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Abstract

A C∗-algebra A is said to detect nuclearity if, whenever a C∗-algebra B satisfies A ⊗min B = A ⊗max B, it
follows that B is nuclear. In this note, we survey the main results associated with this topic and present the
background and tools necessary for proving the main results. In particular, we show that the C∗-algebra
A = C∗(F∞) ⊗min B(�2)/K(�2) detects nuclearity. This result is known to experts, but has never appeared in
the literature.
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1. Introduction

Generally speaking, a C∗-algebra A is said to detect a certain property P (or is a P
detector) if, for any C∗-algebra B, we have A ⊗min B = A ⊗max B if and only if B has
property P. Examples illustrating this notion go back to Kirchberg’s seminal paper
[6], where he proved that C∗(F∞) detects Lance’s weak expectation property (WEP)
and that B(H) detects the local lifting property (LLP). Recently, more examples of
WEP detectors were found in [2].

The existence of a C∗-algebra which detects nuclearity remained an open problem
for a long time. When an answer emerged, it was circulated as folklore among several
experts, but it has never appeared in the literature. It stated that the C∗-algebra A =
C∗(F∞) ⊗min B(�2)/K(�2) is a nuclearity detector. More recently, Kavruk (Corollary 2.3
in [4]) constructed an example of a unital, separable C∗-algebra which detects
nuclearity. Kavruk’s example comes from operator systems via a universal
construction. Namely, the universal C∗-algebra C∗u(W32) of the operator system

W32 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b 0 0 0 0
b a 0 0 0 0
0 0 a c 0 0
0 0 c a 0 0
0 0 0 0 a d
0 0 0 0 d a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
: a, b, c, d ∈ C

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⊂ M6(C)

© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

125

https://doi.org/10.1017/S0004972722000387 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972722000387
https://orcid.org/0000-0001-9370-977X
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972722000387&domain=pdf
https://doi.org/10.1017/S0004972722000387


126 F. Pop [2]

is shown to detect nuclearity. As explained in [8], universal algebras of this kind
are very difficult to describe. While several additional nonself-adjoint detectors were
presented in [3], the fact remains that, so far, C∗(F∞) ⊗min B(�2)/K(�2) remains the
only concrete example of a nuclearity detecting C∗-algebra. The goal of this note is
to present a detailed account of this fact. To make it easier for the reader, we include
several background and auxiliary results required for the proof.

While Kavruk’s universal construction represents a separable nuclearity detector,
finding a concrete example of such an algebra remains, for the moment, an open
problem. Another open problem is whether or not the Calkin algebra alone detects
nuclearity. Equivalently (see Section 4), must an exact C∗-algebra with the LLP be
necessarily nuclear?

2. Background and basics

We begin by recalling the definitions of the minimal and maximal C∗-cross-norms
and refer the reader to [10, 11] for more details. Throughout the paper, we will
denote an arbitrary Hilbert space by H and by �2 a separable Hilbert space. The
notion of complete positivity is shortened to c.p., while u.c.p. stands for a unital,
completely positive map. Let A1 and A2 be unital C∗-algebras. A C∗-cross-norm
on the algebraic tensor product A1 ⊗ A2 is a C∗-norm γ satisfying the additional
condition ||a ⊗ b||γ = ||a|| · ||b||. If π1 : A1 → B(H1) and π2 : A2 → B(H2) are unital
∗-homomorphisms, we get a unital, ∗-preserving homomorphism π1 ⊗ π2 : A1 ⊗ A2 →
B(H1 ⊗ H2) by letting π1 ⊗ π2(a ⊗ b) = π1(a) ⊗ π2(b). Thus, if for x ∈ A1 ⊗ A2, we set
||x||min = sup{π1 ⊗ π2(x) : πi : Ai → B(Hi) unital ∗-homomorphism, i = 1, 2}, then we
obtain a C∗-cross-norm on A1 ⊗ A2. The completion of A1 ⊗ A2 in this norm is denoted
by A1 ⊗min A2 and is called the minimal (or the spatial) tensor norm. It is the smallest
possible C∗-cross-norm on the algebraic tensor product A1 ⊗ A2. It is not difficult to
see that the minimal tensor norm is given by ||∑n

i=1 ai ⊗ bi||min = ||
∑n

i=1 π1(ai) ⊗ π2(bi)||
in B(H) ⊗ B(K) ⊂ B(H ⊗ K), where π1 : A→ B(H) and π2 : B→ B(K) are arbitrary
faithful ∗-representations.

