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In the present study an optimisation problem is formulated to determine the forcing of
an eddy-viscosity-based linearised Navier–Stokes model in channel flow at Reτ ≈ 5200
(Reτ is the friction Reynolds number), where the forcing is white-in-time and spatially
decorrelated. The objective functional is prescribed such that the forcing drives a response
to best match a set of velocity spectra from direct numerical simulation (DNS), as well
as remaining sufficiently smooth. Strong quantitative agreement is obtained between the
velocity spectra from the linear model with optimal forcing and from DNS, but only
qualitative agreement between the Reynolds shear stress co-spectra from the model and
DNS. The forcing spectra exhibit a level of self-similarity, associated with the primary
peak in the velocity spectra, but they also reveal a non-negligible amount of energy
spent in phenomenologically mimicking the non-self-similar part of the velocity spectra
associated with energy cascade. By exploiting linearity, the effect of the individual forcing
components is assessed and the contributions from the Orr mechanism and the lift-up
effect are also identified. Finally, the effect of the strength of the eddy viscosity on the
optimisation performance is investigated. The inclusion of the eddy viscosity diffusion
operator is shown to be essential in modelling of the near-wall features, while still allowing
the forcing of the self-similar primary peak. In particular, reducing the strength of the
eddy viscosity results in a considerable increase in the near-wall forcing of wall-parallel
components.

Key words: turbulence modelling, turbulence theory, low-dimensional models

1. Introduction

A central approach in understanding turbulent flow is through highly organised flow
patterns, often referred to as coherent structures. These structures often carry a significant
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amount of turbulent kinetic energy of a given flow. From a modelling perspective, the
idea is to incorporate the physics of these coherent structures into a theoretical description
of the flow, exploiting their energy-containing nature in a low-dimensional and tractable
manner. In wall-bounded turbulent shear flows, coherent structures emerge at multiple
length scales, varying from viscous inner to inertial outer units. The attached eddy
hypothesis of Townsend (1976) offers a theoretical framework for a statistical description
of wall-bounded turbulence by accounting for all these coherent structures at various
scales (see also a recent review by Marusic & Monty (2019)). The original formulation
of Townsend (1976) focused on the inertial logarithmic region. Two general assumptions
underpin the attached eddy hypothesis: (i) the length scale of the energy-containing
coherent structures is proportional to the distance from their centre to the wall and (ii) the
second-order statistical moments of the coherent structures are self-similar, with non-zero
wall-parallel velocity at the wall in the inviscid limit.

While the original work on the attached eddy hypothesis and its early extensions
considered some idealised velocity structures as a candidate of the attached eddy
for further predictions (e.g. Townsend 1976; Perry & Chong 1982; Perry, Henbest &
Chong 1986), the composition of the individual attached eddy has recently begun to be
understood. Ubiquitous in wall-bounded shear flows are two types of coherent structures:
an elongated streaky structure, attached to which are quasi-streamwise vortex packets.
These coherent structures were first observed in flow visualisations of the near-wall
region (Kline et al. 1967; Jeong et al. 1997), with their dynamics and persistence in
a turbulent flow eventually being entirely described by the near-wall self-sustaining
process (Hamilton, Kim & Waleffe 1995; Waleffe 1997). With the two coherent structures
cyclically interacting to fuel one another, the self-sustaining process is described by
three substages: (i) the elongated streaky structures are amplified by the quasi-streamwise
vortices through the transient ‘lift-up’ effect (Ellingsen & Palm 1975; Landahl 1980; Butler
& Farrell 1993; del Álamo & Jiménez 2006; Pujals et al. 2009; Hwang & Cossu 2010a;
McKeon & Sharma 2010; Brandt 2014), transferring energy from the mean shear; (ii)
these streaks are amplified until the secondary instability and/or transient growth occur
(Hamilton et al. 1995; Schoppa & Hussain 2002; de Giovanetti, Sung & Hwang 2017;
Lozano-Durán et al. 2021); and (iii) the streak instability results in regeneration of the
quasi-streamwise vortices through nonlinear mechanisms (Hamilton et al. 1995; Schoppa
& Hussain 2002), in turn driving (i).

Through a series of numerical experiments (Hwang & Cossu 2010b, 2011; Hwang
2013, 2015; Hwang & Bengana 2016) the motions at a fixed spanwise length scale were
isolated. These experiments revealed that the energy-containing motions across a range
of spanwise length scales were also comprised of this pair of coherent structures. The
pair of coherent structures were shown to dynamically persist through the self-sustaining
process. Consistent with the attached eddy hypothesis, the resulting velocity spectra of
this isolated motion are largely self-similar (Hwang 2015), with the active parts exhibiting
self-similarity with respect to the spanwise length scale of the motion. The wall-parallel
components were shown to remain attached to the wall, with an inactive footprint that
breaks the self-similarity due to the no-slip boundary condition (Hwang 2016). With
these results indicating that the pair of coherent structures are indeed the attached eddy,
the scope of the present study is to assimilate the statistical structure into a modelling
framework based on the linearised Navier–Stokes equations.

Linear models for wall-bounded turbulence are often constructed directly from the
Navier–Stokes equations, linearising the equations about the turbulent mean velocity
profile (Butler & Farrell 1993; del Álamo & Jiménez 2006; Pujals et al. 2009).
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Optimal white-noise stochastic forcing for linear models

For wall-bounded turbulent flows, the mean flow profile is linearly stable (Pujals et al.
2009), necessitating the inclusion of a forcing term in models to generate non-trivial
statistics. Such models borrow techniques introduced to study linear amplification
mechanisms in laminar–turbulence transition (e.g. Farrell & Ioannou 1996a,b; Schmid
& Henningson 2001; Schmid 2007), with the turbulent mean profile used in place of
the laminar one (Hwang & Cossu 2010a; McKeon & Sharma 2010; Zare, Jovanović &
Georgiou 2017). The particular model used throughout this study is the inclusion of a
stochastic forcing term to drive non-trivial statistics (Farrell & Ioannou 1992; Jovanovic
& Bamieh 2005), as well as a further eddy viscosity diffusion term (Hwang & Cossu
2010a), bearing in mind its performance-enhancing effects in a variety of studies (e.g.
Hwang 2016; Illingworth, Monty & Marusic 2018; Morra et al. 2019; Pickering et al.
2021; Symon, Illingworth & Marusic 2021).

As the linearised Navier–Stokes model has been developed, more emphasis has been
placed on the particular statistical structure of the forcing (see a recent review by Jovanović
(2021)). Indeed, the significance of this forcing structure has been shown to be vital in
recent modelling efforts. For example, if the forcing structure can be prescribed such that
the Reynolds shear stress it generates is consistent with that of the mean flow, such a
forcing can be used as a predictive tool in a quasi-linear approximation (Hwang & Eckhardt
2020; Skouloudis & Hwang 2021). The importance of a well-prescribed forcing to model
the nonlinearity is also associated with the improved performance of state-space estimators
(Hœpffner et al. 2005; Chevalier et al. 2006; Illingworth et al. 2018; Madhusudanan,
Illingworth & Marusic 2019; Morra et al. 2019; Gupta et al. 2021). In such an estimation
problem, statistics or instantaneous flow fields at a given wall-normal location are provided
as inputs, and are used to predict the same or related statistics at another wall-normal
location (e.g. Marusic, Mathis & Hutchins 2010; Baars, Hutchins & Marusic 2016;
Illingworth et al. 2018; Madhusudanan et al. 2019; Towne, Lozano-Durán & Yang 2019;
Gupta et al. 2021). The success of such estimators can physically be attributed to the
attached wall-parallel velocity components. These attached features provide significant
coherence over the wall-normal direction to the near-wall region (Hutchins & Marusic
2007; Marusic et al. 2010; Baars et al. 2016; Deshpande, Monty & Marusic 2021). The
performance of these estimators has also had varying degrees of success with the inputs
being generated by the aforementioned linearised Navier–Stokes model (Illingworth et al.
2018; Madhusudanan et al. 2019; Morra et al. 2019; Gupta et al. 2021). Furthermore, Gupta
et al. (2021) showed that the performance of such estimators generally follows how well
the forcing and eddy viscosity terms model the nonlinearity.

The aim of this study is to determine such a forcing term which replicates features
associated with the nonlinear term in the Navier–Stokes equation across all scales. The
structure of the model forcing can therefore be inferred from the role and physics of the
nonlinearity. Firstly, the form of the forcing is expected to be coherent and comparatively
self-similar to the attached eddies following the significance of the nonlinearity in the
self-sustaining process (Schoppa & Hussain 2002; de Giovanetti et al. 2017) and its
self-similar dynamics (Hwang 2015). Secondly, the forcing should mimic the multi-scale
nature of the nonlinearity. To this end, there are two main multi-scale features that the
forcing should reproduce: (i) the wall-attached behaviour in the wall-parallel velocity
components for energy-containing motions (e.g. Hutchins & Marusic 2007; Hwang 2015),
consistent with the attached eddy hypothesis, and (ii) energy cascade features facilitated
through triadic nonlinear interactions (Cho, Hwang & Choi 2018; Lee & Moser 2019).
These two multi-scale features further justify the use of an eddy viscosity term. The
inclusion of the eddy viscosity term has been shown to yield the inner-scaling features
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of large-scale structures (Hwang 2016), as well as to mimic the role of the nonlinearity in
transporting the energy to dissipative scales (Symon et al. 2021, 2022).

One approach to determine a forcing was recently proposed by Zare et al. (2017),
implementing a physics-informed data-driven framework to determine the forcing through
a convex optimisation problem. In their study, the objective functional ensured a
positive-definite velocity covariance matrix and incorporated the physics of the problem
and direct numerical simulation (DNS) data into the constraints. The physics-based
constraint was the velocity and forcing covariance satisfying a Lyapunov-like equation,
relaxing the typical white-in-time assumption to a coloured-in-time forcing. The
data-based constraint enforced the velocity covariance to match a partial set of two-point
velocity statistics (power- and cross-spectral intensities) from DNS. This coloured-in-time
feature of the forcing was shown to be a necessity, with the sign-definiteness of the forcing
covariance matrix not able to reproduce the second-order statistics obtained from DNS.

Further studies in determining the forcing include approaches in resolvent-based
analyses (Moarref et al. 2013; Towne et al. 2019; McMullen, Rosenberg & McKeon
2020), exactly determining the forcing through DNS (Chevalier et al. 2006; Nogueira et al.
2020; Morra et al. 2021), projecting a given velocity covariance onto the set of velocity
covariances achievable with the white-in-time model (Hœpffner 2005), modifying the
forcing covariance and linear operator to match DNS Reynolds stress profiles (Jovanovic
& Bamieh 2001) and resorting to physical arguments to model the nonlinear term (Gupta
et al. 2021). The eddy viscosity term was also shown to considerably improve the
near-wall velocity statistics (Hwang 2016; Zare et al. 2017) compensating for the lack of
colour-in-time of the forcing. In particular, the eddy viscosity diffusion and two leading
resolvent forcing modes at a given frequency appear to provide a good approximation for
some plane Fourier modes associated with energy-containing motions (Morra et al. 2021).

While these data-based approaches offer an interesting avenue to model the forcing
term, there are some perspectives to be further considered. In Zare et al. (2017) where
the covariance completion problem is formulated, it is not straightforward to physically
interpret forcing, requiring a filter that modifies the original linear dynamics. The full
formation of the resolvent-based approaches (Moarref et al. 2013; Towne et al. 2019)
would require the temporal correlation and spectra, which are not stored in typical
DNS databases at high Reynolds numbers. Similarly, the approaches of Nogueira et al.
(2020) and Morra et al. (2021) need the temporal statistics of the nonlinear term of the
Navier–Stokes equations, and the computation of such temporal statistics for all plane
Fourier modes is practically infeasible for subsequent modelling purposes, justifying the
need of a modelling approach like that of Zare et al. (2017). On the other hand, the use of
phenomenological arguments in improving the modelling of the nonlinear term is largely
heuristic (Gupta et al. 2021), and could be further refined with the aid of data-based
methods.

