the set 𝐽 ∩ 𝐿 ( (𝛽′,𝑎′) ,𝑣) are ordered, with respect to the star-shaped order. That is, if 𝑘 is the slope
of the line going through (𝛽, 𝑎̃) and (𝛽′, 𝑎′), then every point (𝛽, 𝑎) in this line, and above the line
−𝑘𝛽′ (condition given by the set 𝐽) defines distributions comparable with each other and with 𝐹(𝛽,𝑎̃) .
However, it does not allow us to decide about star-shaped comparability between 𝐹(𝛽,𝑎) and 𝐹(𝛽,𝑎̃) , when
(𝛽, 𝑎) ∉ 𝐽. Nevertheless, if we keep changing the value of 𝑘 (and, therefore, the position of the point
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(𝛽′, 𝑎′)), it follows from Proposition 23 that the set of points (𝛽, 𝑎) for which we have 𝐹(𝛽,𝑎) ≤∗ 𝐹(𝛽,𝑎̃) ,
is given by the set {(𝛽, 𝑎) ∈ (0, +∞)2 : 𝛽 ≥ 𝛽 and 𝑎 ≥ 𝑎̃𝛽/(𝛽 − 2𝛽)}.

4. Conclusion

Saunders and Moran [17] introduced a criterion to obtain the star-shaped ordering between distribu-
tions within a family depending on a single parameter. Although this criterion was used by many
authors to exhibit star-shaped comparability within parametric families of distributions, Saunders and
Moran’s [17] result cannot be used for the comparison of complex systems, such as parallel or series
systems with heterogeneous components, whose distributions depend on more than one parameter.
In this paper, we extend the characterization given by Saunders and Moran [17] for the star-shaped
order for families of distributions that involve multiple parameters. Based on this new criterion,
sufficient conditions are obtained for comparing, with respect to the star-shaped order, parallel and
series systems with heterogeneous components. Moreover, the new characterization is used to establish
star-shaped comparability between parallel systems with homogeneous components, when the multidi-
mensional parameter move along lines that depend on the scale parameters of the individual lifetime
distributions.
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