Let now π1 : A→ B(H) and π2 : B→ B(H) be unital ∗-homomorphisms such that
π1(a)π2(b) = π2(b)π1(a) for all a ∈ A1 and b ∈ A2. Define a unital ∗-homomorphism π :
A ⊗ B→ B(H) by π(x) =

∑n
i=1 π1(ai)π2(bi), where x =

∑n
i=1 ai ⊗ bi. Conversely,

if we have a unital ∗-homomorphism π : A ⊗ B→ B(H) and we define π1(a) =
π(a ⊗ I), π2(b) = π(I ⊗ b), we obtain a pair of unital ∗-homomorphisms of A
and B, respectively, with commuting ranges such that π(a ⊗ b) = π1(a)π2(b). We
define ||x||max = sup{||π(x)|| : π : A ⊗ B→ B(H) unital ∗ -homomorphisms}. The
completion of A ⊗ B in this norm, denoted by A ⊗max B, is called the maximal tensor
norm, and is the largest possible C∗-cross-norm on the algebraic tensor product
A ⊗ B.

In the nonunital case, both min and max tensor products are taken to be the
respective subalgebras of A+ ⊗min B+ and A+ ⊗max B+, where A+ and B+ are the
unitisations of A and B. A C∗-algebra is called nuclear if A ⊗min B = A ⊗max B for
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every C∗-algebra B. It is well known that abelian C∗-algebras, Mn(C), and the algebra
of compact operators K(H) are nuclear. We recall that a C∗-algebra A is exact if the
sequence

0→ A ⊗min B/J → A ⊗min J → A ⊗min B→ 0

is exact for every C∗-algebra B and every closed, two-sided ideal J ⊂ B.
Two important and well-known results that we will use repeatedly are collected in

the next proposition. We refer the reader to [11], where the first is a particular case of
Corollary 4.18 and the second is Proposition 7.15.

PROPOSITION 2.1.

(a) If ϕ : A→ B is a u.c.p. map, then ϕ extends to a u.c.p. map ϕ ⊗ id : A ⊗max C →
B ⊗max C.

(b) The short exact sequence 0→ A/J → J → A→ 0 extends to the short exact
sequence 0→ A/J ⊗max B→ J ⊗max B→ A ⊗max B→ 0.

It can be proved without difficulty that if Ai ⊂ Bi, i = 1, 2, then A1 ⊗min A2 ⊂
B1 ⊗min B2, but this is no longer the case for the max norm. Specifically, if A ⊂ B,
then it is possible that the inclusion A ⊗ C ⊂ B ⊗max C does not induce the max norm
on A ⊗ C. If it does, we write A ⊗max C ⊂ B ⊗max C.

In [9], Lance observed that A ⊗max C ⊂ A∗∗ ⊗max C for all C∗-algebras A and C,
and introduced the following property: given a unital inclusion A ⊂ B, we say that A
is weakly c.p. complemented in B if there exists a u.c.p. map ψ : B→ A∗∗ such that
ψ(a) = a for all a ∈ A. If the above map ψ takes values in A, then A is said to be
c.p. complemented in B. It is easy to see that if A ⊂ B ⊂ C and A is (weakly) c.p.
complemented in C, then A will be (weakly) c.p. complemented in B as well.

