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Abstract
Nutritional strategies are currently developed to produce farmed fish rich in n-3 long-chain PUFA (LC-PUFA) whilst replacing fish oil by plant-
derived oils in aquafeeds. The optimisation of such strategies requires a thorough understanding of fish lipid metabolism and its nutritional
modulation. The present study evaluated the fatty acid bioconversion capacity of rainbow trout (Oncorhynchus mykiss) fry previously
depleted in n-3 PUFA through a 60-d pre-experimental feeding period with a sunflower oil-based diet (SO) followed by a 36-d experimental
period during which fish were fed either a linseed oil-based diet (LO) (this treatment being called SO/LO) or a fish oil-based diet (FO) (this
treatment being called SO/FO). These treatments were compared with fish continuously fed on SO, LO or FO for 96 d. At the end of the 36-d
experimental period, SO/LO and SO/FO fish recovered >80% of the n-3 LC-PUFA reported for LO and FO fish, respectively. Fish fed on LO
showed high apparent in vivo elongation and desaturation activities along the n-3 biosynthesis pathway. However, at the end of the
experimental period, no impact of the fish n-3 PUFA depletion was observed on apparent in vivo elongation and desaturation activities of
SO/LO fish as compared with LO fish. In contrast, the fish n-3 PUFA depletion negatively modulated the n-6 PUFA bioconversion capacity of
fish in terms of reduced apparent in vivo elongation and desaturation activities. The effects were similar after 10 or 36 d of the experimental
period, indicating the absence of short-term effects.

Key words: Rainbow trout: Fatty acid metabolism: Lipid bioconversion capacity: Plant-derived oils: Whole body fatty acid
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There is an expectation on aquaculture to supply fish rich in
health promoting n-3 long-chain PUFA (n-3 LC-PUFA), princi-
pally EPA (20 : 5n-3) and DHA (22 : 6n-3). It is well established
that n-3 LC-PUFA impart a host of positive effects on human
health(1–3). Moreover, n-3 LC-PUFA are essential fatty acids
for the optimal growth and health of fish(4,5). Typically, the
high n-3 LC-PUFA content in farmed fish is derived from the
inclusion of marine-derived fish oil as one of the dietary lipid
sources within aquafeeds(6,7). However, fish oil has become
expensive and difficult to source, and given its status as a
finite marine resource, its utilisation is widely criticised from a
sustainability perspective(6,7). One of the key sustainable
alternatives to fish oil are plant-derived oils(8). In contrast to fish
oil, plant-derived oils lack LC-PUFA(8) but are particularly rich in
MUFA and C18 PUFA, especially 18 : 1n-9 and linoleic acid

(LA, 18 : 2n-6), and in certain sources, such as linseed, camelina
or perilla oils, rich in α-linolenic acid (ALA, 18 : 3n-3)(5,8).

Among fish species, rainbow trout (Oncorhynchus mykiss)
and other salmonids possess a relatively high capacity to
endogenously convert the dietary essential fatty acids LA
and ALA into n-6 and n-3 LC-PUFA through a combination
of desaturation steps requiring Δ-6 and Δ-5 desaturases,
elongation steps requiring elongases 2 and 5 and partial
β-oxidation(4,9–13). Previous studies reported increased desa-
turation and elongation activities without significant detrimental
effects to growth and health in salmonids fed on plant-derived
oil diets (i.e. sunflower oil(14–16), olive oil(14), palm oil(16),
rapeseed oil(16,17) or linseed oil(14,15,17,18)), as a blend or sole
source. In rainbow trout, the complete dietary replacement of
fish oil by linseed oil stimulated fatty acid metabolism along

Abbreviations: ALA, α-linolenic acid; CD, coefficient of distance; DGC, daily growth coefficient; FE, feed efficiency; FO, fish oil-based diet; LA, linoleic acid;
LC-PUFA, long-chain PUFA; LO, linseed oil-based diet; SO, sunflower oil-based diet; SO/LO, SO until day 60 and then LO from days 61–96; SO/FO, SO until
day 60 and then FO from days 61–96.
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the bioconversion pathway(18–21). However, while providing
a highly suitable source of energy for fish growth and main-
tenance, it is well documented that the fatty acid composition of
the dietary lipid source is reflected in fish tissues. Therefore,
despite an increase in the bioconversion capacity, fish fed
on plant-based diets invariably contained lower EPA and DHA
concentrations as compared with those fed on fish oil-based
diets(15,16,18–21), resulting in major drawbacks from a fish
consumption perspective.
There is currently a need to optimise feeding strategies to

facilitate the production of farmed fish rich in n-3 LC-PUFA
whilst minimising fish oil inclusion in aquafeeds. Finishing diets,
given before harvest and formulated with fish oil, have been
investigated to restore the n-3 LC-PUFA content in fish pre-
viously fed plant-based diets throughout the grow-out period.
Previous studies have demonstrated positive results in many
fish species, including Atlantic salmon (Salmo salar)(22,23),
common carp (Cyprinus carpio)(24), red hybrid tilapia
(Oreochromis sp.)(25), European sea bass (Dicentrarchus
labrax)(26), red seabream (Pagrus auratus)(27) and Murray cod
(Maccullochella peelii peelii)(28). An EPA and DHA recovery
rate of approximately 80% was reported at the end of the
finishing period in Atlantic salmon previously fed plant-based
diets(22,23). In rainbow trout, finishing diets induced a shift in
fish fatty acid profiles to a more fish oil-like composition, but
were unable to achieve similar n-3 LC-PUFA concentrations as
compared with fish fed on fish oil throughout their growth(19,29).
The efficiency of a finishing period is determined by a combi-
nation of factors including the fish species, the finishing period
duration, the fatty acid profile of the alternative oil used(19,25,28)

(i.e. the dietary C18 PUFA level(30)) or the application of a short-
term feed deprivation period before the commencement of the
finishing period(29). Although the various feeding strategies that
incorporate a finishing strategy demonstrate promising results
with undoubtable positive environmental and economic effects,
they still rely upon the inclusion of unsustainable dietary fish
oil. An alternative strategy involves stimulating fish fatty acid
metabolism through nutritional programming during early larval
stages as a means of improving the acceptance and conversion
of dietary ALA from plant-based diets at juvenile stages(31–33).
Vagner et al.(31) observed increased Δ-6 desaturase gene
expression in European sea bass juveniles fed an n-3 LC-PUFA
deficient diet from day 83 post-hatch to day 118, when larvae
had been previously fed a low n-3 LC-PUFA diet (0·5%
EPA+DHA), as compared with a high n-3 LC-PUFA diet
(3·7%). Moreover, in a study where rainbow trout were fed a
plant-based diet containing deuterated ALA, a higher conver-
sion of dietary deuterated ALA to DHA was observed in smaller
fish (0·5–1·5 g) in comparison to larger fish (6–8 g), highlighting
the rapid change of bioconversion capacity with fish size(34).
Collectively, the results of these studies provide promising
insight into the implementation of feeding strategies for the
optimisation of EPA and DHA production and retention in
fish tissues. However, for the most part these strategies
have not been tested in unison, yielding positive yet
incremental benefits. To date, the impacts of combined
strategies for increasing n-3 LC-PUFA deposition currently
remain unknown, ultimately requiring dedicated assessment

to determine the extent to which utilisation measures can
be optimised.