Motivated by the self-similar features of attached eddies with respect to spanwise length
scale, the present study aims to determine a forcing structure which generates reasonable
velocity statistics at a given spanwise length scale. To achieve this, an optimisation
problem is prescribed such that the forcing of the linearised Navier–Stokes equations
generates a set of velocity spectra to best replicate a set of high-Reynolds-number
DNS velocity spectra. Determination of such a forcing structure would have particular
implications in two further areas of modelling: (i) the modelling of the entire nonlinearity
for use in state-space estimation problems and (ii) the modelling of the nonlinearity which
pertains to the driving of the self-similar features of attached eddies. With respect to
(ii) and universality of the logarithmic layer, focus is placed on spanwise length scales
associated with the logarithmic layer.
961 A32-4
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In this study, the nonlinear term is modelled with a white-in-time stochastic forcing. To
account for the lack of colour-in-time, an eddy viscosity diffusion operator is included (e.g.
Hwang & Cossu 2010a; Morra et al. 2021). The wall-normal profile of the eddy viscosity
is chosen to be associated with the mean profile through a mixing length closure, with the
underlying physical assumption that the fluctuating velocity component experiences the
same background turbulence as the mean velocity. This leaves only the spatial structure of
the stochastic forcing to be determined. It is shown that approximating the nonlinear term
with white-in-time stochastic forcing and an eddy viscosity diffusion operator provides a
reasonable way of modelling the full velocity spectra, consistent with Morra et al. (2021).
In particular, by invoking self-similarity this approach with the eddy viscosity enables an
approximate forcing structure across the entire range of wavenumbers.

The paper is organised as follows. In § 2, the linearised Navier–Stokes equations
with the eddy viscosity and stochastic-forcing-based model for the nonlinearity are
introduced. The velocity spectra generated by the linearised Navier–Stokes equations
with this model for the nonlinearity are then detailed. From this, an optimisation
problem is considered to determine a forcing structure which minimises the difference
between the velocity spectra and Reynolds shear spectra between high-Reynolds-number
DNS spectra and that generated by the linearised Navier–Stokes equations. Following
the self-similarity of the attached eddies with respect to spanwise length scale, this
optimisation is done for the two-dimensional velocity spectra for fixed spanwise length
scale, i.e. in streamwise wavenumber and wall-normal coordinates for a given spanwise
wavenumber. The self-similarity and self-similar breaking features in the objective DNS
velocity spectra and Reynolds shear stress co-spectra are discussed in § 3. In § 4, the results
of the optimisation problem are presented, first focusing on results at a single spanwise
length scale and then comparing across multiple spanwise length scales and discussing
with respect to spanwise length scales. For the purpose of employing a self-similar
forcing spectra and considering linear superposition, the individual effects of each of the
forcing components are assessed. The solenoidal part of the forcing spectra, which only
contributes to the velocity and Reynolds shear stress spectra, is then determined in § 5
by post-processing the spatially decorrelated forcing spectra. For these solenoidal forcing
spectra, the direct contribution of each of the components and the associated amplification
mechanisms is detailed. In § 5.3, the eddy viscosity profile is varied by a scalar factor to
demonstrate its use in modelling the nonlinearity. Finally some concluding remarks on the
performance and limitations of the model are provided in § 6.

2. Problem formulation

2.1. Linearised incompressible turbulent channel flow
Incompressible, fully developed turbulent flow through an infinitely long and wide
channel is considered. Here, the coordinates along the streamwise, wall-normal and
spanwise directions are denoted by x, y and z respectively. The velocity vector is denoted
u = (u, v, w), with components along the corresponding directions. The channel has
height 2h, with the lower and upper walls given by y = 0 and y = 2h respectively. A
standard Reynolds decomposition is applied to the velocity field, u = U + u′, separating
the velocity into the time-averaged mean velocity U = (U( y), 0, 0) and the fluctuating
velocity field u′ = (u′, v′, w′). Substituting this decomposition into the Navier–Stokes
equations results in the following evolutionary equation for the fluctuating velocity:

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U = − 1

ρ
∇p′ + ν∇2u′ + N , (2.1a)
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where

N = −∇ ·
(

u′u′ − u′u′
)

. (2.1b)

Here t denotes time, ρ the fluid density, p′ the fluctuating pressure and ν the kinematic
viscosity, and an overbar denotes a time-averaged quantity. Throughout this study, the
friction Reynolds number is set to Reτ = 5200, where Reτ = uτ h/ν (here uτ = √

τw/ρ is
the friction velocity, with time-averaged mean shear stress at the wall τw).

To proceed with a tractable model, the nonlinearity N is further approximated by a
linear term. As (2.1a) is linearly stable about the turbulent channel flow mean profile
(Pujals et al. 2009), a forcing term is essential to drive non-trivial solutions. Furthermore,
to mimic the role of the nonlinear term in facilitating interscale energy transfer (see
also Symon et al. 2021), an eddy viscosity diffusion term is included. Accordingly, N
is replaced by the following expression:

Nνt,f = ∇ · (νt(∇u′ + ∇u′T)
)+ f ′, (2.2a)

where f ′ is a stochastic forcing term and the Cess expression (Cess 1958) is used for the
eddy viscosity profile:

νt (η) = ν

2

{
1 + κ2Re2

τ

9
(1 − η2)2(1 + 2η2)2(1 − exp[(|η| − 1)Reτ /A])2

}1/2

− ν

2
.

(2.2b)

Here η = ( y − h)/h with parameters κ = 0.426 and A = 25.4 (del Álamo & Jiménez
2006).

It should be noted that introduction of the eddy viscosity in (2.2a) is essentially ad hoc:
the original formulation of this model followed from the triple decomposition (Reynolds &
Hussain 1972), u = Ū + ũ + u′, where ũ is an organised periodic wavy motion driven by a
fixed frequency oscillator. The eddy viscosity was introduced as a closure to a constitutive
relation between the organised-wavy-motion-induced Reynolds stresses and the strain
rate of the organised wavy motions. This constitutive relation was derived under the
assumptions of low-frequency, large-scale structures, with recent findings justifying this
claim (Symon et al. 2021). The eddy viscosity for the turbulent fluctuations in (2.2a) was
chosen to be the same as that for the mean velocity. This results in the organised motions
experiencing the background turbulence in the same way as does the mean velocity. Whilst
this assumption need not be the case, the key feature in a suitable eddy viscosity would
be the linear growth with distance from the wall (Hwang 2016). Here, the eddy viscosity
profile is fixed, leaving only the statistical structure of the forcing to be determined through
ways discussed in § 2.3.

2.2. Response to stochastic forcing with arbitrary profile
To determine the statistical structure of the forcing in (2.2a), it is first useful to be able
to determine the statistically steady-state response for the velocity fluctuation with an
arbitrary forcing. For simplicity, here it is assumed that the functional form of the forcing
in the optimisation procedure is white-in-time, i.e. a zero mean random variable, where
the autocorrelation is delta-correlated in time. Additionally, the input forcing is restricted
to be spatially decorrelated, with the only non-zero entries in the spatial correlation being
the variance of the forcing components. This assumption implies that all the coloured
nature of the nonlinear term N in time would be from the eddy viscosity model, while the
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Optimal white-noise stochastic forcing for linear models

white-in-time and spatially decorrelated forcing plays a simple role in providing non-trivial
solutions for the given linear model. Note, that the covariance matrix of the nonlinear
term in the Navier–Stokes equations constructed with the white-in-time assumption was
recently shown to be not positive definite (see figure 6 in Zare et al. (2017)). The
introduction of the eddy viscosity enables us to relax this difficulty, as the energy-removing
nature of the eddy viscosity model can mimic nonlinear energy transport from the given
energy-producing scale to small scale (Symon et al. 2021). It is also worth mentioning that
the introduction of this form of the model for the nonlinear term N is not very far from
the recent work by Morra et al. (2021), who showed that the eddy viscosity model and the
leading resolvent forcing modes provide a fairly good proxy for the nonlinear term for a
certain set of spatial wavenumbers and forcing frequency. However, later it is shown that
this model is not able to produce fully accurate Reynolds shear stress, reminiscent of the
early work by Jovanovic & Bamieh (2001) who pointed out the importance of the spatial
and componentwise correlation in the forcing by modifying the linear dynamical operator.

Since the flow configuration is homogeneous in the streamwise and spanwise directions,
the Fourier transform of the forcing is taken, defined as

f̂ (t, y; kx, kz) =
∫ ∞

−∞

∫ ∞

−∞
f ′(t, x, y, z) exp(−i(kxx + kzz)) dx dz, (2.3)

where kx and kz are the streamwise and spanwise wavenumbers respectively. In the
following the dependence on kx and kz in the notation is dropped due to the independence
of the evolution of Fourier modes in the linearised dynamics. The covariance operator of
the forcing Rf̂ f̂ is defined as

Cov
[
m̂( y), n̂( y); f̂ ( y; t), f̂ ( y; t′)

]
= E

[
〈 f̂ ( y; t), m̂( y)〉〈 f̂ ( y; t′), n̂( y)〉∗

]
≡ 〈Rf̂ f̂ (t, t′)m̂, n̂〉, (2.4)

where E[·] is the ensemble average of stochastic realisations, m̂ and n̂ are two arbitrary
three-dimensional complex vector functions that may be used for bases of f̂ , (·)∗ is the
complex conjugate and 〈·, ·〉 is the standard inner product

〈m̂( y), n̂( y)〉 =
∫ 2h

0
n̂H( y)m̂( y) dy, (2.5)

where (·)H denotes the complex conjugate transpose. From this spectral covariance
operator, the spatial covariance statistics between realisations at times t and t′ of the
different components can be recovered from

〈Rf̂ f̂ (t, t′)δ( y − y′)êi, δ( y − y′′)êj〉 = E

[
f̂i( y′, t)f̂ ∗

j ( y′′, t′)
]
, (2.6)

where êi and êj (i, j = 1, 2, 3) are unit vectors with the only non-zero entry being the ith
and jth components respectively and f̂ = ( f̂1, f̂2, f̂3) = ( f̂u, f̂v, f̂w). For the white-in-time
forcing, the forcing covariance operator is set with

Rf̂ f̂ (t, t′) ≡ R̃f̂ f̂ ( y, y′)δ(t − t′). (2.7)

Since the forcing is prescribed to be spatially decorrelated, the spatial correlation is also
set with

R̃f̂ f̂ ( y, y′) = Ω( y)δ( y − y′), (2.8)
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where

Ω( y) =
⎡⎣Wu( y) 0 0

0 Wv( y) 0
0 0 Ww( y)

⎤⎦ (2.9)

contains the spatial statistics of the forcing, i.e. the wall-normal variance profiles for each
component.

This white-in-time and spatially decorrelated forcing does not match the functional form
of the forcing when evaluated directly from DNS (Chevalier et al. 2006; Morra et al.
2021). In particular, there is an absence of cross-correlation between the streamwise and
wall-normal forcing components. However, the inclusion of the eddy viscosity diffusion
term has been shown to improve the Reynolds stress statistics, with some effects of a
coloured-in-time forcing term incorporated through this modified linear operator (Gupta
et al. 2021; Abootorabi & Zare 2022). Additionally, there is a small contribution from the
spatial correlation of the solenoidal component of the forcing: while the forcing spectra
‘input’ is spatially decorrelated, only the solenoidal component of the forcing contributes
to the linearised dynamics (Rosenberg & McKeon 2019; Morra et al. 2021). Therefore,
assuming spatially decorrelated total forcing still results in a level of correlation of the
solenoidal component of forcing. This in turn leads to direct forcing of the Reynolds shear
stress component, dependent on enforcing the continuity of forcing at a given wavenumber
pair (see § 5.1 for a further discussion).