Lance proved in [9] that if A is weakly c.p. complemented in B, then A ⊗max C ⊂
B ⊗max C for any C. The particular case when A is c.p. complemented in B will be used
subsequently, so we present it as Lemma 3.1 for the benefit of the reader. A C∗-algebra
A has the WEP if, for some faithful representation on a Hilbert space H, A is weakly
c.p. complemented in B(H). It can be seen [9] that this definition does not depend on
the particular representation of A.

A u.c.p. map ϕ : A→ B/J is said to be u.c.p. liftable if there exists a u.c.p. map
ψ : E → B such that ϕ|E = q ◦ ψ, where q is the quotient map. The map ϕ : A→ B/J
is locally u.c.p. liftable if, for every finite dimensional operator system E ⊂ A, there
exists a u.c.p. map ψ : E → B such that ϕ|E = q ◦ ψ. A C∗-algebra has the lifting
property (LP) (respectively the LLP) if every u.c.p. map from A to B/J is u.c.p. liftable
(respectively locally u.c.p. liftable) to B.

In [1], Choi and Effros proved that separable nuclear C∗-algebras have the LP,
while Kirchberg [7] proved the same for the nonnuclear C∗-algebra C∗(F∞), the full
C∗-algebra of the free group on countably many generators.

The next proposition contains several fundamental results based on Kirchberg’s
work [6].
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PROPOSITION 2.2.

(i) A C∗-algebra A has the WEP if and only if A ⊗max C∗(F∞) = A ⊗min C∗(F∞).
(ii) A C∗-algebra A has the LLP if and only if A ⊗max B(H) = A ⊗min B(H).
(iii) A ⊗max B = A ⊗min B if A has the LLP and B has the WEP.
(iv) If A ⊗max B = A ⊗min B for every separable C∗-algebra B with the WEP, then A

has the LLP.

PROOF. Statements (i), (ii) and (iii) constitute Proposition 1.1 in [6]. To prove
statement (iv), suppose that A ⊗max B(H) � A ⊗min B(H) and choose operators ai ∈ A,
bi ∈ B(H), i = 1, . . . , n, such that

∥∥∥∥∥
n∑

i=1

ai ⊗ bi

∥∥∥∥∥
A⊗minB(H)

<

∥∥∥∥∥
n∑

i=1

ai ⊗ bi

∥∥∥∥∥
A⊗maxB(H)

.

By Lemma 2.4 in [6], there exists a separable C∗-subalgebra B ⊂ B(H) with the WEP
such that bi ∈ B, i = 1, . . . , n. Then B is weakly c.p. complemented in B(H) and
∥∥∥∥∥

n∑
i=1

ai ⊗ bi

∥∥∥∥∥
A⊗maxB

=

∥∥∥∥∥
n∑

i=1

ai ⊗ bi

∥∥∥∥∥
A⊗maxB(H)

>

∥∥∥∥∥
n∑

i=1

ai ⊗ bi

∥∥∥∥∥
A⊗minB(H)

=

∥∥∥∥∥
n∑

i=1

ai ⊗ bi

∥∥∥∥∥
A⊗minB

,

a contradiction. �

3. Preliminary results

In this section, we collect several facts that will be used subsequently in proving the
main results.

LEMMA 3.1. Let A ⊂ B be an inclusion of C∗-algebras and suppose that there exists a
u.c.p. map θ : B→ A such that θ(a) = a for all a ∈ A. Then A ⊗max C ⊂ B ⊗max C for
every C∗-algebra C.

PROOF. By Proposition 2.1(b), the inclusion ι : A→ B extends to a u.c.p. map ι ⊗ id :
A ⊗max C → B ⊗max C. Therefore, for all a1, . . . , an ∈ A and c1, . . . , cn ∈ C,

∥∥∥∥∥
n∑

i=1

ai ⊗ ci

∥∥∥∥∥
B⊗maxC

=

∥∥∥∥∥
n∑

i=1

ι(ai) ⊗ ci

∥∥∥∥∥
B⊗maxC

=

∥∥∥∥∥(ι ⊗ id)
( n∑

i=1

ai ⊗ ci

)∥∥∥∥∥
B⊗maxC

≤
∥∥∥∥∥

n∑
i=1

ai ⊗ ci

∥∥∥∥∥
A⊗maxC

.