The aim of the present study was to evaluate the fatty acid
bioconversion capacity of rainbow trout fry previously depleted
in n-3 PUFA through feeding on a sunflower oil-based diet (SO)
during a 60-d pre-experimental period and subsequently fed
either a ALA-rich linseed oil-based diet (LO) or an EPA- and
DHA-rich fish oil diet (FO) in a 36-d experimental period. Fish
growth and bioconversion capacity were evaluated at the end
of both periods and on the 10th day of the experimental period,
in order to determine the potential impact of a n-3 PUFA fish
depletion on the apparent in vivo elongation and desaturation
activities in fish fed on ALA. Three additional control groups
included fish fed on SO (n-3 PUFA deficient diet), LO (ALA-rich
diet) or FO (EPA- and DHA-rich diet) throughout the
feeding trial.

Methods

Ethics statement

The experimental design of the feeding and digestibility trials
was approved by the Animal Care and Use Committee of the
Université catholique de Louvain (permit number 103203) as
per the EU legal frameworks relating to the protection of
animals used for scientific purposes (Directive 86/609/CEE) and
guidelines of Belgian legislation governing the ethical treatment
of animals (Decree M.B. 05.01.1994, 14 November 1993).
Both in vivo experiments were conducted at the ‘Plateforme
technologique et didactique en biologie aquicole Marcel Huet’
(Université catholique de Louvain), which is certified for animal
services under the permit number LA 1220034. All manipula-
tions were performed under anaesthesia and, if necessary,
fish were euthanised using 2-phenoxyethanol at the required
concentrations. All efforts were made to minimise fish numbers
and suffering. No clinical symptoms were observed within or
outside the experimental periods.

Experimental diets

Experimental diets were formulated to differ in their fatty acid
composition and contained either a high amount of 18 : 1n-9 for
SO (blend of sunflower oils rich and low in 18 : 1n-9, 87:13,
v/v), ALA for LO or n-3 LC-PUFA for FO. All diets were
formulated to cover the fish requirement in LA, while avoiding
any excess in that fatty acid, which might compete with ALA
regarding desaturations and elongations. In practice, 18 : 1n-9-
poor sunflower oil was included to all experimental diets
(5 g/kg DM). A higher inclusion of 18 : 1n-9-poor sunflower oil
was used for SO (15 g/kg DM as compared with 5 g/kg DM) in
order to obtain a similar LA content in SO and LO. In addition,
a sunflower oil rich in 18 : 1n-9 and poor in LA was added to
SO at a 65 g/kg DM concentration to obtain a similar oil
inclusion between all experimental diets. The experimental
diets were formulated to meet the protein, vitamin and mineral
requirements of rainbow trout(5,35) (Table 1). The SO, LO and
FO had a crude fat content of 94·1, 90·4 and 94·9mg/g DM,
respectively. This lipid content level was chosen in order to
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obtain a quick and efficient depletion in n-3 PUFA in the fish
submitted to the SO treatment. Moreover, diets were formulated
to obtain a targeted crude protein content of 520mg/g DM and
a targeted energy content of 20MJ/kg DM. SO was deficient in
n-3 PUFA (1·2% of identified fatty acids), whereas LO was
particularly rich in ALA (39·3% of identified fatty acids, 99·8% of
n-3 PUFA), and FO rich in EPA and DHA (7·6 and 9% of
identified fatty acids, 33·7 and 40% of n-3 PUFA, respectively)
(Table 2). Chromic oxide was added at 10 g/kg DM to each
experimental diets intended for the digestibility trial in order to
serve as indigestible marker. The dry dietary components were
mixed, homogenised using an electronic mixer (Kenwood Ltd),
and extruded (HI 2251; Simplex). The diets were subsequently
freeze-dried, manually crushed and then sieved to obtain
pellets from 0·8 to 1·6mm. The dry pellets were finally coated
with oils and the diets were shaken several times for 48 h at
4°C before storage at −20°C until feeding or analysis.

Fish husbandry

Fertilised eggs from domesticated rainbow trout breeders were
supplied by a commercial fish farm (La Fontaine aux Truites).
After hatching, rainbow trout fry were fed a commercial diet for
2 months before the feeding trial. After 48 h of feed deprivation,
rainbow trout fry (mean initial body weight 0·70 (SEM 0·01) g/fish)
were randomly distributed among seventeen tanks (11-litre
capacity) to obtain 225 fish/tank. Fish of two tanks were sampled
as an initial sample, weighed and stored at −20°C for subsequent
analyses. Throughout the feeding trial, feeding was carried out by
hand twice daily (08.30 and 16.00 hours) to apparent satiation

(pellets from 0·8 to 1·6mm, depending on the fish size). Fish were
subjected to a 12h light–12h dark cycle photoperiod at a mean
water temperature of 14°C with a 1 litre/min flow. From the 1st
to the 60th feeding day, fish of nine tanks were fed on SO (n 9),
three tanks were fed on LO (n 3) and three tanks were fed
on FO (n 3). On the 20th day, fish were transferred to larger
tanks (50 litre capacity) supplied by water at 11·5± 0·5°C on a
5 litres/min flow basis. At the end of the 60-d pre-experimental
period, considered to be long enough to highly reduce the n-3
PUFA content of fish fed on SO, six tanks previously held on SO
were switched, either to LO (three tanks), or FO (three tanks).
The second feeding period lasted 36d. The experimental condi-
tions were therefore named as SO, LO and FO for fish fed on SO,
LO and FO (n 3), respectively, during 96d, and as SO/LO and SO/
FO (n 3) for fish fed on SO during the first 60-d pre-experimental
period and then on LO or FO, respectively, during the second
36-d experimental period. Throughout the feeding trial, the bio-
mass was determined every 10th feeding day after 48h of feed
deprivation. On days 60, 70 and 96, fish were weighed after 48h
of feed deprivation and fifteen fish of each tank were then
euthanised with 2-phenoxyethanol, freeze-dried, homogenised
and kept frozen (−20°C) until chemical analysis. At the end of the

Table 1. Components (g/kg DM) of the experimental diets formulated with
sunflower oil, linseed oil or fish oil