The steady-state response to this forcing is considered in the wavenumber domain. By
taking the Fourier transform of (2.1a) with (2.2a) and reformulating into the wall-normal
velocity/vorticity state, the Orr–Sommerfeld and Squire system is obtained for state q̂ =
(v̂, ω̂y)

T, where ωy is the wall-normal vorticity:

∂ q̂
∂t

= Aq̂ + Bf̂ , (2.10a)

where

A =
[
Δ−1LOS 0
−ikzDU LSQ

]
, (2.10b)

B =
[−ikxΔ

−1D −k2 −ikzΔ
−1D

ikz 0 −ikx

]
, (2.10c)

with the Orr–Sommerfeld and Squire operators

LOS = −ikx

(
UΔ − D2U

)
+ νTD2 + 2 (DνT) ΔD +

(
D2νT

) (
D2 + k2

)
, (2.10d)

LSQ = −ikxU + νTΔ + (DνT)D, (2.10e)

and homogeneous boundary conditions v̂ = Dv̂ = ω̂y = 0 along the upper and lower
walls. Here, νT = ν + νt is the ‘total’ effective viscosity, D is differentiation in the
wall-normal direction and Δ = D2 − k2 is the Laplacian operator in wavenumber space,
where k2 = k2

x + k2
z . The state q̂ is related to the velocity state through

û = Cq̂, (2.10f )

with

C = 1
k2

⎡⎣ikxD −ikz
k2 0

ikzD ikx

⎤⎦ . (2.10g)
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Optimal white-noise stochastic forcing for linear models

The spectral covariance operator of the steady-state response is determined through the
Lyapunov equation (Farrell & Ioannou 1992; Jovanovic & Bamieh 2005; Hwang & Cossu
2010a; Zare, Georgiou & Jovanović 2020; Jovanović 2021):

AR∞
q̂q̂ + R∞

q̂q̂A† + BR̃f̂ f̂ B† = 0, (2.11a)

where the steady-state spectral covariance operator for q̂ is given as

〈R∞
q̂q̂ ĝ, ĥ〉e = lim

t→∞ E

[
〈q̂(t), ĝ〉e〈q̂(t), ĥ〉∗e

]
(2.11b)

for arbitrary two-dimensional complex vector functions ĝ and ĥ. Here, the inner product
used for two-dimensional complex vector functions is

〈ĝ, ĥ〉e =
∫ 2h

0
ĥHMĝ dy, (2.11c)

with

M = 1
k2

[−Δ 0
0 1

]
(2.11d)

weighting the inner product such that the induced norm yields the Fourier mode
contribution to the turbulent kinetic energy. Moreover, the adjoints, denoted by (·)†, of
the linear operators are defined with respect to the energy inner product depending on
the domain/range of the operator (Jovanovic & Bamieh 2005), i.e. 〈Cĝ, m̂〉 = 〈ĝ, C†m̂〉e
and 〈Bm̂, ĝ〉e = 〈m̂, B†ĝ〉, which gives B† = C . In relation to this, note that there was a
typographical error in (2.9c) of Hwang & Eckhardt (2020), where the energy weight is
missing. Since the velocity and state are related through the linear relationship (2.10 f ),
the steady-state spectral covariance operator for the fluctuating velocity can be recovered
using R∞

q̂q̂ with

R∞
ûû = CR∞

q̂q̂C†, (2.12a)

from which the covariance of the fluctuating velocity is given as

lim
t→∞ E

[
ûi( y′, t)û∗

j ( y′′, t)
]

= 〈R∞
ûûδ( y − y′)êi, δ( y − y′′)êj〉, (2.12b)

where (û1, û2, û3) = (û, v̂, ŵ). Using (2.12b), the power- and cross-spectral density of the
response to the given stochastic forcing, denoted by Φuu( y), is finally retrieved from

Φuu( y) = lim
t→∞ E

[
û( y, t)ûH( y, t)

]
. (2.13)

The linearity of (2.11a) and (2.12a) can be exploited to efficiently determine Φuu for
a given Ω , using a predetermined set of velocity spectra. Considering (2.11a) has a
linear relationship between Ω and R∞

q̂q̂, i.e. for α1, α2 ∈ C and for Ω1, Ω2 with solutions
R∞

q̂q̂,1, R∞
q̂q̂,2 respectively, the spectral covariance operator with forcing intensity profiles

α1Ω1 + α2Ω2 is α1R∞
q̂q̂,1 + α2R∞

q̂q̂,2. Subsequently, the forcing matrix Ω is decomposed
componentwise:

Ω = Ωu + Ωv + Ωw, (2.14)

where Ωr with r = {u, v, w} is a matrix with the only non-zero entry being the
corresponding diagonal term containing the forcing intensity profile Wr( y; kx, kz).
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For example,

Ωw =
⎡⎣0 0 0

0 0 0
0 0 Ww( y, kx, kz)

⎤⎦ . (2.15)

Without loss of generality, the forcing intensity profile is projected onto a set of sine
polynomials:

Wr( y, kx, kz) = ar,0 (kx, kz) +
∞∑

n=1

ar,n (kx, kz) sin (nπy/h) . (2.16)

Denoting Ωr,n as the matrix with the only non-zero term being the corresponding diagonal
entry as sin(nπy/h), Ωr,0 as the identity operator for the r velocity component diagonal
term and letting Φuu,r,n be the corresponding spectral velocity covariance operator
determined from (2.11a) and (2.12a), then

Ωr =
∞∑

n=0

ar,n(kx, kz)Ωr,n, (2.17a)

which has corresponding spectral velocity covariance statistics

Φuu,r =
∞∑

n=0

ar,n(kx, kz)Φuu,r,n. (2.17b)

Finally, the total spectral covariance statistics with the forcing with spatial correlation Ω
are given by

Φuu = Φuu,u + Φuu,v + Φuu,w. (2.18)

Hence, for a prescribed set of expansions coefficients ar,n(kx, kz) and with a predetermined
set of spectral covariance operators from the sine forcing polynomials, the spectral
covariance for an arbitrarily structured Ω can be calculated, assuming the intensity profiles
are suitably behaved such that (2.16) converges.

2.3. Determining the structure of the forcing
An optimisation problem is now formulated to model the two-dimensional spectra
from DNS for a fixed spanwise wavenumber kz using the spectral covariance operator
determination for an arbitrary forcing profile as in § 2.2. Note that the choice of optimising
the forcing based on two-dimensional spectra for each kz is based on the observation of
Hwang (2015), which showed the self-similarity of the self-sustaining energy-containing
motions with respect to kz, i.e. the attached eddy hypothesis. In § 3, this feature is also
partially observed in the two-dimensional spectra of DNS in the y–kx plane. In addition
to this, the linearised model itself also has self-similar responses and forcing profiles in
the logarithmic region with respect to the spanwise length scale (Hwang & Cossu 2010a;
Karban et al. 2022). Combining these two observations, the forcing spectra should also
be expected to yield a self-similar structure when it comes to mimicking of self-similar
velocity spectra features.

Given the two-dimensional spectra of DNS for fixed kz, denoted by ΦDNS
uu (kx, y; kz),

the discretised forcing intensity matrix Ω(kx, y; kz) is determined such that it minimises
the difference between the corresponding two-dimensional spectra from the linear model
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Optimal white-noise stochastic forcing for linear models

Φuu(kx, y; kz) and ΦDNS
uu (kx, y; kz) with respect to a prescribed norm. Care must be taken

when determining the forcing, since solely focusing on minimising the norm between the
two spectral densities may lead to unphysically irregular forcing in the kx–y plane. To
this end, a regularisation term is included that penalises non-smooth forcing intensities
across streamwise wavenumbers and the wall-normal direction. This procedure also helps
denoising the spectra from DNS, which contain some errors caused by sampling the data
over a finite time interval in a finite domain. Note that the regularisation does not consider
the spanwise direction. This is because once the spectra in the kx–y plane are obtained
from the given linear model for every kz, a similar regularisation can be performed by
adjusting the global amplitude of the spectra for each kz. Lastly, the forcing spectra are
required to be positive everywhere, considering that this term is the variance in forcing at
a given wall-normal location. Following Lyapunov theory, this also ensures the positive
definiteness of the velocity spectral covariance matrix (Zhou, Doyle & Glover 1996; Zare
et al. 2017). For a given kz, the following norm minimisation problem is considered in
logarithmic coordinates:

min
Wr

∑
s

∣∣∣∣ΦDNS
s − Φs(Wr)

∣∣∣∣
Q∣∣∣∣ΦDNS

s
∣∣∣∣

Q

+
∑

r

γ J[Wr], (2.19a)

subject to
Wr(kx, y; kz) ≥ 0, (2.19b)

where r = {u, v, w}, s = {uu, vv, ww, uv} and γ is a parameter controlling the relative
importance of the regularisation. Here, J is a regularisation functional defined to promote
smoothness of the forcing intensity profiles in logarithmic coordinates:

J[Wr] =
∣∣∣∣∣∣∣∣( ∂2Wr

∂ ln k2
x

)∣∣∣∣∣∣∣∣
Q

+ 2
∣∣∣∣∣∣∣∣( ∂2Wr

∂ ln kx∂ ln χ

)∣∣∣∣∣∣∣∣
Q

+
∣∣∣∣∣∣∣∣( ∂2Wr

∂ ln χ2

)∣∣∣∣∣∣∣∣
Q

, (2.19c)

where χ = 1 − |η| is the distance from the wall and ||·||Q is a norm defined as
||·||2Q = ∫ 2h

0

∫∞
0 (·)2Q( y) dkx dy with weight Q( y) = χ−1 to place equal emphasis on

points following logarithmic scaling with distance from the wall. Note that (2.19) considers
the normed difference between all velocity and Reynolds shear stress spectra to be
minimised simultaneously. This differs from the optimisation problem in Zare et al.
(2017), where partial autocorrelations and componentwise cross-correlations from DNS
were set as the constraints for the given linear model to be satisfied. This is because
the white-in-time forcing assumption here may not necessarily provide a solution that
satisfies such constraints, unlike the case in Zare et al. (2017) where the form of the
forcing is almost completely relaxed. Alternatively, one could adapt the methodology
of Hœpffner (2005), and project the two-point correlation from DNS onto the set of
velocity covariances achievable with white-in-time forcing of the eddy viscosity modified
linear operator. However, this would require storage of the two-point correlation statistics
for each wavenumber pair. Furthermore, here a global regularisation term is introduced,
whereas the approach of Hœpffner (2005) is local to a given wavenumber pair. Lastly,
the integration in the kx direction for the Q-norm is performed using the premulitplied
spectra in logarithmic coordinates. This is to fairly distribute the optimisation error across
all wavenumbers, avoiding generating large errors for the non-energetic part of the velocity
spectra associated with energy cascade.

Using the formulation in § 2.2, the optimisation problem (2.19a) can be discretised and
rearranged into a standard convex optimisation form. Firstly, a set of responses of the linear
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model to the basis sine polynomial forcing for each velocity component is computed. For
this purpose, the operators and forcing profiles are discretised in the wall-normal direction
using the Chebyshev collocation method as in Hwang & Cossu (2010a), and the sine
expansion of the forcing intensity profiles is truncated to Ns polynomials. For each sine
basis function given in (2.16) for Ωn,r in (2.17a), the Lyapunov equation

AR∞
q̂q̂,n,r + R∞

q̂q̂,n,rA
† + BΩn,rB† = 0 (2.20)

is solved using the MATLAB lyap function for the discretised form of R∞
q̂q̂,n,r. The

discretised spectral covariance operator for the fluctuating velocity from the linear model
Φs(Wr) is expressed in terms of the expansion coefficient of the sine polynomial
ar,n(kx, kz) using (2.12a), (2.17b) and (2.18) for n = 1, . . . , Ns and r = {u, v, w}. The
weighted norms in (2.19a) are also discretised to a suitable form. The integral with
respect to the streamwise wavenumber is approximated with the trapezoidal rule in
logarithmic streamwise wavenumber coordinates for kxh ∈ [0.25, 1279.75]. A logarithmic
wavenumber spacing was used such that Δ̃(ln kx) ≤ 0.05, or otherwise to align with
the DNS streamwise wavenumbers for the smaller values of kxh, resulting in 132
streamwise Fourier modes being used throughout. The discretised form of (2.19) is
finally formulated as a second-order cone optimisation problem (see Appendix A) and
solved with the MOSEK solver (https://www.mosek.com), with suitable values of γ

determined from a trade-off curve between the regularisation term and the relative
error (for further details on this issue, see Appendix B). The resulting optimisation
problem is solved with Ny = 512 of the wall-normal Chebyshev collocation points. The
number of sine polynomials is set such that increasing Ns yields no significant change
in results, with Ns = 70 for kzh = 6, 14, Ns = 100 for kzh = 30, 50 and Ns = 150 for
kzh = 126, 326.