Similarly, θ extends to a u.c.p. map θ ⊗ id : B ⊗max C → A ⊗max C, so
∥∥∥∥∥

n∑
i=1

ai ⊗ ci

∥∥∥∥∥
A⊗maxC

=

∥∥∥∥∥
n∑

i=1

θ(ai) ⊗ ci

∥∥∥∥∥
A⊗maxC

=

∥∥∥∥∥(θ ⊗ id)
( n∑

i=1

ai ⊗ ci

)∥∥∥∥∥
A⊗maxC

≤
∥∥∥∥∥

n∑
i=1

ai ⊗ ci

∥∥∥∥∥
B⊗maxC

. �
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COROLLARY 3.2.

(a) For any unital C∗-algebras A, B and C, we have

A ⊗max C ⊂ (A ⊗min B) ⊗max C and A ⊗max C ⊂ (B ⊗min A) ⊗max C.

(b) For any unital C∗-algebras A1, A2, . . . , An and B and for 1 ≤ i ≤ n, we have
Ai ⊗max B ⊂ (A1 ⊗min A2 ⊗min · · · ⊗min An) ⊗max B.

PROOF. (a) We apply Lemma 3.1 for B replaced by A ⊗min B (respectively B ⊗min A)
and identify A with the subalgebra A ⊗ I (respectively I ⊗ A) of A ⊗min B. As far as θ is
concerned, choose an arbitrary state ϕ on B and define θ : A ⊗min B→ A by

θ
( n∑

i=1

ai ⊗ bi

)
=

n∑
i=1

ϕ(bi)ai.

Respectively, define θ : B ⊗min A→ A by

θ
( n∑

i=1

bi ⊗ ai

)
=

n∑
i=1

ϕ(bi)ai.

(b) We use induction. The case n = 2 is part (a). Suppose now that the property is
true for n and consider n + 1 algebras A1, . . . , An+1. For i = 1,

A1 ⊗max B ⊂ [A1 ⊗min (A2 ⊗min · · · ⊗min An+1)] ⊗max B

by part (a), while for 2 ≤ i ≤ n + 1,

Ai ⊗max B ⊂ (A2 ⊗min · · · ⊗min An+1) ⊗max B

by the inductive hypothesis and

(A2 ⊗min · · · ⊗min An+1) ⊗max B ⊂ [A1 ⊗min (A2 ⊗min · · · ⊗min An+1)] ⊗max B

by part (a). The conclusion follows. �

4. Tensor products with the Calkin algebra

In this section, we prove that a C∗-algebra whose max and min tensor products
with the Calkin algebra are equal must be exact and have the LLP. This result, which
represents the core technical ingredient needed in the proof of the main result, has also
been folklore for a while. It first appeared in print recently as Corollary 10.10 in [11].
The proof we present here is different and shorter than the one in [11].

PROPOSITION 4.1. A C∗-algebra A satisfies A ⊗min B(�2)/K(�2) = A ⊗max B(�2)/K(�2)
if and only if A has the LLP and is exact.

PROOF. ⇐ The sequence

0→ A ⊗max B(�2)/K(�2)→ A ⊗max K(�2)→ A ⊗max B(�2)→ 0
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is exact and, since A is exact, so is the sequence

0→ A ⊗min B(�2)/K(�2)→ A ⊗min K(�2)→ A ⊗min B(�2)→ 0.