SO LO FO

Casein* 288·3 288·3 288·3
Gelatin* 50 50 50
Wheat gluten meal* 250 250 250
Modified starch* 161·7 161·7 161·7
Glucose* 25 25 25
Agar* 10 10 10
Carboxymethylcellulose* 40 40 40
Cellulose* 20 20 20
Vitamin premix*† 10 10 10
Mineral premix*‡ 65 65 65
18 : 1n-9-rich sunflower oil§ 65 0 0
18 : 1n-9-poor sunflower oil§ 15 5 5
Linseed oil|| 0 75 0
Cod liver oil¶ 0 0 75

SO, sunflower oil-based diet; LO, linseed oil-based diet; FO, fish oil-based diet.
* Sigma-Aldrich.
† Vitamin complex (g/kg premix) according to Rollin et al.(35): retinol acetate 0·67,

ascorbic acid 120, cholecalciferol 0·1, α-tocopherol acetate 34·2, menadione 2·2,
thiamin 5·6, riboflavin 12, pyridoxine 4·5, calcium pantothenate 14·1, p-aminoben-
zoic acid 40, cyanocobalamin 0·03, niacin 30, biotin 0·1, choline chloride 350, folic
acid 1·5, inositol 50, canthaxanthin 10, butylated hydroxytoluene 1·5, butylated
hydroxyanisole 1·5, α-cellulose 322·1.

‡ Mineral complex (g/kg premix) according to Rollin et al.(35): CaHPO4.2H2O 295·5,
Ca(H2PO4)2.H2O 217, NaHCO3 94·5, Na2SeO3.5H2O 0·011, KCl 100, NaCl 172·4,
KI 0·2, MgCl2 63·7, MgSO4.7H2O 70·32, MnSO4.H2O 1·52, FeSO4.7H2O 12·41,
CuSO4.5H2O 0·4, ZnSO4.7H2O 10.

§ Vandemoortele.
|| Lambert Chemicals.
¶ Certa.

Table 2. Fatty acid composition (mg/g DM) of the experimental diets

Fatty acids SO LO FO

14 : 0 0·1 0·1 2·7
16 : 0 4·9 5·7 9·0
18 : 0 2·0 2·4 1·4
16 : 1n-7 0·1 0·1 3·4
18 : 1n-7 1·0 0·7 1·9
18 : 1n-9 48·4 13·2 11·6
20 : 1n-9 0·2 0·1 4·4
18 : 2n-6 15·9 17·6 9·7
18 : 3n-6 / 0·1 0·04
20 : 2n-6 / 0·02 0·2
20 : 3n-6 / 0·02 0·05
20 : 4n-6 / / 0·2
22 : 4n-6 / / /
22 : 5n-6 / / 0·1
18 : 3n-3 0·9 26·3 1·2
18 : 4n-3 / / 0·9
20 : 3n-3 / 0·1 0·1
20 : 4n-3 / / 0·5
20 : 5n-3 / / 4·5
22 : 5n-3 / / 0·8
22 : 6n-3 / / 5·3
Total 74·4 66·9 59·1
ΣSFA* 7·7 8·5 13·5
ΣMUFA† 49·9 14·3 21·9
ΣC18 n-6 PUFA‡ 15·9 17·8 9·7
Σn-6 LC-PUFA§ 0 0·04 0·6
ΣC18 n-3 PUFA|| 0·9 26·3 2·1
Σn-3 LC-PUFA¶ 0 0·1 11·2
n-3:n-6** 0·1 1·5 1·3
n-3:n-6 LC-PUFA†† 0 1·2 18·9

SO, sunflower oil-based diet; LO, linseed oil-based diet; FO, fish oil-based diet;
LC-PUFA, long-chain PUFA.

* Sum of SFA, includes 20 : 0, 22 : 0 and 24 : 0.
† Sum of MUFA, includes 14 : 1n-5, 22 : 1n-9 and 24 : 1n-9.
‡ Sum of n-6 PUFA with 18C.
§ Sum of n-6 LC-PUFA with 20C and 22C.
|| Sum of n-3 PUFA with 18C.
¶ Sum of n-3 LC-PUFA with 20C and 22C.
** Ratio of total n-3 PUFA:total n-6 PUFA.
†† Ratio of n-3 LC-PUFA:n-6 LC-PUFA.
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experimental period, the remaining fish from each tank fed their
specific diet until the digestibility trial. The digestibility trial was
performed with 5 (SEM 0·05) kg of fish in circular tanks (130 litre
capacity). Fish remained under experiment until accumulating
sufficient faeces. The water was supplied at a 4 litres/min flow, the
temperature was maintained at 11±1°C throughout the trial and
fish were subjected to a 12h light–12h dark cycle photoperiod.
Fish were fed manually twice daily (09.00 and 17.00 hours) to
apparent satiation whilst avoiding any undesirable mixing of feed
and faeces. Faeces were collected continuously through a rotating
automatic faeces collector system(36). Faeces collected per tank
were weighed, freeze-dried, homogenised and stored at −20°C
until further analyses.

Chemical analysis

The DM and crude fat contents were analysed following ana-
lytical methods from the Association of Official Analytical
Chemists(37). In brief, DM was measured by drying samples at
105°C for 16 h and the crude fat content was evaluated using
diethyl ether extraction according to Soxhlet method. The
chromic oxide concentration in diets and faeces was deter-
mined following a protocol involving acid digestion followed
by oxidation before photometric measurement (Cecil Instru-
ments) at 350 nm(38). The fatty acid composition of diets,
fish and faeces was evaluated after lipid extraction of samples
following the Folch method(39) with subsequent modifi-
cations(40). In brief, lipids from 1 g of dried sample were
extracted by 60ml of chloroform–methanol (2:1, v/v) (VWR
Chemicals). Tridecanoic acid (Sigma-Aldrich) was used as
internal standard for fatty acid quantification. The extracted fatty
acids were converted into fatty acid methyl esters via methy-
lation under alkaline conditions (KOH in methanol, 0·1 M, at
70°C for 60min) and then under acidic conditions (HCl in
methanol, 1·2 M, at 70°C for 20min). The resultant fatty acid
methyl esters were subsequently separated by GC. The GC
Trace (Thermo Scientific) was equipped with an RT2560
capillary column (100m× 0·25mm internal diameter, 0·2 µm
film thickness; Restek), an ‘on column’ automatic injector and
a flame ionisation detector kept at a constant temperature of
255°C. The system used H as the carrier gas at an operating
pressure of 200 kPa. The oven temperature programme was as
follows: an initial temperature of 80°C, which progressively
increased at 25°C/min up to 175°C, a holding temperature of
175°C during 25min followed by an increase at 10°C/min up to
205°C, a holding temperature of 205°C during 4min followed
by an increase at 10°C/min up to 225°C and a holding
temperature of 225°C during 20min. Each peak was identified
by comparison of retention times with those for pure methyl
ester standards (Larodan and Nu-Check Prep). Data processing
was operated via ChromQuest software 3.0 (Thermo Finnigan).
The final results are expressed in mg/g DM.