3. Two-dimensional spectra from DNS

Before presenting the result of the optimisation formulated in § 2, it is useful to discuss
some key features of the spectra from a high-Reynolds-number DNS (Lee & Moser
2015), ΦDNS

uu (kx, kz, y). Figure 1 shows the normalised two-dimensional spectra for kzh =
14, 30, 50 plotted in self-similar coordinates ( y/λz, λx/λz), where λx = 2π/kx and λz =
2π/kz. The self-similarity in the spectra is clearest in the wall-normal velocity spectra
and Reynolds shear stress co-spectra (figure 1b,d), with the latter defining the ‘active’
contributions of the energy-containing eddies (Townsend 1976; Hwang 2015; Deshpande
et al. 2021). Both the streamwise and spanwise velocity spectra exhibit self-similarity for
the high-level contours: the streamwise velocity spectra have the peak at λx ≈ 10λz and
y ≈ 0.1λz, representing streaks, while the spanwise velocity spectra show the energetic
peak at λx ≈ 1 − 2λz and y ≈ 0.1 − 0.2λz representing the vortex packets involving streak
instability (Hwang 2015; de Giovanetti et al. 2017). Consistent with Townsend’s attached
eddy hypothesis, the wall-reaching footprints of the energy-containing attached eddies
are seen in the wall-parallel velocity spectra, especially for large λx (see y/λz � 0.05
in figure 1a,c). These footprints are inactive in a sense that there is no contribution to
the Reynolds shear stress (figure 1d) and they break the self-similarity in the near-wall
vicinity (Hwang 2015, 2016). In the self-similar coordinates, the relative contribution
of this inactive footprint to the wall-parallel velocity spectra grows with the spanwise
wavelength such that the eddies remain attached.
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Figure 1. Premultiplied two-dimensional spectra for kzh = 14 (shaded), 30 (solid), 50 (dashed) (λz/h ≈
0.45, 0.21, 0.13; λ+z ≈ 2300, 1100, 650) of (a) streamwise, (b) wall-normal and (c) spanwise velocities and
(d) Reynolds shear stress. Here the spectra are normalised and the selected contour levels are 0.20 and 0.80 of
the maximum. The horizontal and vertical pairs of dashed lines in (a–c) are for y/λz = 0.1, λx/λz = 10 and
y/λz = 0.5, λx/λz = 2 respectively.

A second self-similar breaking feature is present in all the spectra for small streamwise
wavelengths (λx/λz � 1) and is also prominent in the region relatively far away from the
wall (y/λz � 0.5). This region depicts small-scale detached eddies associated with energy
cascade, transporting turbulent kinetic energy from the integral length scale down towards
smaller length scales to be dissipated. In wall-bounded turbulence, the presence of the
wall imposes the integral length scale to follow distance from the wall, with the relevant
integral length scale following δν (≡ ν/uτ ), y and h at the inner, logarithmic and outer
regions respectively. The Kolmogorov length scale at which dissipation occurs is given
by δν , ( yδ3

ν)
1/4 and (hδ3

ν)
1/4 in the inner, logarithmic and outer regions respectively. This

leads to a large separation between the integral and dissipation length scales, following
Re3/4

τ ( y/h)3/4 in the logarithmic region (Lee & Moser 2019). The streamwise wavelengths
(or wavenumbers) between the two length scales are in the inertial subrange (Pope 2000),
and this is present approximately in the region of λx/λz � 1 (i.e. streamwise length scales
smaller than the peak location in the spectra). As kz is decreased (or λz is increased),
the intensity of the spectra in the inertial subrange is expected to gradually increase, due
to the increase in integral length scale y from the self-similar peak scaling and large
separation to the dissipation length scale. This is observed for λx/λz � 1 in figure 1. In
particular, given that the small-scale motions related to the energy cascade are expected
to be highly isotropic (Kolmogorov 1991), this feature is more obvious in the velocity
spectra (figure 1a–c), which exhibit increasing energy for λx/λz � 1 with decreasing kz (or
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increasing λz). However, it is much less noticeable in the Reynolds shear stress co-spectra
due to the increased isotropy at small length scales: the Reynolds shear stress co-spectra
are expected to exhibit a relatively rapid decay following a −7/3 power law in comparison
with the −5/3 power law for the velocity spectra (Lumley 1967). For a detailed discussion
on the spectra of the energy cascade, the reader may also refer to Cho et al. (2018), Lee &
Moser (2019) and Hwang & Lee (2020).

4. Results

4.1. Optimal forcing at a single spanwise length scale
The performance of the linearised model is first evaluated with the optimal white-noise
forcing at spanwise wavenumber kzh = 14, primarily related to the logarithmic region
(i.e. λz ≈ 0.45h or λ+z ≈ 2333). A similar qualitative trend is found across the
spanwise wavenumbers, with difference across the spanwise wavenumbers discussed in
§ 4.3. A comparison of the premultiplied two-dimensional spectra between the DNS
(solid contours) and linear model (shaded contours) is shown in figure 2. All of
the qualitative features are reproduced by the linear model with relative errors εs,
defined as

εs =
∣∣∣∣ΦDNS

s − Φs(Wr)
∣∣∣∣

Q∣∣∣∣ΦDNS
s

∣∣∣∣
Q

, (4.1)

for s = {uu, vv, ww, uv} being (0.20, 0.087, 0.081, 0.55) respectively. Note that these
quantitative errors reflect the difference between the linear model’s spectra and the
relatively noisy two-dimensional DNS spectra. Therefore, an unknown level of the error
can be attributed to denoising the DNS spectra, smoothing out the numerical/statistical
noise from a finite sampling time interval.

The streamwise velocity spectra from the linear model (figure 2a) have a good
qualitative agreement with those of DNS. The location of the primary peak associated
with the energy-containing eddies approximately replicated aligns with the DNS peak.
The linear model also well replicates the low-level contour region in the DNS spectra
associated with the energy cascade (λx/λz � 0.5 and y/λz � 0.05). In particular, the
wall-normal and spanwise velocity spectra (figure 2b,c) show an almost exact qualitative
and quantitative match, with a majority of the error presumably from the denoising of the
DNS result. However, it is clear by comparison of the figures and in the relative error that
the linear model performs relatively poorly in generating the correct Reynolds shear stress
co-spectra. A significant region in the spectra away from the wall is not reproduced by the
linear model. To further examine the relative error between the normalised spectra defined
as

ε̃s =
∣∣∣∣∣
∣∣∣∣∣ Φs

||Φs||Q
− ΦDNS

s∣∣∣∣ΦDNS
s

∣∣∣∣
Q

∣∣∣∣∣
∣∣∣∣∣
Q

, (4.2)

the ratio of the two norms

ρs = ||Φs||Q∣∣∣∣ΦDNS
s

∣∣∣∣
Q

(4.3)

is evaluated for s = {uu, vv, ww, uv}. Here (4.3) is the ratio of the logarithmic weighted
Reynolds stresses at the given kzh. For the Reynolds shear stress co-spectra, ε̃uv = 0.29
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Figure 2. Premultiplied two-dimensional spectra in self-similar coordinates for kz = 14/h, k+
z = 0.0027 (λz =

0.45h, λ+z = 2333) of (a) streamwise, (b) wall-normal and (c) spanwise velocities and (d) Reynolds stress.
Here the shaded contours indicate DNS spectra and the solid contours are optimisation results from (2.19). The
contour levels are separated by 0.20 times the maximum value for each spectrum.

and ρuv = 0.49. This indicates that the linear model can reproduce the structure of the
Reynolds shear stress co-spectra reasonably well (compare this with εuv = 0.55), but the
difference in norms of the spectra suggests the linear model generates a relatively weak
Reynolds shear stress. This is similarly argued by the ratio of the two peaks in the Reynolds
shear stress spectra being 0.44. The reason for this large discrepancy in the amplitude is
likely due to the functional approximation of the forcing, with the optimisation problem
restricting the forcing input to be white-in-time and spatially decorrelated. The lack of
significant cross-correlation between the streamwise and wall-normal forcing components,
which would be present in the exact nonlinear term (Jovanovic & Bamieh 2001; Chevalier
et al. 2006; Morra et al. 2021), leads to these relatively low Reynolds shear stresses. It is
likely that a more carefully chosen eddy viscosity term can improve this feature, i.e. further
modification of the linear dynamical operator (for an early discussion, see also Jovanovic
& Bamieh (2001)) or, alternatively, relaxing the white-in-time assumption. This issue can
be resolved by a data-driven approach such as that in Zare et al. (2017); however, such an
approach required the B operator to be modified. This would change the way in which the
nonlinear term drives the linearised dynamics, limiting the physical interpretability of the
forcing. As discussed in § 2, the eddy viscosity here provides an explicit simple approach
in modifying the nonlinear term across wavenumbers, helping to at least partially replicate
the nonlinear term (Hwang 2016; Hwang & Eckhardt 2020; Pickering et al. 2021; Symon
et al. 2021).
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The forcing spectra which drive the corresponding response in figure 2 are shown in
figure 3. All of the forcing spectra exhibit a smoothly varying structure with a primary
peak which drives the energy-containing motions in the corresponding velocity spectra.
It is interesting to note that the primary peak locations of all the spectra are around
λx/λz ≈ 1 and y/λz ≈ 0.2–0.7. This behaviour is different from that in the velocity
spectra. In particular, the streamwise velocity spectra contain the primary peak at a much
longer streamwise wavelength in the region relatively close to the wall: λx/λz ≈ 10 and
y/λz ≈ 0.1 (figure 2a). Outside of this primary peak location, in general, the forcing
spectra tend to be much more intense at shorter streamwise wavelengths than the velocity
spectra (compare figure 3 with figure 2). The velocity spectra contain very little energy
for λx/λz � 0.1 (figure 3), while all the forcing spectra contain a considerable amount of
energy (figure 2). This is because of the effect of the viscous diffusion operator in the linear
model becoming increasingly stronger as λx decreases. Overall, this results in a relatively
energetic forcing input required to generate even a weak velocity spectrum. Similarly, the
eddy viscosity in (2.2b) considered for the linear model grows linearly with the distance
from the wall in the logarithmic region due to

− u′v′

u2
τ

= νt
dU
dy

, (4.4)

where u′v′ is approximately constant (Townsend 1976; Pope 2000), leading to νt ∼ y from
the logarithmic mean velocity. Therefore, the forcing spectra tend to be relatively more
energetic than the velocity spectra away from the wall (y/λz � 0.5). All these observations
suggest that a significant portion of the energetic part of the forcing spectra plays a role of
driving the velocity spectra associated with energy cascade and dissipation in DNS. These
features are noticeable in all of the forcing components, the spectra of which contain more
than half of the total energy for λx/λz � 1 or y/λz � 1 (figure 3). This is in contrast to the
velocity spectra in figure 2. The streamwise velocity spectra (figure 2a) and the Reynolds
shear stress co-spectra (figure 2d) are seen to carry little energy for λx/λz � 1 or y/λz � 1.
The exact contribution of these forcing spectra to the velocity spectra response is discussed
in componentwise terms in the following section (see also § 5.2).

With the forcing spectra as shown in figure 3 and as described previously, caution is
needed to understand what the forcing term would represent. In particular, for the model
of the nonlinear term N , an eddy viscosity diffusion term was included, i.e. Nνt,f in
(2.2a). Therefore, the forcing spectra are not directly comparable with the spectra of
the nonlinear term N . The eddy viscosity term modifies the linear dynamical operator,
providing a mechanism to dissipate the energy at large scale by replacing a role of the
nonlinear term N that transfers the energy from large to small scale (see Symon et al.
(2022) for a more detailed discussion). Furthermore, the forcing is also crudely assumed
spatially decorrelated and white-in-time. Hence, the forcing spectra shown here would
only phenomenologically mimic some partial roles of the nonlinearity. That being said,
it is finally worth mentioning the recent work by Morra et al. (2021), who showed that
a combination of the current eddy viscosity model with rank-1 approximation using the
leading resolvent modes provides a fairly good proxy for the nonlinear term, at least for a
certain set of spatial wavenumbers and frequencies that admit strong linear amplification.
In this respect, the current model is expected to perform well, at least for such a set of
spatial wavenumbers and frequencies, as the stochastic response would be dominated by
the leading resolvent modes.
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Figure 3. Premultiplied two-dimensional spectra in self-similar coordinates for kzh = 14, k+
z = 0.0027 (λz =

0.45h, λ+z = 2333) of (a) streamwise, (b) wall-normal and (c) spanwise forcing components and (d) the total
forcing spectra. The contour levels are separated by 0.1 times the maximum value for each spectrum. The
horizontal dashed lines show y/λz = 0.5 and the vertical dashed lines show λx/λz = 1.

4.2. Componentwise breakdown of the stochastic forcing
To further assess the role of the forcing structure, the linear nature of the model can be
exploited as in § 2.3, with the total response being the superposition of the spectra driven
by each of the forcing components individually. It should be stressed that setting all but
one of the forcing components to zero is non-physical (see § 5 for further details), as the
covariance of the forcing which generates the velocity spectra has to be solenoidal (see § 5
for further details and Rosenberg & McKeon (2019) and Morra et al. (2021)). However, the
subsequent analysis still holds significance for modelling strategies that may independently
modify each of the forcing components. Indeed, it allows us to understand which part of
the spectra is effectively modelled by the different forcing components under the linear
amplification mechanisms and which part is only modelled phenomenologically with the
nonlinear term model in (2.2a).