Since A has the LLP, A ⊗min B(�2) = A ⊗max B(�2). This, together with the fact that
A ⊗min K(�2) = A ⊗max K(�2) (since K(�2) is nuclear), leads to the conclusion.
⇒ First we prove that A has the LLP. To get a contradiction, suppose, by

using Proposition 2.2(iv), that there exists a separable WEP C∗-algebra B with the
property A ⊗min B � A ⊗max B. As a consequence, there exist operators ai ∈ A, bi ∈ B,
i = 1, . . . , n, and ε > 0 such that

∥∥∥∥∥
n∑

i=1

ai ⊗ bi

∥∥∥∥∥
A⊗maxB

= 1 and
∥∥∥∥∥

n∑
i=1

ai ⊗ bi

∥∥∥∥∥
A⊗minB

< 1 − ε.

We may assume without loss of generality that B is faithfully represented on a
separable Hilbert space, viewed as �2, in such a way that B ∩ K(�2) = {0}. Then
the quotient map π : B(�2)→ B(�2)/K(�2) induces a ∗-isomorphism between B and
π(B) ⊂ B(�2)/K(�2). If we view the Calkin algebra represented faithfully on some
(nonseparable) Hilbert space H, then

π(B) ⊂ B(�2)/K(�2) ⊂ B(H).

Since π(B) has the WEP, it is weakly c.p. complemented in B(H); therefore, also
weakly c.p. complemented in B(�2)/K(�2), as remarked in Section 2. In particular,
A ⊗max π(B) ⊂ A ⊗max B(�2)/K(�2). It follows that
∥∥∥∥∥

n∑
i=1

ai ⊗ bi

∥∥∥∥∥
A⊗maxB

=

∥∥∥∥∥
n∑

i=1

ai ⊗ π(bi)
∥∥∥∥∥

A⊗maxπ(B)
=

∥∥∥∥∥
n∑

i=1

ai ⊗ π(bi)
∥∥∥∥∥

A⊗maxB(�2)/K(�2)
.

However, by using the hypothesis, we obtain
∥∥∥∥∥

n∑
i=1

ai ⊗ π(bi)
∥∥∥∥∥

A⊗maxB(�2)/K(�2)
=

∥∥∥∥∥
n∑

i=1

ai ⊗ π(bi)
∥∥∥∥∥

A⊗minB(�2)/K(�2)

=

∥∥∥∥∥
n∑

i=1

ai ⊗ π(bi)
∥∥∥∥∥

A⊗minπ(B)
=

∥∥∥∥∥
n∑

i=1

ai ⊗ bi

∥∥∥∥∥
A⊗minB

< 1 − ε.

It follows that ||∑n
i=1 ai ⊗ bi||A⊗maxB < 1 − ε, which contradicts the assumption that

||∑n
i=1 ai ⊗ bi||A⊗maxB = 1. We conclude that A has the LLP.
To prove exactness, we will show that in the short exact sequence

0→ A ⊗max B(�2)/K(�2)→ A ⊗max K(�2)→ A ⊗max B(�2)→ 0,

we can replace ‘max’ by ‘min’. Since A has the LLP, it follows that A ⊗max B(�2) =
A ⊗min B(�2). By hypothesis, we also have A ⊗max B(�2)/K(�2) = A ⊗min B(�2)/K(�2)
which, together with A ⊗max K(�2) = A ⊗min K(�2), leads to

0→ A ⊗min B(�2)/K(�2)→ A ⊗min K(�2)→ A ⊗min B(�2)→ 0.

This implies that A is exact by Theorem 1.1 in [5]. �
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5. Detecting nuclearity

This section is devoted to the main results.

DEFINITION 5.1.

(i) A unital C∗-algebra A is said to detect nuclearity if, whenever a C∗-algebra B
satisfies A ⊗min B = A ⊗max B, it follows that B is nuclear.

(ii) A set S = {A1, A2, . . . , An} of unital C∗-algebras is said to detect nuclearity if,
whenever a C∗-algebra B satisfies Ai ⊗min B = Ai ⊗max B for all i = 1, . . . , n, it
follows that B is nuclear.