Performance parameters and fatty acid
metabolism computation

Daily growth coefficient (DGC) was calculated as follows: DGC
(g1/3/d× 1000)= 1000× ((final fish weight (g))1/3 − (initial fish

weight (g))1/3)/feeding d. Daily feed intake was calculated as
the percentage of biomass. Feed efficiency (FE, g/g DM) was
calculated as the ratio between fish weight gain (g) and dry feed
intake (g DM). The apparent fatty acid digestibility was assessed
using the standard formula: 100− (100× (Cr2O3 in diet
(mg/g DM))/(Cr2O3 in faeces (mg/g DM))× (fatty acid in
faeces (mg/g DM))/(fatty acid in diet (mg/g DM))). The
coefficient of distance (CD) was implemented to compare
fatty acid concentrations between two treatments and was
calculated as previously described(41). The estimation of
the apparent in vivo fatty acid metabolism was calculated via
the implementation of the whole body fatty acid balance
method, as initially proposed and described by Turchini
et al.(42) and later modified(20,43).

Statistical analysis

All data are presented as mean values with their standard errors
(n 2, 3 or 9, as stated). Before statistical analysis, data were
subjected to log or square root transformation if identified as
non-homogenous (Levene’s test) to meet the assumptions for
statistical methods. The significance of difference between
dietary treatments was determined using one-way ANOVA at
a significance level of α 5%, followed by Tukey’s (parametric
with α 5%) or Wilcoxon’s (non-parametric with α 1·69%)
post hoc tests. Statistical analysis was carried out using
JMP® Pro 12 (SAS).

Results

Fish growth performance

The experimental diets were readily accepted by fish and
mortality throughout the feeding trial was low and unrelated
to the dietary treatment (mean mortality rate <0·01%/d). In
contrast, fish weight and growth performance were highly
impacted by the dietary lipid source. Fish fed on SO throughout
the feeding trial recorded the lowest final weight (22·9
(SEM 0·9) g/fish) whereas fish fed on LO and FO recorded the
highest final weights (48·4 (SEM 1·2) and 51·5 (SEM 0·9) g/fish,
respectively) (Fig. 1). This trend manifested further in decreased
DGC and FE in fish subjected to the SO treatment over the
course of the feeding trial (Table 3). In LO fish, a reduced DGC
was noticed in comparison to fish fed on FO at the end of the
60-d pre-experimental period, but not at the end of the feeding
trial. The replacement of SO by LO or FO for 36 d also induced
significant differences. The SO/LO and SO/FO final fish weights
were higher than those of fish fed on SO for 96 d, but did not
reach those of fish constantly fed on LO and FO for 96 d (Fig. 1).
DGC values were also higher for the SO/LO and SO/FO
treatments as compared with the SO treatment, and similar to
those observed for the LO and FO fish groups (Table 3).
Moreover, an increased FE was recorded for SO/LO and SO/FO
fish as compared with SO fish. These increased FE were similar
to those of fish fed on LO and FO for 96 d. The SO/LO fish had
a significantly reduced DGC as compared with the SO/FO
fish group but similar final fish weights, feed intake and FE.
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Fish fatty acid composition

Throughout the feeding trial, fish fed on LO recorded the highest
C18 n-6 PUFA concentration while fish fed on SO recorded the
highest n-6 LC-PUFA concentration (Tables 4 and 5), despite the
absence of n-6 LC-PUFA in SO (Table 2). The pre-experimental
period induced a high depletion in n-3 PUFA for fish fed on SO
as these recorded the lowest concentrations of C18 n-3 PUFA
and n-3 LC-PUFA (0·79 (SEM 0·10) and 2·75 (SEM 0·47)mg/g DM
throughout the feeding trial, respectively). In contrast, the highest
C18 n-3 PUFA and n-3 LC-PUFA concentrations were, respec-
tively, reported in fish fed on LO (42·68 (SEM 0·74)mg/g DM) and
in fish fed on FO (25·82 (SEM 0·94)mg/g DM) (Tables 4 and 5).
Concentrations of 18 : 4n-3, 20 : 3n-3 and 20 : 4n-3 were
significantly higher in fish fed on LO, while fish fed on FO
recorded the highest EPA and DHA concentrations. On the
10th day of the experimental period (day 70), the SO/LO fish

recovered 57% (CD 3·9) of the n-3 LC-PUFA found in fish fed on
LO for 70 d. Similarly, the SO/FO fish recovered 51% (CD 9) of
the n-3 LC-PUFA found in fish fed on FO for 70d (Table 5). At
the end of the experimental period, the n-3 LC-PUFA of SO/LO
and SO/FO fish almost reached those of fish fed on LO and FO
with a recovery rate of 82% (CD 1·8) and 84% (CD 2·9),
respectively. In terms of DHA, the SO/LO fish recovered
62% (CD 3·4) and 84% (CD 1·6) of the DHA found in fish fed on
LO on the 10th day and at the end of the 36-d experimental
period, respectively. The SO/FO fish recovered 49% (CD 8·6)
and 85% (CD 2·8) of the DHA found in fish fed on FO, on the
10th day and at the end of the experimental period, respectively.

In vivo fatty acid metabolism

Over the course of the entire feeding trial, total apparent in vivo
SFA and MUFA elongation and Δ-9 desaturation activities were
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Fig. 1. Mean weight (g/fish) of rainbow trout at each sampling time point over the 60-d pre-experimental period and the 36-d experimental period. Values are means
(n 3 except sunflower oil-based diet (SO) treatment from starting day until day 60 for which n 9), with their standard errors. The fish weight was impacted by the dietary
treatment regarding the lowest weight of fish fed SO (■) and the highest weights of fish fed on linseed oil–based diet (LO, ●) or fish oil-based diet (FO, ▲) during 96 d.
Intermediate fish weights were reported when feeding fish on SO for 60 d and then on LO (SO/LO, ○) or FO (SO/FO, Δ) for 36 d. a,b,c Mean values with unlike
superscript letters were significantly different (Tukey’s post hoc test, α 5%).