Figures 4(a), 4(d), 4(g) and 4( j) show the streamwise, wall-normal and spanwise
velocity spectra and Reynolds shear stress co-spectra respectively with only the streamwise
component of the forcing spectra active (figure 3a) and the remaining components set
zero. The spectra are normalised by the maximum values of the spectra with all forcing
components, indicating the relative contribution of each of the forcing components
to the response shown in figure 2. Figure 4(a) shows the forcing in the streamwise
component has a significant (≈70 % of the total response maximum) contribution in
driving the streamwise velocity spectra, with the peak located at λx/λz ≈ 3 and y/λz ≈
0.3. Figure 4(a) also demonstrates that the forcing in the streamwise velocity component
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Figure 4. Premultiplied two-dimensional spectra in self-similar coordinates for kz = 14/h, k+
z = 0.0027 (λz =

0.45h, λ+z = 2333) of (a–c) streamwise, (d– f ) wall-normal and (g–i) spanwise velocities and ( j–l) Reynolds
stress with the forcing intensity (a,d,g, j) Ωu, (b,e,h,k) Ωv and (c, f,i,l) Ωw. Here the contour levels are separated
by 0.10 times the maximum value of the spectra with total forcing intensity Ω .

yields little to no contribution to the near-wall inactive part of the streamwise velocity
spectra, except the short streamwise wavelength around λx/λz ≈ 2, when compared with
the total response (compare figure 4a with figure 2a). Aside from the driving of the
primary peak, it is seen that the streamwise forcing component drives a response in the
streamwise velocity associated with energy-cascade-related region of the DNS spectra
(λx/λz � 1 in figure 4a), although this is not clear due to the presence of the strong primary
peak (see also discussion below). The relative contribution of the streamwise forcing
component to the other spectra is less significant than that to the streamwise velocity
itself, providing a small contribution in close proximity to the primary peak of the other
spectra (figure 4d,g, j). Additionally, the forcing in the streamwise velocity component

961 A32-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

23
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.234


Optimal white-noise stochastic forcing for linear models

drives relatively more significant contributions to those at small streamwise wavelengths
associated with energy cascade in the wall-normal velocity spectra and Reynolds shear
stress co-spectra (λx/λz � 1 and y/λz � 0.05 in figure 4d, j). In particular, comparing
figure 4( j) with figure 4(k,l) shows that the streamwise forcing component exclusively
drives the small-scale response in the Reynolds shear stress co-spectra.

Figures 4(b) 4(e), 4(h) and 4(k) show the streamwise, wall-normal and spanwise velocity
spectra and Reynolds shear stress co-spectra respectively with only the wall-normal
component (figure 3b) of the forcing active. Here the response is most strongly coupled,
with the wall-normal forcing providing significant relative contributions in the streamwise
and wall-normal velocity spectra and Reynolds shear stress co-spectra (figure 4b,e,k). The
response in the streamwise velocity spectra shows how the forcing in the wall-normal
component is responsible for driving a portion of the response close to the primary peak
of the total streamwise velocity spectra (figure 4b). Importantly, it drives the near-wall
inactive footprint, with this response being almost exclusive to the wall-normal forcing
for large streamwise wavelengths (compare figure 4b with figure 4a,c). The effect of the
wall-normal forcing component on the wall-normal velocity spectra is similar to that of
the streamwise forcing component on the streamwise velocity, with the forcing driving a
majority of the primary peak, as well as the small-scale features that statistically mimic
the energy cascade region from DNS (figure 4e). The wall-normal forcing is responsible
for driving a majority (≈70 % of the maximum total response) of the primary peak in
the Reynolds shear stress co-spectra and almost the entire response in the Reynolds shear
stress for large streamwise wavelengths (figure 4 j–l).

Lastly, figures 4(c), 4( f ), 4(i) and 4(l) show the streamwise, wall-normal and spanwise
velocity spectra and Reynolds shear stress co-spectra respectively with only the spanwise
component (figure 3c) of the forcing active. As before, the spanwise forcing component
drives a majority of the primary peak in the spanwise velocity spectra, as well as
the small-scale features associated with the energy cascade. In contrast to the inactive
near-wall footprint of the streamwise velocity spectra, which is not mainly generated by
the streamwise forcing component (see figure 4a–c), the inactive footprint of the spanwise
velocity spectra is primarily generated by the corresponding spanwise forcing, with some
contribution from the streamwise and wall-normal forcing components (see y/λz � 0.05
in figure 4g–i). The spanwise forcing component also tends to drive a portion of the the
near-wall inactive features in the streamwise velocity spectra (figure 4c), although much
less significant than the wall-normal forcing (compare with figure 4b). The effect of the
spanwise forcing component on the wall-normal velocity spectra and Reynolds shear stress
co-spectra is similar to that of the streamwise forcing component. The contribution of the
spanwise forcing appears closer to the primary peaks, however (compare figures 4 f,l and
4d, j). Moreover, the effect of the spanwise forcing component appears to be shifted more
towards larger streamwise wavelengths (see also § 5.2).

Overall, figure 4 reveals how the given two-dimensional velocity spectra in the λx–y
plane for a spanwise length scale λz (or wavenumber kz) can be modelled componentwise
through a white-in-time and spatially decorrelated stochastic forcing, augmented with an
eddy viscosity diffusion operator in (2.2b). Given the linearised nature of (2.1a) about a
parallel base flow, with the (linear) model term Nνt,f , the Reynolds shear stress generation
(or production) of the model is only facilitated through the lift-up effect (e.g. Butler &
Farrell 1993; del Álamo & Jiménez 2006; Hwang & Cossu 2010a; McKeon & Sharma
2010) and the Orr mechanism (Jiménez 2013; Encinar & Jiménez 2020; Doohan, Willis
& Hwang 2021; Jiao, Hwang & Chernyshenko 2021). The former is clearly well captured
by the model from figure 4(b,k), showing a strong response of streamwise velocity to
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the given wall-normal forcing at long streamwise length scales (λx/λz ≈ 10). The latter
is seen in figure 4(e), depicting the amplification of wall-normal velocity in response to a
wall-normal forcing at relatively short length scales (λx/λz ≈ 1–2). Figure 4( j–l) indicates
that the Reynolds shear stress co-spectra are dominantly produced by the wall-normal
forcing component through these mechanisms. This is presumably a consequence of the
linear model directly facilitating the two mean-shear-driven processes responsible for
turbulence production (i.e. the lift-up effect and the Orr mechanism). Further details of
this issue are discussed in § 5.2.

It is also important to mention that a considerably large amount of streamwise and
spanwise forcing is needed to fully capture the energetic part of the streamwise and
spanwise velocity spectra seen in figure 4(a,i). The peak locations in figure 4(a,i) are
at λx/λz ≈ 1–3 and y/λz ≈ 0.3, aligning well with λx/λz ≈ 3 and y/λz ≈ 0.3 predicted
by the streak instability (Alizard 2015; de Giovanetti et al. 2017). This suggests that
the forcing of the linear model, with the mean velocity dependent only on wall-normal
location, is entirely phenomenological for this response. In real flow, there are other
important physical processes of generating spectral energy without directly involving the
mean shear. Finally, it should be emphasised that the energy cascade and the wall-reaching
inactive part of the spectra are also captured only phenomenologically, considering they
originate from the intrinsic nonlinear processes of N . The forcing required to mimic the
velocity spectra associated with energy cascade is relatively strong, as shown in figure 3
and discussed in § 4.1. However, it is worth noting that the velocity spectra associated
with the energy cascade and the wall-reaching inactive part are much weaker than those
of the energy-containing counterpart. In other words, a precise description of the forcing
structure for the energy cascade and the wall-reaching inactive part may not be necessary
for modelling of the energy-containing region in the velocity spectra.

In summary, the forcing spectra are composed of parts of modelling energetic (i.e.
energy-containing region) and non-energetic (i.e. energy cascade region featured by a
decay of energy with a k−5/3 law) regions of velocity spectra (see also discussion in § 3).
The former part of the forcing spectra would not need large energy. As is well known
(Jovanovic & Bamieh 2005), the linear amplification mechanisms (i.e the lift-up and the
Orr mechanisms) are expected to play a role in effectively generating the energetic part of
velocity spectra. However, it is unclear if the latter is also the case, given the non-energetic
nature of the velocity spectra. Furthermore, it is unclear if the lift-up or the Orr mechanism
would also play any role in modelling the non-energetic part of velocity spectra. The
componentwise analysis showed that each component of the non-energetic region of
velocity spectra is mainly modelled by the corresponding component of the forcing with
relatively large energy input, suggesting that the lift-up and the Orr mechanisms are not
highly active in modelling the non-energetic part of the spectra. This also implies that
forcing at each component can suitably be tailored to model the non-energetic region of
the corresponding component of the velocity spectra.

4.3. Self-similarity and non-self-similarity of forcing spectra across scales
The stochastic forcing is now determined for spanwise wavelengths ranging from outer to
inner length scales, i.e. λz/h ≈ 1 to λ+z ≈ 100, with results shown in table 1. Figure 5
shows the velocity spectra and Reynolds shear stress co-spectra for an outer length
scale of λz/h ≈ 1 (kzh = 6) associated with large-scale and very-large-scale motions
(figure 5a,d,g, j), an inner length scale of λ+z ≈ 100 (kzh = 326) associated with the
spacing of near-wall streaks and quasi-streamwise vortices (figure 5c, f,i,l) and an
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kzh k+
z γ Ns εuu εvv εww εuv ε̃uv ρuv

6 0.0012 0.20 70 0.31 0.17 0.093 0.48 0.26 0.56
14 0.0027 0.20 70 0.20 0.087 0.081 0.55 0.29 0.49
30 0.0058 0.40 100 0.15 0.069 0.13 0.59 0.34 0.45
50 0.0096 0.40 100 0.12 0.079 0.15 0.84 0.39 0.46
126 0.024 3.2 150 0.23 0.10 0.33 0.54 0.45 0.59
326 0.063 3.2 150 0.30 0.15 0.31 0.41 0.37 0.73

Table 1. The optimisation errors defined in (4.1)–(4.3) for the different spanwise wavelengths. Regularisation
weighting γ and number of sine polynomials used Ns are reported together.

intermediate logarithmic region length scale of λz/h ≈ 0.2 (kzh = 30) (figure 5b,e,h,k).
The streamwise velocity spectra modelled (figure 5a–c) exhibit a similar match to
those from DNS, with a strong agreement across all spanwise wavelengths considered.
The primary peak occurs at approximately the same streamwise wavelength, with this
peak shifted closer to the wall in comparison with the DNS due to the driving of the
wall-reaching part of the spectra through the wall-normal forcing component (figure 4b).
This distortion to the velocity spectra peak becomes less noticeable for smaller spanwise
wavelengths (figure 5c, in particular). In fact, for the smallest spanwise wavelength
considered (λ+z ≈ 100), there are no inactive features in the spectra since the active part
occurs adjacent to the wall. However, at this spanwise length scale, the linear model
produces a much more localised response about the primary peak (figure 5c). The velocity
spectra produced with the optimal white-noise forcing decay much more rapidly than
the DNS spectra, especially above the primary peak. This results in comparatively large
errors in the near-wall region (compare εuu for kzh = 326 with kzh = 14, 30, 50 in table 1).
Likewise to the results at kzh = 14 (figure 2), the strongest match is that of the wall-normal
velocity spectra for all spanwise wavelengths considered (figure 5d– f ). The spanwise
velocity spectra exhibit a similar trend to the streamwise velocity spectra, although the
location of the primary peak is more consistent with the DNS velocity spectra when
compared with the streamwise velocity spectra (compare figure 5a–c with figure 5g–i).
Much like the streamwise velocity case for the smallest considered spanwise wavelength,
the spanwise velocity spectra have a significantly reduced response for the part above
the primary peak (figure 5i). Lastly, like the kzh = 14 case (figure 3), the Reynolds shear
stress co-spectra (figure 5 j–l) always have the largest relative error. This error is due to
a low amplitude of Reynolds shear stress generated and poor replication of the spectra
above the primary peak, as indicated by the ratio of the norms and relative error between
the normalised spectra.