REMARK 5.2. Without loss of generality, we can assume that B is also unital.
Otherwise, if B+ denotes the unitisation of B, A ⊗min B = A ⊗max B implies A ⊗min B+ =
A ⊗max B+ by Lemma 5.4 in [3]. If A detects nuclearity among unital C∗-algebras, then
B+ is nuclear; therefore, B is nuclear as an ideal of B+.

The connection between the two notions in the above definition is given in the next
proposition.

PROPOSITION 5.3. If the set S = {A1, A2, . . . , An} of unital C∗-algebras detects nucle-
arity, then so does A1 ⊗min A2 ⊗min · · · ⊗min An.

PROOF. Suppose that B satisfies

(A1 ⊗min A2 ⊗min · · · ⊗min An) ⊗min B = (A1 ⊗min A2 ⊗min · · · ⊗min An) ⊗max B.

By Corollary 3.2(b),

Ai ⊗max B ⊂ (A1 ⊗min A2 ⊗min · · · ⊗min An) ⊗max B
= (A1 ⊗min A2 ⊗min · · · ⊗min An) ⊗min B;

therefore, Ai ⊗min B = Ai ⊗max B for 1 ≤ i ≤ n. Since S detects nuclearity, the conclu-
sion follows. �

We arrive at the main result of this section.

PROPOSITION 5.4. The C∗-algebra C∗(F∞) ⊗min B(�2)/K(�2) detects nuclearity.

PROOF. By Proposition 5.3, it suffices to show that the set S = {C∗(F∞), B(�2)/K(�2)}
detects nuclearity. Let B be a C∗-algebra satisfying A ⊗min B = A ⊗max B for all A ∈ S.
From B(�2)/K(�2) ⊗min B = B(�2)/K(�2) ⊗max B, we see that B is exact and has the LLP
by Proposition 4.1. However, C∗(F∞) ⊗min B = C∗(F∞) ⊗max B implies that B has the
WEP (Proposition 2.2(i)). Since B is both WEP and exact, it must be nuclear (see for
example [12, 4.2] or [11, 10.9]). �

REMARK 5.5. In the category of QWEP C∗-algebras (quotients of C∗-algebras with
the WEP), the Calkin algebra detects nuclearity. This is a consequence of the fact that
exactness and LLP plus QWEP imply nuclearity. Indeed, a C∗-algebra with QWEP
and LLP must have the WEP (Corollary 2.6(ii) in [6]), and WEP plus exactness imply
nuclearity as seen in the previous paragraph.
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6. Other tensor product characterisations of nuclearity

In the same circle of ideas as nuclearity detection, we mention the issue of
characterising nuclearity by the equality of the min and max norms on certain tensor
products.

To illustrate this idea, we recall that a C∗-algebra is nuclear if and only if any Hilbert
space representation generates an injective von Neumann algebra. Equivalently, A is
nuclear if and only if A∗∗ is injective [11, 8.16]. Since, for von Neumann algebras, injec-
tivity and the WEP are equivalent [11, 9.26], we obtain the following characterisation
of nuclearity [11, 9.27].

PROPOSITION 6.1. A C∗-algebra A is nuclear if and only if

C∗(F∞) ⊗min A∗∗ = C∗(F∞) ⊗max A∗∗.

Recall that, given a C∗-algebra A, the opposite C∗-algebra, denoted by Aop, is the
same algebra with the same involution but with reversed product, so that the product
of a and b in Aop is defined as ba. We conclude with one more characterisation of
nuclearity.

PROPOSITION 6.2. A C∗-algebra A is nuclear if and only if

A ⊗min (Aop ⊗min B(�2)/K(�2)) = A ⊗max (Aop ⊗min B(�2)/K(�2)).

PROOF. We use Corollary 3.2(a) to get A ⊗min (B(�2)/K(�2)) = A ⊗max (B(�2)/K(�2))
and A ⊗min Aop = A ⊗max Aop. The former implies that A is exact, by Proposition 4.1,
while the latter shows that A has the WEP, as a consequence of Theorem 23.43 in [11].
As previously seen, exactness and WEP imply nuclearity. �
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