Table 3. Growth performance of rainbow trout fed on diets differing in fatty acid composition during a 60-d pre-experimental feeding period (days 1–60)
followed by a 36-d experimental period (days 61–96)
(Mean values with their standard errors; n 3 except for sunflower oil-based diet (SO) for days 1 to 60 period (n 9))

SO LO FO SO/LO SO/FO

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

Days 1–60
DGC (g1/3/d × 1000) 19·3c 0·1 24·2b 0·5 25·4a 0·3 / / / /
Feed intake (%/d) 2·9b 0·0 3·2a 0·1 3·1a 0·0 / / / /
FE 1·4b 0·0 1·5a,b 0·1 1·6a 0·0 / / / /

Days 1–96
DGC (g1/3/d × 1000) 20·3b 0·4 28·7a 0·3 29·5a 0·2 / / / /
Feed intake (%/d) 2·8b 0·0 3·0a 0·1 2·9a,b 0·0 / / / /
FE 1·1b 0·0 1·3a 0·0 1·4a 0·0 / / / /

Days 61–96
DGC (g1/3/d × 1000) 21·9c 0·7 36·1a,b 0·0 36·4a,b 0·9 33·7b 0·1 37·3a 1·2
Feed intake (%/d) 2·5c 0·0 2·7b,c 0·0 2·5c 0·1 2·8a,b 0·0 2·9a 0·0
FE 1·0b 0·0 1·3a 0·0 1·4a 0·0 1·3a 0·0 1·4a 0·0

LO, linseed oil-based diet; FO, fish oil-based diet; SO/LO, SO until day 60 and then LO from days 61–96; SO/FO, SO until day 60 and then FO from days 61–96; DGC, daily growth
coefficient; FE, feed efficiency.

a,b,c Mean values within a row with unlike superscript letters were significantly different (Tukey’s (parametric, α 5%) or Wilcoxon’s (non-parametric, α 1·69%) post hoc tests).
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highest in fish subjected to the LO and FO treatments, while fish
receiving SO recorded the highest total apparent in vivo SFA
and MUFA β-oxidation (Tables 6 and 7). Within the n-6 PUFA
family, fish fed on SO demonstrated a higher apparent in vivo
elongation as well as higher Δ-5 and Δ-6 desaturation activities
in comparison to those fed on LO and FO (Tables 6 and 7). In
contrast, within the n-3 PUFA family, the highest apparent
in vivo elongation, Δ-5 and Δ-6 desaturation activities were
displayed in fish subjected to the LO treatment (Table 6). The
apparent in vivo activities of fish at the end and on the 10th day
of the experimental period are reported in Tables 7 and 8,
respectively. At the end of the experimental period, fish of the
SO/LO group recorded lower apparent in vivo enzyme activities
as compared with fish fed on LO at each elongation and desa-
turation step of the n-6 pathway. Similar observations were
reported on the 10th day of the experimental period, but only
significantly for the apparent in vivo elongation activity (Table 8).

In contrast, no differences in apparent in vivo elongation and
desaturation activities within the n-3 pathway were observed
between SO/LO and LO treatments, at the end of the trial or on
the 10th day of the experimental period (Tables 7 and 8). Con-
sidering both n-6 and n-3 pathways, similar apparent in vivo Δ-5
and Δ-6 desaturation activities were reported between SO/LO
and LO fish groups. With respect to the dietary replacement of SO
by FO (SO/FO), no statistical differences in apparent in vivo n-6
and n-3 PUFA enzyme activities were seen between SO/FO and
FO fish groups on the 10th day and at the end of the experimental
period (Tables 7 and 8).

Discussion

The aim of the present study was to evaluate the fatty acid
bioconversion capacity of rainbow trout fry previously depleted
in n-3 PUFA over a 60-d pre-experimental period and

Table 4. Fatty acid composition (mg/g DM) of fish held on dietary treatments differing in the dietary lipid source on the starting and at the end of the 60-d
pre-experimental feeding period
(Mean values with their standard errors; n 3 except initial treatment (n 2))

Day 60

Initial SO LO FO

Fatty acids Mean SEM Mean SEM Mean SEM Mean SEM

14 : 0 7·65 0·18 2·83b 0·01 2·30c 0·09 7·08a 0·16
16 : 0 26·75 0·67 30·79c 0·08 33·12b 0·36 39·01a 1·21
18 : 0 4·74 0·39 8·31b 0·07 10·26a 0·26 8·05b 0·36
16 : 1n-7 8·09 0·17 10·00b 0·09 9·72b 0·27 15·90a 0·56
18 : 1n-7 4·08 0·04 4·28b 0·10 3·79b 0·10 6·82a 0·22
18 : 1n-9 17·51 0·53 124·74a 0·89 59·00b 0·92 49·44c 1·20
20 : 1n-9 8·70 0·18 4·36b 0·07 2·00c 0·02 9·78a 0·37
18 : 2n-6 5·08 0·26 25·37b 0·33 36·33a 0·81 22·91b 0·74
18 : 3n-6 0·13 0·00 2·77a 0·05 1·23b 0·09 0·43c 0·01
20 : 2n-6 0·48 0·00 1·25b 0·03 1·58a 0·05 1·54a 0·07
20 : 3n-6 0·25 0·01 2·32a 0·02 1·69b 0·07 1·04c 0·01
20 : 4n-6 1·30 0·02 3·38a 0·02 0·97b 0·03 1·03b 0·01
22 : 4n-6 0·05 0·01 0·41a 0·02 0·06b 0·00 0·08b 0·01
22 : 5n-6 0·29 0·05 3·24a 0·07 0·20c 0·01 0·32b 0·01
18 : 3n-3 2·47 0·20 0·64c 0·05 36·27a 0·74 2·15b 0·06
18 : 4n-3 2·72 0·13 0·35c 0·01 4·94a 0·33 1·23b 0·02
20 : 3n-3 0·62 0·04 0·00c 0·00 1·66a 0·10 0·40b 0·03
20 : 4n-3 1·53 0·07 0·06c 0·00 2·11a 0·09 1·00b 0·06
20 : 5n-3 10·62 0·25 0·58c 0·02 2·31b 0·09 4·61a 0·11
22 : 5n-3 2·55 0·05 0·15c 0·01 0·79b 0·02 1·49a 0·05
22 : 6n-3 30·57 0·76 2·67c 0·00 10·33b 0·23 17·77a 0·62
Total 139·94 4·05 230·97a 1·44 222·07a 3·55 195·42b 5·82
ΣSFA* 39·54 1·24 43·37 0·10 46·32 0·21 54·67 1·75
ΣMUFA† 41·74 0·96 144·40a 1·05 75·28c 1·22 84·76b 2·44
ΣC18 n-6 PUFA‡ 5·21 0·26 28·14b 0·29 37·56a 0·88 23·33c 0·74
Σn-6 LC-PUFA§ 2·36 0·09 10·60a 0·10 4·50b 0·09 4·00c 0·10
ΣC18 n-3 PUFA|| 5·19 0·34 0·99c 0·05 41·21a 0·92 3·38b 0·08
Σn-3 LC-PUFA¶ 45·89 1·17 3·47c 0·03 17·21b 0·47 25·27a 0·79
n-3:n-6** 6·75 0·11 0·12c 0·00 1·39a 0·00 1·05b 0·00
n-3:n-6 LC-PUFA†† 19·44 0·22 0·33c 0·00 3·83b 0·04 6·31a 0·04

SO, sunflower oil-based diet; LO, linseed oil-based diet; FO, fish oil-based diet; LC-PUFA, long-chain PUFA (≥20C).
a,b,c Mean values within a row with unlike superscript letters were significantly different (Tukey’s (parametric, α 5%) or Wilcoxon’s (non-parametric, α 1·69%) post hoc tests on
square root transformed final condition values).