The self-similarity of the forcing spectra is examined in figure 6. The spatially
decorrelated forcing spectra are considered for spanwise wavenumbers, kzh = 14, 30, 50,
primarily associated with the logarithmic region. Here, the contour levels were chosen to
be 0.8 and 0.2 times the maximum values to highlight the regions of the forcing associated
with the self-similar energy-containing motions and the self-similar breaking regions
respectively. Both of the wall-parallel velocity spectra show approximate self-similar
peaks at y/λz ≈ 0.3–1 and λx/λz ≈ 1. Given that the primary peaks are associated with
the energy-containing features in the velocity spectra, this is consistent with the attached
eddy hypothesis (Townsend 1976), and self-similarity present in the DNS spectra and
linearised Navier–Stokes equations, although there is some disparity in the wall-normal
forcing spectra with the high-level contours growing with spanwise length scale.
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Figure 5. Premultiplied two-dimensional spectra in self-similar coordinates: (a,d,g, j) kzh = 6 (λz/h ≈ 1.05);
(b,e,h,k) kzh = 30 (λz/h ≈ 0.21 or λ+z ≈ 1100); (c, f,i,l) k+

z ≈ 0.0064 (λ+z ≈ 100). (a–c) Streamwise velocity
spectra, (d– f ) wall-normal velocity spectra, (g–i) spanwise velocity spectra and ( j–l) Reynolds shear stress
co-spectra. The shaded contours indicate DNS spectra and the solid contours are optimisation results from
(2.19).The contour levels are separated by 0.20 times the maximum value of the spectra with forcing intensity
Ω for comparison.

It is, however, worth noting that the overall level of self-similarity in the forcing spectra
is not as convincing as that in the velocity spectra (see also figure 1). In particular, in
the regions of the forcing spectra that drive a response in the velocity spectra associated
with the energy cascade (λx/λz � 1 or y/λz � 1), the intensity grows with λz. Note that
the non-self-similar part of the forcing spectra does not make a strong contribution to
the velocity spectra. If it did, the resulting velocity spectra should also have this same
level of non-self-similar behaviour as well, but this was not the case (figures 1 and 5).
As discussed in § 4.1, the linear model is strongly influenced by the diffusion operator
in these regions due to the short streamwise wavelengths and the eddy viscosity growing
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Figure 6. Premultiplied two-dimensional spectra in self-similar coordinates for the (a) streamwise,
(b) wall-normal and (c) spanwise forcing components and (d) total forcing. Here the spanwise length scales
are kzh = 14 (shaded), 30 (solid), 50 (dashed). The contour levels are chosen to be 0.2 and 0.8 times the
maximum value.

only with y. Therefore, the forcing spectra in this region are relatively energetic when
compared with the velocity spectra, revealing more clearly the non-self-similar nature
originating from the velocity spectra. This is most clear in the wall-normal forcing spectra,
where there is substantial forcing input at these short streamwise wavelengths, breaking
self-similarity. On the contrary, the non-self-similarity in the forcing spectra associated
with the wall-reaching near-wall part in the velocity spectra (y/λz � 0.05 for λx/λz � 1) is
not very prominent in figure 6. This indicates that the main driver of the non-self-similarity
associated with the wall-reaching near-wall part in the velocity spectra is likely to be the
eddy viscosity varying with y, driving near-wall features through the lift-up effect (see
also §§ 5.2 and 5.3). This is consistent with the previous observation by Hwang (2016),
who argued that the wall-reaching near-wall part of the response from the linear model
originates from the eddy viscosity.

In short, although the velocity spectra are seen to be largely self-similar due to their
energy-containing part consistent with the attached eddy hypothesis, they are precisely
not self-similar due to the parts related to energy cascade and inactive motions (see § 3).
These non-self-similar parts are strongly amplified in the forcing spectra, because the
given linear operator does not contain an efficient transfer mechanism (e.g. lift-up and
Orr mechanisms) of the forcing to the velocity at the related spatial wavelengths (e.g.
λx/λz � 1; see also Hwang & Cossu 2010a).
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5. Discussion

5.1. Solenoidal forcing structure
To more precisely assess the role of the forcing and its contribution in driving the velocity
spectra, attention is now turned to the solenoidal component of the forcing. Specifically,
the forcing can be projected onto a solenoidal field and an irrotational field:

f̂ = f̂ s + f̂ r, (5.1)

where ∇ · f̂ s = 0 and ∇ × f̂ r = 0. This is done as only the solenoidal component of the
forcing contributes to the driving of velocity fluctuations, since the irrotational component
is in the null space of the B operator (Rosenberg & McKeon 2019; Morra et al. 2021). With
regard to the optimisation forcing input, it can be shown that this spatially decorrelated
forcing cannot be solenoidal. By considering

∇̂ · f = Ef̂ , where E = [ikx D ikz], (5.2)

which gives the covariance operator for the forcing divergence as

R∇̂·f ∇̂·f = ERf̂ f̂ E†. (5.3)

In the case of the spatially decorrelated forcing input, this gives

R∇̂·f ∇̂·f = k2
xRf̂uf̂u

( y) + RDf̂vDf̂v
( y) + k2

z Rf̂wf̂w
( y), (5.4)

and therefore E[|∇̂ · f |2] > 0 for any f /= 0. Consequently the forcing input from the
optimisation is not solenoidal, and must be further manipulated to determine the solenoidal
forcing which drives the linear dynamics. This is also expected in the case of typical
frequency-domain analysis, where the autocorrelation of the forcing at a given frequency
is often assumed to be spatially decorrelated (see e.g. Towne, Schmidt & Colonius 2018).
This assumption would lead to a ratio of solenoidal and irrotational forcing to affect
the velocity and pressure field respectively, dependent on the wavenumbers (see also
discussion below).

To recover the solenoidal forcing component, Morra et al. (2021) is followed with Bf̂ =
Bf̂

s = Df̂
s

and since û = Cq̂ = CDû, where

D =
[

0 1 0
ikz 0 −ikx

]
, (5.5)

the covariance operator of the solenoidal forcing component is determined through

Rf̂ s f̂ s = CBRf̂ f̂ B†C†. (5.6)

Similarly, since f̂ r = (I − CB)f̂ , the covariance operator of the irrotational forcing
component is given by

Rf̂ r f̂ r = (I − CB)Rf̂ f̂ (I − CB)†. (5.7)

Figures 7(a)–7(c) show the spectra of the solenoidal streamwise, wall-normal and
spanwise forcing respectively. By comparing these with figure 3(a–c), there is a great
deal of similarity in the streamwise and spanwise forcing spectra (figure 3a,c), with the
same qualitative features present and the magnitude of the spectra being approximately
the same. However, there is a stark contrast between the wall-normal forcing spectra and
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Figure 7. Premultiplied two-dimensional spectra in self-similar coordinates for kzh = 14, k+
z = 0.0027 (λz =

0.45h, λ+z = 2333) of (a) streamwise, (b) spanwise, (c) wall-normal and (d) energy inner-product weighted
wall-normal solenoidal forcing spectra. The contour levels are separated by 0.1 times the maximum value for
each spectrum. The horizontal dashed lines show y/λz = 0.5 and the vertical dashed lines show λx/λz = 1.

the solenoidal counterpart (figures 3b and 7c). In particular, the solenoidal wall-normal
forcing is seen to spend relatively larger amounts of energy in mimicking energy cascade
features, considering the energetic region of its spectra corresponds to the region of energy
cascade in the velocity spectra (λx/λz � 10−1, y/λz � 0.5). Given that the velocity spectra
related to energy cascade are not self-similar with y (or λz), and the scale-dependent effect
of the viscous diffusion operator in the linear model (see the discussion in § 4.1), it can
be expected that the solenoidal wall-normal forcing spectra should behave similarly to the
energy cascade scaling features in the wall-normal velocity spectra (see also figure 8a).

To understand how the solenoidal part of the wall-normal forcing loses the strong
self-similarity observed in the original wall-normal forcing spectra, or equivalently
how the modelling of energy cascade features masks any self-similar behaviour,
the Orr–Sommerfeld–Squire system can be reconsidered. Since only the solenoidal
component can alter the q̂ state, assume f̂ = f̂ s, with the statistics of the solenoidal forcing
of the optimised forcing input readily determined from (5.6). This gives the following
evolutionary equation for q̂:

∂ q̂
∂t

= Aq̂ + Df̂ s, (5.8)

with corresponding Lyapunov equation

AR∞
q̂q̂,e + R∞

q̂q̂,eA† + DR̃f̂ s f̂ sD† = 0. (5.9a)
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Figure 8. Premultiplied two-dimensional solenoidal forcing spectra in self-similar coordinates for (a) the
wall-normal component and (b) the wall-normal component with respect to the energetic inner product. The
spanwise length scales are kzh = 14 (shaded), 30 (solid), 50 (dashed). The contour levels are chosen to be 0.2
and 0.8 times the maximum value.

This can further be expanded elementwise as

Δ−1LOSR∞
v̂v̂,e + R∞

v̂v̂,eΔ
−1L†

OS = −Rf̂ s
v f̂ s

v ,e, (5.9b)

Δ−1LOSR∞
η̂v̂,e + R∞

η̂v̂,eL†
SQ = −Rf̂ s

η f̂ s
v ,e + ikzR∞

v̂v̂,eΔ
−1(DU), (5.9c)

LSQR∞
v̂η̂,e + R∞

v̂η̂,eΔ
−1L†

OS = −Rf̂ s
v f̂ s

η,e + ikz(DU)R∞
v̂v̂,e, (5.9d)

LSQR∞
η̂η̂,e + R∞

η̂η̂,eL†
SQ = ikzR∞

η̂v̂,e + ikzR∞
v̂η̂,eΔ

−1 − Rf̂ s
η f̂ s

η,e, (5.9e)

where subscript ‘e’ has been used to distinguish the covariance operator defined with
respect to the energy inner product and the standard inner product. Here the forcing
covariance operators in terms of f̂ s with the energy inner product are related to the
optimisation inputs through

Rf̂ s
v f̂ s

v ,e = − 1
k2 Rf̂ s

v f̂ s
v
Δ, (5.9f )

Rf̂ s
η f̂ s

v ,e = −i
kz

k2 Rf̂ s
v f̂ s

u
+ i

kx

kz
Rf̂ s

v f̂ s
w
, (5.9g)

Rf̂ s
η f̂ s

η,e = 1
k2

[
k2

xRf̂ s
wf̂ s

w
+ k2

z Rf̂ s
u f̂ s

u
− kxkz(Rf̂ s

wf̂ s
u
+ Rf̂ s

u f̂ s
w
)
]
. (5.9h)

Equation (5.9) shows what terms of the forcing covariance operator statistically balance
the covariance operator of q̂ weighted with the energy inner product. Note that the effect of
the cross-correlation in the solenoidal forcing is found to be relatively small (not shown).
Therefore, for kx ∼ kz, the extent of self-similarity in the velocity spectra reproduced by
the linear model (or R∞

q̂q̂,e) would be comparable with that in Rf̂ s
u f̂ s

u
and Rf̂ s

wf̂ s
w

from (5.9e)
and (5.9h). However, the wall-normal forcing covariance Rf̂ s

v f̂ s
v ,e in (5.9 f ) is weighted with

the Laplacian operator, indicating that its second-order wall-normal derivatives may have
contributed to the strong non-self-similarity in Rf̂ s

v f̂ s
v
. Note that the Laplacian operator

appears due to the elimination of the pressure term, indicating that this is associated with
the action of the pressure that enforces continuity of the fluctuating velocity field.
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Given the discussion above, figure 7(d) shows the solenoidal wall-normal forcing
component with the energy weight from Rf̂ s

v f̂ s
v ,e. By comparing this with figure 2(b), the

forcing of the self-similar primary peak is much clearer, occurring at y/λz ≈ 0.7 and
λx/λz ≈ 0.3. To highlight how these forcing structures could be used globally across
Fourier modes, figures 8(a) and 8(b) show the determined solenoidal wall-normal forcing
spectra and the same spectra with respect to the energy inner product respectively. Based
on figure 7(c) and the driving of energy-cascade-associated features, it is unsurprising
to see that the solenoidal wall-normal forcing component is less self-similar than the
spatially decorrelated forcing input (compare figures 6b and 7a). However, if the weighted
and solenoidal wall-normal forcing component from Rf̂ s

v f̂ s
v ,e is considered (figure 7b), the

weighted solenoidal wall-normal forcing spectra exhibit a similar degree of self-similarity
to the white-in-time and spatially decorrelated forcing of the wall-parallel components
(compare figures 6a and 8b).

Finally, the discussion here on the solenoidal component of the forcing does not
necessarily imply that any arbitrary change in the irrotational part of the forcing does
not affect the corresponding flow response. Although the irrotational part of the forcing
f ′

r does not influence the velocity fluctuation, it does play a role in the determination of
pressure through the following Poisson equation:

∇2p′ = −2
dU
dy

∂v′

∂x
+ ∇ · [∇ · (νt(∇u′ + ∇u′T)

)+ f ′
r
]
. (5.10)

In other words, the effect of the irrotational component of the forcing is simply not seen
in the velocity statistics, but is expected to affect the pressure fluctuations. In this respect,
ideally, the optimisation problem in (2.19) could be formulated accounting for pressure for
the precise determination of the irrotational part of the forcing, although this is beyond
the scope of the present study. In any case, the irrotational part of the forcing does not
affect the optimisation result here, and it is part of the unique solution to the given convex
optimisation problem in (2.19).