* Sum of SFA, includes 20 : 0, 22 : 0 and 24 : 0.
† Sum of MUFA, includes 14 : 1n-5, 22 : 1n-9 and 24 : 1n-9.
‡ Sum of n-6 PUFA with 18C.
§ Sum of n-6 LC-PUFA with 20C and 22C.
|| Sum of n-3 PUFA with 18C.
¶ Sum of n-3 LC-PUFA with 20C and 22C.
** Ratio of total n-3 PUFA:total n-6 PUFA.
†† Ratio of n-3 LC-PUFA:n-6 LC-PUFA.
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Table 5. Fatty acid composition (mg/g DM) of fish held on dietary treatments differing in dietary lipid source on the 10th (day 70) and the end (day 96) of the 36-d experimental period
(Mean values with their standard errors; n 3 except sunflower oil-based diet (SO) until day 60 and then fish oil-based diet (FO) from days 61–96 (SO/FO) treatment at day 70 (n 2))

Day 70 Day 96

SO LO FO SO/LO SO/FO SO LO FO SO/LO SO/FO

Fatty acids Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

14 : 0 2·96c 0·08 2·32d 0·05 7·19a 0·08 2·77c 0·09 4·45b 0·00 2·53r 0·09 2·74r 0·06 7·53p 0·03 2·53r 0·06 6·52q 0·13
16 : 0 30·22b 0·90 32·71b 1·38 40·46a 0·54 32·04b 1·31 33·13b 0·26 28·53s 0·53 39·06q 0·69 45·01p 0·25 35·19r 0·54 41·31q 0·64
18 : 0 8·65b 0·26 10·78a 0·53 8·96b 0·16 9·68a,b 0·38 8·05b 0·01 8·99s 0·13 12·98p 0·24 9·96r 0·09 11·52q 0·17 9·26s 0·08
16 : 1n-7 9·60b,c 0·43 9·37c 0·49 16·20a 0·26 9·39b,c 0·48 11·58b 0·08 8·31r 0·18 11·54q 0·43 17·92p 0·32 10·33q 0·47 15·91p 0·43
18 : 1n-7 3·64c 0·16 3·34c 0·22 6·51a 0·09 3·61c 0·10 4·66b 0·02 3·57s 0·13 4·04r 0·11 7·52p 0·09 3·92r,s 0·06 6·67q 0·08
18 : 1n-9 120·29a 4·53 58·29c 2·85 50·86c 0·80 98·20b 4·17 87·13b 0·50 118·16p 1·61 69·65r 1·22 57·23s 0·62 75·03q 0·17 65·71r 0·66
20 : 1n-9 4·36c 0·14 2·11e 0·16 9·66a 0·17 3·57d 0·08 6·14b 0·03 4·60r 0·12 2·41s 0·09 10·88p 0·19 2·55s 0·06 9·55q 0·21
18 : 2n-6 24·56c 0·81 33·88a 1·01 22·32c 0·31 29·14a,b 0·91 22·97c 0·13 24·43r 0·38 38·36p 0·42 24·68r 0·34 35·84q 0·39 24·75r 0·45
18 : 3n-6 2·68a 0·16 1·27c 0·05 0·62d 0·01 2·18b 0·06 1·98b 0·07 2·39p 0·02 1·22r 0·01 0·47t 0·02 1·50q 0·04 0·85s 0·01
20 : 2n-6 1·32c 0·04 1·71a 0·09 1·58a,b 0·00 1·49a,b,c 0·03 1·42b,c 0·05 1·39s 0·03 2·04p 0·01 1·83q,r 0·02 1·88q 0·02 1·74r 0·03
20 : 3n-6 2·15a 0·17 1·66b 0·10 0·98c 0·02 2·07a,b 0·06 1·67a,b 0·03 2·15p 0·04 1·83q 0·05 1·02s 0·02 1·85q 0·02 1·25r 0·01
20 : 4n-6 3·29a 0·10 0·96c 0·06 0·97c 0·02 2·57b 0·10 2·46b 0·07 3·42p 0·03 1·16r 0·02 1·13r 0·02 1·58q 0·01 1·51q 0·02
22 : 4n-6 0·46a 0·01 0·09c 0·01 0·08c 0·00 0·33b 0·01 0·30b 0·01 0·46p 0·02 0·09r 0·01 0·10r 0·00 0·15q 0·01 0·16q 0·01
22 : 5n-6 3·08a 0·07 0·65c 0·08 0·69c 0·05 2·22b 0·08 2·37b 0·14 3·60p 0·08 0·20s 0·01 0·33r 0·01 0·70q 0·04 0·83q 0·03
18 : 3n-3 0·45d 0·07 38·37a 0·89 1·91c 0·03 15·94b 0·32 1·44c 0·17 0·51s 0·09 38·75p 1·04 2·05r 0·06 31·26q 1·07 1·85r 0·09
18 : 4n-3 0·22e 0·01 4·94a 0·05 1·25c 0·01 1·99b 0·07 0·70d 0·03 0·20s 0·02 4·76p 0·04 1·34r 0·04 3·89q 0·17 1·13r 0·03
20 : 3n-3 0·01e 0·00 1·84a 0·07 0·26c 0·01 0·76b 0·01 0·13d 0·00 0·01r 0·01 2·12p 0·08 0·33q 0·02 1·72p 0·08 0·28q 0·04
20 : 4n-3 0·37c 0·11 2·27a 0·24 1·35b 0·04 1·15b 0·05 1·15b 0·22 0·08t 0·01 2·30p 0·07 1·36r 0·06 1·77q 0·01 1·04s 0·03
20 : 5n-3 0·44d 0·01 2·07b 0·11 4·48a 0·09 1·17c 0·03 2·13b 0·02 0·26t 0·01 2·39r 0·03 5·22p 0·06 1·91s 0·03 4·40q 0·11
22 : 5n-3 0·11d 0·01 0·86b 0·09 1·47a 0·04 0·44c 0·02 0·70b 0·01 0·05t 0·01 0·97r 0·03 1·72p 0·03 0·73s 0·02 1·43q 0·05
22 : 6n-3 1·99d 0·05 9·01b 0·59 16·96a 0·45 5·57c 0·24 8·32b 0·01 1·44t 0·07 9·97r 0·17 19·01p 0·38 8·42s 0·17 16·22q 0·53
Total 223·09 7·91 219·76 9·00 197·81 2·98 228·19 8·40 205·28 0·01 217·47r 2·93 250·05p 3·28 220·29r 1·94 236·01q 2·51 215·80r 2·51
ΣSFA* 43·01b 1·28 46·32b 1·99 57·12a 0·77 45·44b 1·85 46·50b 0·27 41·43s 0·76 55·42q 0·89 63·11p 0·37 50·09r 0·51 57·78q 0·83
ΣMUFA† 138·93a 5·26 73·86c 3·79 85·76c 1·30 115·72b 4·88 111·02b 0·65 135·63p 1·99 88·48s 1·51 96·58q,r 1·11 92·72r,s 0·42 100·59q 1·00
ΣC18 n-6 PUFA‡ 27·25b 0·97 35·16a 1·05 22·94c 0·32 31·32a 0·95 24·95b,c 0·06 26·81r 0·36 39·58p 0·43 25·15r 0·33 37·35q 0·42 25·60r 0·46
Σn-6 LC-PUFA§ 10·29a 0·40 5·07c 0·32 4·30c 0·06 8·68b 0·25 8·22b 0·02 11·02p 0·11 5·31r 0·03 4·41s 0·03 6·16q 0·07 5·49r 0·06
ΣC18 n-3 PUFA|| 0·68e 0·08 43·32a 0·94 3·17c 0·03 17·94b 0·36 2·14d 0·20 0·71s 0·10 43·51p 1·03 3·39r 0·06 35·15q 1·24 2·98r 0·07
Σn-3 LC-PUFA¶ 2·93e 0·18 16·04b 1·08 24·53a 0·62 9·10d 0·25 12·44c 0·26 1·86t 0·10 17·75r 0·17 27·65p 0·52 14·54s 0·11 23·36q 0·64
n-3:n-6** 0·10e 0·00 1·48a 0·01 1·02b 0·01 0·68c 0·01 0·44d 0·02 0·07t 0·01 1·36p 0·01 1·05r 0·01 1·14q 0·02 0·85s 0·00
n-3:n-6 LC-PUFA†† 0·28e 0·02 3·16b 0·06 5·71a 0·11 1·05d 0·01 1·51c 0·04 0·17t 0·01 3·34r 0·02 6·27p 0·11 2·36s 0·01 4·25q 0·08

LO, linseed oil-based diet; SO/LO, SO until day 60 and then LO from days 61–96; LC-PUFA, long-chain PUFA (≥20C).
a,b,c,d,e For day 70 and p,q,r,s,t for day 96: mean values within a row with unlike superscript letters were significantly different (Tukey’s post hoc test on square root transformed values for each sampling day, α 5%).
* Sum of SFA, includes 20 : 0, 22 : 0 and 24 : 0.
† Sum of MUFA, includes 14 : 1n-5, 22 : 1n-9 and 24 : 1n-9.
‡ Sum of n-6 PUFA with 18C.
§ Sum of n-6 LC-PUFA with 20C and 22C.
|| Sum of n-3 PUFA with 18C.
¶ Sum of n-3 LC-PUFA with 20C and 22C.
** Ratio of total n-3 PUFA:total n-6 PUFA.
†† Ratio of n-3 LC-PUFA:n-6 LC-PUFA.
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subsequently reverted to a diet rich in ALA or rich in EPA and
DHA, for a 36-d experimental period. As controls, three other
fish groups received SO, LO and FO throughout the 96-d
feeding trial.

Fish growth and proximate composition

A negative impact of SO was observed on fish growth perfor-
mance in comparison to fish fed on LO or FO for 96 d. These
results contrast with previous studies adding regular LA-rich
sunflower oil or fish oil as only dietary lipid source in diets of
Atlantic salmon(44) and rainbow trout(19) where no difference in
fish growth and proximate composition between the two fish
groups was reported. However, these studies were conducted
on fish of a larger size and used fishmeal as the dietary protein
source, which undoubtedly provided n-3 LC-PUFA to the diet,
up to a level that might potentially meet the requirements for
these health promoting nutrients. The fatty acid requirements of
rainbow trout are 1% ALA, 1% LA and/or 0·5% n-3 LC-PUFA in
their diet (DM)(5). The present lower growth of SO-fed fish was
certainly due to the deficiency in essential ALA and n-3
LC-PUFA, as well as to an interconnected reduced feed intake.
In contrast with the present results on SO fish, and in accor-
dance with previous studies(14,18,45,46), feeding LO for 96 d had
no impact on fish growth. The replacement of SO by LO or FO
for the 36-d experimental period significantly improved the
growth of fish initially fed on SO. Indeed, the FE were higher in

SO/LO and SO/FO fish groups as compared with the SO fish
group and were similar to those observed in LO and FO fish
groups, respectively. The present results demonstrate the rapid
capacity of rainbow trout to cope with a change in dietary
source. Turchini et al.(47) previously reported enhanced growth,
termed ‘lipo-compensatory growth’, of Murray cod fed a plant-
derived oil diet and then a fish oil diet in comparison to fish
fed a fish oil diet throughout. Similar observations were also
reported in Atlantic salmon when shifted from rapeseed oil to a
fish oil diet(48) and for red seabream fed a soyabean oil diet for
3 months and then a fish oil diet for 32 d(27).

Fish fatty acid composition

At the end of the pre-experimental period (day 60), a high
depletion in C18 n-3 PUFA and n-3 LC-PUFA was observed in
fish of the SO treatment. This led to conclude on the efficiency
of the pre-experimental period duration and in turn on the
adequacy of the study design for evaluating the effects of the
body n-3 PUFA depletion on the fish fatty acid bioconversion
capacity. Interestingly, the n-3 PUFA depletion continued
throughout the rest of the feeding trial for the SO treatment,
following a decreasing exponential curve, as highlighted at days
70 and 96. Several studies(14,19,22,23,44) have previously reported
that the fatty acid composition of fish reflects that of the dietary
lipid source. Similarly, in the present study, fish fed on the
18 : 1n-9-rich SO were the richest in 18 : 1n-9, whereas fish fed

Table 6. Fatty acid metabolism (nmol/g per d), deduced by the whole body fatty acid balance method, of rainbow trout held on varying
dietary lipid source diets for a 60-d pre-experimental feeding period
(Mean values with their standard errors; n 3)

SO LO FO

Mean SEM Mean SEM Mean SEM

SFA and MUFA
β-Oxidation 223·5a 26·4 4·7b 0·8 26·0b 10·1
Elongation 1865·3b 10·4 3850·3a 191·0 3205·0a 225·6
Δ-9 desaturation 286·6c 3·6 921·1a 48·4 722·3b 49·0

n-6 PUFA
β-Oxidation 173·0a 8·1 179·2a 26·0 4·8b 4·8
Elongation 379·1a 5·4 111·6b 2·7 58·5c 2·6

18 : 3n-6 to 20 : 3n-6 205·9a 1·7 66·0b 2·1 31·2c 0·7
20 : 4n-6 to 22 : 4n-6 77·1a 1·6 5·4b 0·2 2·1c 0·4
22 : 4n-6 to 24 : 4n-6 68·4a 1·4 4·2b 0·3 0·5c 0·2

Δ-5 desaturation 153·1a 1·3 27·4b 0·9 10·2c 0·5
Δ-6 desaturation 344·0a 2·0 92·2b 3·6 40·2c 0·9