5.2. Statistical contribution of amplification mechanisms
To understand the role of the lift-up effect and Orr mechanism within the velocity and
Reynolds stress spectra, (5.9) and (2.12a) can be used to infer the contribution of each
amplification mechanism. To isolate the effects of the lift-up mechanism, it is first worth
considering the wall-normal velocity covariance itself as a forcing term. This enters the
right-hand side of (5.9c) through the ikzRv̂v̂,eΔ

−1(DU) term and ikz(DU)Rv̂v̂,e on the
right-hand side of (5.9d). Note that (5.9c) is the adjoint of (5.9d) with respect to the
energy inner product and vice versa, and that the two terms originate from the off-diagonal
term in the Orr–Sommerfeld–Squire operator A in (2.10b). Using the definition of energy
inner product used (e.g. in (5.9 f )), the spectra related to ikz(DU)Rv̂v̂,e in (5.9d) (i.e.
kz/k2Φvv(DU)) are visualised in figure 9 for a few selected kzh. A strong degree of
self-similarity is observed, with the contours almost collapsing on each other.

The forcing term shown in figure 9 contributes to R∞
v̂η̂

and R∞
η̂v̂

, which similarly enter
the right-hand side of (5.9e) for R∞

η̂η̂
. In this way, the wall-normal velocity covariance R∞

v̂v̂

partially generates the wall-normal vorticity covariance R∞
η̂η̂

, along with the forcing. On
the contrary, the wall-normal covariance R∞

η̂v̂
is not affected by R∞

η̂η̂
, given the one-way

coupling of the Orr–Sommerfeld–Squire system (Jovanovic & Bamieh 2001). Further to
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Figure 9. Premultiplied spectra for the effective lift-up forcing mechanism, kz/k2(DU)Φ∞
v̂v̂

, in self-similar
coordinates. The spanwise length scales are kzh = 14 (shaded), 30 (solid), 50 (dashed). The contour levels are
chosen to be spaced out by 0.2 times the maximum value.

this, using (2.12a), it can be shown that

R∞
ûû = 1

k4

[
k2

xR∞
(Dv̂)(Dv̂)

− kxkzR∞
(Dv̂)η̂

− kxkzR∞
η̂(Dv̂)

+ k2
z R∞

η̂η̂

]
, (5.11a)

R∞
v̂v̂

= −k2R∞
v̂v̂,eΔ

−1, (5.11b)

R∞
ŵŵ = 1

k4

[
k2

z R∞
(Dv̂)(Dv̂)

+ kxkzR∞
(Dv̂)η̂

+ kxkzR∞
η̂(Dv̂)

+ k2
xR∞

η̂η̂

]
, (5.11c)

R∞
ûv̂

= −i
kx

k2 R∞
(Dv̂)v̂

− i
kz

k2 R∞
η̂v̂

, (5.11d)

and the spectra Φuu, Φvv , Φww and Φuv are obtained from the above using a relation similar
to (2.12b).

It is now apparent that (5.11) admits a simple physical interpretation of how the
velocity and Reynolds shear stress spectra are generated. Note that the contributions
from the cross-covariance terms such as R∞

(Dv̂)η̂
and R∞

η̂(Dv̂)
in (5.11) are observed to be

comparatively small (see figure 15 in Appendix C). In the present linear model, the only
means of generating Reynolds shear stress (or turbulence production) is through the lift-up
effect and/or the Orr mechanism, as is also shown in (5.11d) (see also the explanation
below). Note that the Orr–Sommerfeld equation does not depend on the Squire equation
and the Orr mechanism is essentially a two-dimensional mechanism in the sense that it
is the only active amplification mechanism for kz = 0 (for uniform shear flow, see Farrell
& Ioannou (1993) and Jiao et al. (2021)). The contribution of the Orr mechanism here
refers to the velocity spectra generated solely from the Orr–Sommerfeld equation, i.e. only
the terms in (5.11a–d) that exclusively depend on the wall-normal velocity. Similarly, as
the lift-up effect is depicted by the response of the Squire equation through the coupling
term with the wall-normal velocity, the statistics pertaining to the lift-up effect will be
solely related to the wall-normal vorticity. Whether the wall-normal vorticity statistics are
a result of the lift-up effect or the direct consequence of the stochastic forcing for the
Squire equation can be inferred by comparing the velocity spectra with effective lift-up
forcing (figure 9) and the solenoidal forcing spectra (figure 7).

Figures 10(a) and 10(b) show the contribution from the wall-normal velocity and
vorticity to the streamwise velocity spectra respectively. As expected from the wavenumber
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Figure 10. Premultiplied two-dimensional spectra in self-similar coordinates for kzh = 14, k+
z = 0.0027 (λz =

0.45h, λ+z = 2333) associated with (a) k2
x/k4R(Dv̂)(Dv̂), (b) k2

z /k4Rη̂η̂, (c) k2
x/k4Rη̂η̂ and (d) k2

z /k4R(Dv̂)(Dv̂).
The contour levels are chosen to be 0.05 and 0.1 times the maximum value of the streamwise velocity spectra
in (a), and separated by 0.1 times the maximum value of the spanwise velocity spectra in (b–d).

dependency of each term, the lift-up effect is the primary amplification mechanism for
the larger streamwise length scales (figure 10b), explaining why the streamwise forcing
component is less energetic about the streamwise velocity spectra peak. For λx/λz � 1, the
streamwise velocity spectra would almost exclusively consist of the contribution from the
lift-up effect. This is reaffirmed by figure 9, with the streamwise velocity spectra energetic
at the streamwise wavelengths associated with the effective forcing of the wall-normal
velocity spectra. For the smaller streamwise length scales (λx/λz � 1), although much
less prominent than the lift-up effect, the Orr mechanism is present. The Orr mechanism
is relatively weak and here the contour levels plotted were chosen to be 0.05 and 0.10
times the maximum value of the total streamwise velocity spectra. This region of the
streamwise velocity spectra in DNS is primarily associated with nonlinear features such
as the energy cascade and streak instability (Alizard 2015; Cassinelli, de Giovanetti &
Hwang 2017; de Giovanetti et al. 2017); hence the linear response involving the Orr
mechanism for this region of the streamwise velocity spectra in the present model is used
to phenomenologically mimic these features. However, it is important to point out that the
existence of the Orr mechanism at λx/λz ≈ 1 in real flows has also been reported in several
recent studies (Jiménez 2013; Encinar & Jiménez 2020; Doohan et al. 2021; Jiao et al.
2021). Therefore, the possibility of the active Orr mechanism for λx/λz � 1 in real flow
should not be ignored. Even so, to what extent the Orr mechanism is exactly responsible
to the related turbulence production remains unknown.
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Figures 10(c) and 10(d) show the contribution from the wall-normal velocity and
vorticity to the spanwise velocity spectra respectively. Comparing these with the
corresponding streamwise velocity spectra (figure 10a,b), the spanwise velocity spectra
consist of a more bimodal response, with both amplification mechanisms contributing
at the primary peak. The wall-normal velocity generates the spanwise velocity through
the Squire equation (i.e. lift-up effect; figure 10c) at λx/λz � 1, while it does so through
continuity for λx/λz � 1 (figure 10d). In contrast to the streamwise velocity spectra
(figure 10a), here the Orr mechanism contributes significantly to the energetic region
of the spanwise velocity spectra at λx/λz ≈ 1 (figure 10d), reaching contour levels of
40 % as opposed to 10 %. This is consistent with the recent study by Jiao et al. (2021),
who showed that the Orr mechanism can induce a large spanwise velocity amplification
for λx ∼ λz. However, similarly to the streamwise velocity spectra, the spanwise velocity
spectra in this region have been understood to be originating from the streak instability
mechanism in real flow (de Giovanetti et al. 2017). Given the linear nature of the present
model, it is not possible to mathematically describe such a streak instability mechanism
(de Giovanetti et al. 2017). Instead, in this model, it appears that the Orr mechanism and
the resulting lift-up effect have been used to phenomenologically replicate this, amplifying
the spanwise velocity perturbations at length scales associated with the streak instability
(λx ≈ 1λz–2λz, y ≈ 0.1λz–0.2λz). Likewise, the Orr mechanism and the resulting lift-up
effect are also used to mimic the energy cascade features of the spanwise velocity spectra,
although the actual amplification effect by these mechanisms is expected to be small due
to the small streamwise length scales associated with the energy cascade (λx/λz ≈ 0.01)
– it would largely be described by the stochastic forcing applied to the Squire equation.
These observations highlight how this amplification mechanism plays an essential role
in alleviating the anisotropy of linearised Navier–Stokes equations when considering an
entire range of streamwise length scales. Without an active Orr mechanism, there is no
efficient means of mimicking the streak instability. In this respect, caution needs to be
taken in relating the spectra of the present linear model to those of real flow, as the
actual dynamics may not be fully related, and this issue would be potentially important
to understand the capabilities of the present linear model.

5.3. Varying the strength of the eddy viscosity
Finally, the effect of eddy viscosity on the forcing and velocity spectra is further
investigated. Since both the eddy viscosity and the stochastic forcing are used to replace
the nonlinear term, altering the eddy viscosity should also affect the accuracy of the linear
model as well as the structure of the forcing. For simplicity, the effect of the eddy viscosity
is investigated by altering the eddy viscosity by a scalar multiple. The total viscosity is
now set to νT = ν + ανt, where νt is the Cess expression in (2.2b) as before and α is a
real scalar, here chosen to vary from 0 to 1.2, with α = 0.001, 0.01, 0.1 and then linearly
varying from 0.2 to 1.2 with increments of 0.2. The effect of varying α on the accuracy
of the optimisation output is shown in figure 11 for kzh = 30. Figure 11(a) shows the
variation in the relative error between the normalised spectra defined in (4.2), with the
errors generally decreasing as α increases for the velocity spectra. The opposite trend
occurs in the Reynolds shear stress co-spectra with errors generally increasing either side
of the α = 0.4 case.

To illustrate the effect of the eddy viscosity on the determined solenoidal forcing
structure, figure 12 shows the spectra of the solenoidal streamwise and wall-normal forcing
component for α = 0, 0.1 and 0.4. As seen for the α = 0.4 case, there is a minimal
change in the structure of the forcing when compared with the α = 1.0 case (compare
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Figure 11. The variation of the errors in velocity spectra. (a) The relative error between normalised spectra
using the Q-norm defined in (4.2) and (b) the ratio of the Q-norms between the linear model velocity spectra
and the DNS spectra for the streamwise (solid), wall-normal (dashed) and spanwise (dash-dotted) velocity
spectra and Reynolds shear stress co-spectra (dotted) defined in (4.3).

figures 12e, f and 7a,c). As before, the wall-normal forcing is driving the wall-normal
velocity spectra through the one-way coupled Lyapunov equation (5.9b), which in turn
through the lift-up effect and eddy viscosity is facilitating the modelling of the near-wall
features of the wall-parallel velocity spectra. This allows the streamwise forcing spectra to
remain detached from the wall for this α = 0.4 case, and can freely be used to describe the
approximately self-similar energy-containing motions of the streamwise velocity spectra
away from the wall.

To further emphasise how the inclusion of the eddy viscosity diffusion operator
facilitates a practical modelling for the nonlinear term, figure 12(a,c) shows the spectra
for the streamwise solenoidal forcing component for α = 0 and 0.1. In the α = 0.1 case
(figure 12c), there is a clear bimodal response in the streamwise forcing component. For
y/λz � 0.01, the forcing structure resembles the case for α = 0.4, used again for modelling
the streamwise velocity spectra away from the wall. However, in the near-wall region,
there is a substantial amount of forcing input. The significance of this is likely due to
the reduction in eddy viscosity, which facilitates the modelling of wall-attached features.
Without this, there are no efficient means to generate velocity fluctuations in this region,
akin to why large amounts of the wall-normal forcing spectra are used in mimicking energy
cascade features in the wall-normal velocity spectra. This is most clear in the α = 0 case
(figure 12a), with the entire streamwise forcing adjacent to the wall.

While the streamwise forcing spectra exhibit this clear trend when reducing the
‘strength’ of the eddy viscosity, the qualitative features of the wall-normal forcing structure
are substantially less sensitive to the optimisation (figures 12b,d, f and 7c) – the main
quantitative differences being the shifting of the forcing towards smaller scales and closer
to the wall. Considering the coupled nature across the components in the given objective
functional and the one-way coupling in the Lyapunov equation, this suggests that the
wall-normal forcing directly generates the wall-normal velocity spectra, which in turn
generates wall-parallel fluctuations at energetic regions in the DNS (see also figures 8b
and 9), with this being relatively unchanged to the effects of eddy viscosity.

The streamwise and wall-normal velocity spectra and Reynolds shear stress co-spectra
for the α = 0, 0.1, 0.4 cases are shown in figure 13. The wall-normal velocity appears to
follow the same quantitative trend as the wall-normal forcing spectra, shifting to lower
streamwise length scales, towards the wall (figure 13b,e,h). While the streamwise forcing
spectra become increasingly attached at larger length scales (figure 12a,c) for λx/λz � 3
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Figure 12. Premultiplied two-dimensional spectra for the solenoidal (a,c,e) streamwise and (b,d, f )
wall-normal forcing components in self-similar coordinates at kz = 30/h (λz = 0.20h; λ+z = 1100) for (a,b)
α = 0, (c,d) α = 0.1 and (e, f ) α = 0.4. The contour levels are separated by 0.10 times the maximum value for
each spectrum.

as α is decreased, the low-level contours in streamwise velocity spectra become less so
(figure 13a,d,g). This is combining the consequences of lift-up effect and eddy viscosity
offering an efficient means of replicating these attached features – the attached streamwise
forcing (figure 12a,c) does not generate a significant contribution to the streamiise velocity
spectra when compared with that of the wall-normal forcing through the lift-up effect.
Both the spanwise forcing and velocity spectra exhibit similar trends to the streamwise
forcing and velocity spectra considering their shared attached nature, and are not reported
for brevity.

Finally, the Reynolds shear stress spectra are shown for α = 0, 0.1, 0.4 in
figure 13(c, f,i). The qualitative trend shows that the Reynolds shear stress shifts away
from the wall and towards smaller streamwise length scales (see also figure 5k), as the
‘strength’ of the eddy viscosity is reduced. This trend can be explained by considering
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Figure 13. Premultiplied two-dimensional spectra for the (a,d,g) streamwise and (b,e,h) wall-normal velocities
and (c, f ,i) Reynolds shear stress co-spectra in self-similar coordinates at kz = 30/h (λz = 0.20h; λ+z = 1100)
for (a–c) α = 0, (d– f ) α = 0.1 and (g–i) α = 0.4. The contour levels are separated by 0.10 times the maximum
value for each spectrum.

how a majority of the Reynolds shear stress is generated through the lift-up effect (see
figure 9) – the Reynolds shear stress spectra behave similarly to the wall-normal velocity
spectra.

6. Concluding remarks

In the present study, an optimal form of stochastic forcing for linearised Navier–Stokes
models was determined by formulating an optimisation problem which determined the
variance of white-in-time and spatially decorrelated forcing to best fit two-dimensional
spectra from a DNS at Reτ ≈ 5200 (Lee & Moser 2015). The ultimate goal of this
modelling effort is to construct a simple extrapolatable model based on the linearised
Navier–Stokes equations (Hwang & Eckhardt 2020), with the aim of determining to
what extent this model can statistically replicate the DNS velocity spectra. The model’s
‘capabilities’ and ‘physical mechanisms’ with regards to the self-sustaining process and
nonlinear mechanisms present in the DNS velocity spectra have also been assessed, as this
would clarify the precise capabilities of such a model for the description of turbulence
dynamics. The key findings of this paper can be summarised as follows:

(i) The linear model with the optimal stochastic forcing was found to model almost
every feature in the velocity spectra from DNS at least qualitatively, including
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those associated with the energy cascade and wall-reaching inactive motions. Strong
quantitative agreement was obtained between the velocity spectra from the linear
model with optimal forcing and from DNS, but only qualitative agreement was found
between the Reynolds shear stress co-spectra from the model and DNS due to the
lack of significant cross-correlation in the forcing.

(ii) Each forcing component was found to mainly drive the energy-containing part of the
corresponding velocity spectra, except for the streamwise velocity spectra at λx/λz ≈
10 driven by the wall-normal forcing through the lift-up effect. The relevance of
other physical mechanisms, such as the Orr mechanism and streak instability, is
also discussed in relation to what the linear model can describe physically and
phenomenologically.

(iii) The forcing spectra showed a level of self-similarity especially near the peak
region of each component, consistent with the self-similar nature of the velocity
spectra from DNS (i.e. attached eddy hypothesis; Townsend 1976). However, the
self-similarity in the forcing spectra was not as strong as that in the velocity spectra.
This was found to be associated with the non-self-similar energy cascade and
dissipation part in the velocity spectra, the description of which requires the forcing
spectra to be energetic due to strong viscous diffusion in the linear model for the
corresponding wavenumber range.

(iv) By varying the strength of the eddy viscosity, the inclusion of eddy viscosity was
confirmed to enhance the capability of the model in reproducing features associated
with the nonlinearity, and the removal of the eddy viscosity was found to yield
large optimisation errors. Moreover, the inclusion of an eddy viscosity term above a
certain ‘strength’ allowed the phenomenological modelling of the near-wall attached
features while retaining approximate self-similarity in the forcing spectra.

The determination of the optimal forcing spectra across the various length scales
revealed that there is a level of self-similarity present within the forcing spectra. This
is expected because the forcing is supposed to drive the self-similar energy-containing
part in the velocity spectra. However, the spectra of the optimal forcing also showed
non-self-similarity to a non-negligible extent, as the forcing is set for the linear model
to reproduce the full velocity spectra that includes some self-similarity breaking features,
such as energy cascade and near-wall inactive motions. In particular, the present study
showed that the optimal white-noise forcing expends significant amounts of energy to
model the velocity spectra associated with energy cascade and the related turbulent
dissipation. It is, however, important to note that the velocity spectra related to energy
cascade are typically much weaker than those at integral length scales. Therefore, from
a modelling viewpoint, the non-self-similar part of the forcing found in this study
may well be ignored, especially when one would want to model the flow in terms
of energy-containing motions (or coherent structures). This implies that the forcing
determined in the present study at a given length scale in the logarithmic region may
be used to extrapolate to a global forcing structure across all plane Fourier modes.
Incorporation of such a global forcing structure into recent quasi-linear models (Hwang
& Eckhardt 2020; Skouloudis & Hwang 2021) is a subject of on-going investigation.

Finally, the approach in the present study may well be extended to the frequency domain
using the spatio-temporal spectra and the resolvent modes. The accurate computation of
the spatio-temporal spectra is often less straightforward than that of the spatial spectra,
as it requires a large number of snapshots with a good temporal resolution. Therefore,
in previous studies, the best possible combination of resolvent modes to represent the
spatial spectra has been sought (Moarref et al. 2014; McMullen et al. 2020). In this
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context, it is worth mentioning that an alternative approach would be to approximate the
spatio-temporal spectra using Taylor’s hypothesis and subsequently to formulate a similar
optimisation problem introduced in the present study with resolvent modes.
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Appendix A. Discretisation of optimisation problem

The norm minimisation problem (2.19a) after discretising along the wall-normal direction
and with logarithmically spaced Fourier modes can be reformulated to the following
second-order cone optimisation problem:

min cTt, (A1a)

subject to

‖Asx − bs‖2 ≤ ts, (A1b)

‖Ckxkxx‖2 ≤ jkxkx, (A1c)

‖Ckxyx‖2 ≤ jkxy, (A1d)

‖Cyyx‖2 ≤ jyy, (A1e)

Dcosx ≥ 0, (A1f )

for s = {uu, vv, ww, uv}. Here ‖ · ‖2 is the standard finite-dimensional Euclidean norm,
where the operators have been discretised with the Chebyshev collocation method and
further weighted with wall-normal integration weights and streamwise wavenumber
weights according to the ‖ · ‖Q norm. The cost vector is set with

c =
(

1∣∣∣∣ΦDNS
uu

∣∣∣∣ , 1∣∣∣∣ΦDNS
vv

∣∣∣∣ , 1∣∣∣∣ΦDNS
ww

∣∣∣∣ , 1∣∣∣∣ΦDNS
uv

∣∣∣∣ , γ γ γ

)T

, (A1g)

such that the relative error is minimised and the regularisation penalised with weight γ .
Vector

t = (tuu, tvv, tww, tuv, jkxkx, jkxy jyy)
T (A1h)

is a vector of scalars, with ts associated with the absolute errors in the velocity and
Reynolds shear stress spectra and jkxkx , jkxy and jyy associated with the norms of the
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second-order partial derivatives of the forcing intensity profiles. Vector

Dsin = [1 sin πy/h · · · sin Nsπy/h 1 · · · sin Nsπy/h 1 · · · sin Nsπy/h]
(A1i)

is a vector of the discretised sine polynomials to map the expansion coefficients to the
forcing profiles and

x = (a1,uu, · · · , aNs,uu, a1,vv, · · · , aNs,vv, a1,ww, · · · , aNs,ww)T

(A1j)

is the optimisation variable consisting of the expansion coefficients. The matrix Ar is a
large sparse matrix constructed by block diagonalising the norm for each logarithmically
spaced streamwise wavenumber:

Ar =

⎡⎢⎢⎢⎣
Ãr,1 0 · · · 0

0 Ãr,2 · · · 0
...

. . .
...

0 0 · · · Ãr,Nkx

⎤⎥⎥⎥⎦ , (A2)

where

Ãr,i = l0.5
kx,i[l

0.5
y Φr,1,u, · · · , l0.5

y Φr,Nc,u, · · · , l0.5
y Φr,1,w, · · · , l0.5

y Φr,Nc,w]
(A3)

with lkx,i being the streamwise wavenumber integration weight and l0.5
y being a diagonal

matrix consisting of the wall-normal integration weights and norm weighting function
Q( y). This matrix maps the expansion coefficients for the forcing intensities for a given
discretised streamwise wavenumber to the velocity and Reynolds shear stress spectra using
the predetermined spectra following § 2.2. Here br is similarly discretised by vectorising
the DNS spectra along the streamwise wavenumber. Operators Ckxkx , Ckxy and Cyy

are the discretised operators corresponding to the ∂2/∂(ln kx)
2, ∂2/∂(ln kx)∂(ln χ) and

∂2/∂(ln χ)2 components of the smoothness regularisation term respectively. For each of
these, a second-order finite-difference scheme is used and the discretised form follows
that of Ar forming large sparse block diagonal matrices weighted by the streamwise and
wall-normal integration coordinates prescribed by the Q-norm.

Appendix B. Selection of optimisation parameters

In order to select values for γ , a trade-off curve was produced as shown in figure 14. The
relative errors ε̃s with respect to the Q-norm are generally increasing with the parameter
γ . Therefore, to select an appropriate value for γ , it was first set to 10−1 where the effects
of the regularisation were small but still significant and then increased and adjusted with
trial and inspection based on qualitative features of the velocity and forcing spectra.

Appendix C. Contribution from wall-normal velocity and vorticity correlation

The contribution of the cross-correlation between the derivative of wall-normal velocity
and vorticity to the streamwise velocity spectra in (5.11a) is shown in figure 15. The
same term appears in (5.11c) for the spanwise velocity spectra, albeit with the opposite
sign. Unlike the other contributions to the streamwise and spanwise velocity spectra, the
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γ
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0.2
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10110–110–2 100

Figure 14. The effect of the regularisation term on the relative error for kz = 30/h, k+
z = 0.0058 (λz ≈ 0.21h,

λ+z ≈ 1100). The relative error from (4.1) ε̃s is shown for the streamwise (solid), wall-normal (dashed);
spanwise (dash-dotted) and Reynolds shear stress (dotted) spectra.

y/λz

λx/λz

0.06
0.03

–0.03

–0.06
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100

101

10210110–110–2 100

Figure 15. Premultiplied two-dimensional spectra in self-similar coordinates for kzh = 14 (λz = 0.45h, λ+z =
2333) associated with the contribution of −kxkz/k4R∞

(Dv̂)η̂
− kxkz/k4R∞

η̂(Dv̂)
. Here low-level contributions are

visualised, separated by 6 × 10−4 times the maximum value of the total streamwise velocity spectra ranging
up to 0.06 times the maximum value of the total streamwise velocity spectra.

one-point statistics from R(Dv̂)η̂ are not necessarily positive, facilitating both the injection
and removal of energy. Comparing this term with the total spectra and other contributions
(see figures 2 and 10), the contribution of R(Dv̂)η̂ is relatively small.
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