18 : 2n-6 to 18 : 3n-6 275·6a 1·0 88·0b 3·6 39·6c 0·7
24 : 4n-6 to 24 : 5n-6 68·4a 1·4 4·2b 0·3 0·5c 0·2

n-3 PUFA
β-Oxidation 38·4c 0·8 476·2a 41·1 198·9b 13·2
Elongation 37·8c 2·0 761·9a 19·3 108·0b 22·4

18 : 4n-3 to 20 : 4n-3 10·1b 1·1 309·7a 7·8 0·0c 0·0
20 : 5n-3 to 22 : 5n-3 13·7c 0·5 215·7a 4·8 43·6b,c 11·8
22 : 5n-3 to 24 : 5n-3 14·0c 0·4 200·6a 4·6 60·6b 11·0

Δ-5 desaturation 11·0b 1·0 260·5a 5·8 0c 0
Δ-6 desaturation 28·4c 1·3 637·9a 16·7 60·6b 11·0

18 : 3n-3 to 18 : 4n-3 14·4b 1·0 437·3a 13·2 0·0c 0·0
24 : 5n-3 to 24 : 6n-3 14·0c 0·4 200·6a 4·6 60·6b 11·0

n-6 and n-3 PUFA
Δ-5 desaturation 164·1b 2·2 287·9a 6·7 10·2c 0·5
Δ-6 desaturation 372·5b 3·3 730·1a 20·2 100·8c 11·9

SO, sunflower oil-based diet; LO, linseed oil-based diet; FO, fish oil-based diet.
a,b,c Mean values within a row with unlike superscript letters were significantly different (Tukey’s post hoc test on square root transformed values, α 5%).
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on LO presented a high ALA concentration while those fed on
FO had the largest EPA and DHA concentrations. Certain
discrepancies with the dietary fatty acid profile were evident in
fish samples. For example, despite an absence of dietary n-6
LC-PUFA, these fatty acids were the highest in fish of the SO
treatment, pointing towards an active in vivo metabolism. This
result contrasts with previously published work on Atlantic
salmon fed a 100% LA-rich sunflower oil diet, where an
increased 20 : 2n-6 concentration and decreased 20 : 4n-6
concentration were reported in comparison to fish fed a fish oil
diet(44). However, the present result is in line with the results of
a study on rainbow trout fed a 100% LA-rich sunflower oil diet
in comparison to fish oil diet and linseed oil diet(19). In similar
fashion, fish fed on LO in the present study recorded the highest
concentrations of n-3 PUFA fatty acid intermediates (18 : 4n-3,
20 : 3n-3 and 20 : 4n-3), despite being absent from the diet. The
same observation was previously reported in rainbow trout fed
a linseed oil diet for 112 d as compared with fish fed on sun-
flower oil diet or fish oil diet(19). As previously observed by
numerous studies, the present observations highlight, first, the
relatively high capacity of rainbow trout to endogenously
convert dietary LA and ALA into n-6 and n-3 LC-PUFA,
respectively, and second, the modulation of the fish bio-
conversion capacity induced by the dietary lipid
source(9,14,17,19,20,22,31,49). Indeed, more bioconverted products
were reported along the n-6 pathway in fish fed on SO

considering that LA was one of major fatty acids present as
substrate and that dietary ALA was almost absent, as previously
observed in European sea bass(31). Conversely, more
bioconverted products of the n-3 pathway were observed in
fish fed on LO as LA was present to a lesser extent than ALA and
also considering the initial affinity of enzymes towards the
n-3 PUFA as compared with the n-6 PUFA family(14,15,49). A high
recovery rate in n-3 PUFA was observed for SO/LO and SO/FO
fish at the end of the 36-d experimental period. Indeed, SO/LO
and SO/FO fish recovered a fatty acid profile with >80% of the
C18 n-3 PUFA and n-3 LC-PUFA values observed in fish fed on
LO and FO, respectively, for 96 d. Interestingly, the transfer of
Atlantic salmon previously fed a rapeseed oil diet for 50 weeks
to a fish oil diet for 20 weeks also restored their EPA and DHA
concentrations to 80% of the levels found in fish fed on a fish
oil diet for 70 weeks(22). In European sea bass, 70% recovery in
EPA and DHA was reported in the flesh of fish fed a 40% fish
oil/60% plant-derived oil blend for 64 weeks and then a
finishing fish oil diet for a further 20 weeks, in comparison with
fish fed on fish oil throughout(26). However, two notable dif-
ferences are apparent between both of these studies and the
present one. Indeed, the results of the previous studies were
based on fillet data from harvestable size fish whereas the
present recovery rates are based on whole body fatty acid
composition of fish from 20 to 50 g. Besides the recovery rates
of 80% observed at the end of the experimental period, the

Table 7. Fatty acid metabolism (nmol/g per d), deduced by the whole body fatty acid balance method, of rainbow trout held on varying dietary lipid source
diets for a 36-d experimental period after a 60-d pre-experimental period
(Mean values with their standard errors; n 3)

SO LO FO SO/LO SO/FO

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

SFA and MUFA
β-Oxidation 1545·9a 128·6 4·6c 0·8 10·3b 1·4 5·1c 0·8 12·5b 0·4
Elongation 1006·4c 100·6 6824·6a 361·9 5580·6a,b 359·3 4889·1b 272·2 4520·6b 243·8
Δ-9 desaturation 160·0c 7·9 1582·2 85·3 1234·9b 88·9 1078·9b 67·2 944·9b 60·3

n-6 PUFA
β-Oxidation 548·7a 26·4 159·3b 27·0 0·0c 0·0 212·1b 40·4 1·8c 0·3
Elongation 348·9a 7·7 162·3b 2·9 82·9d 3·8 134·4c 4·4 78·7d 1·2
18 : 3n-6 to 20 : 3n-6 180·3a 3·4 91·3b 2·4 40·3d 1·7 76·7c 2·7 36·4d 1·0
20 : 4n-6 to 22 : 4n-6 74·7a 2·7 7·6b 0·4 3·4c 0·3 2·3c 0·7 2·6c 0·3
22 : 4n-6 to 24 : 4n-6 66·6a 2·2 5·0b 0·2 0·7c 0·2 0·3c,d 0·3 0·0d 0·0

Δ-5 desaturation 141·5a 3·0 41·3b 1·2 16·5d 0·4 31·2c 1·2 12·6e 0·2
Δ-6 desaturation 293·1a 5·9 120·6b 4·3 52·4d 2·5 98·8c 4·8 43·5d 1·4
18 : 2n-6 to 18 : 3n-6 226·4a 3·7 115·6b 4·1 51·7d 2·2 98·5c 4·6 43·5d 1·4
24 : 4n-6 to 24 : 5n-6 66·6a 2·2 5·0b 0·2 0·7c 0·2 0·3c,d 0·3 0·0d 0·0

n-3 PUFA
β-Oxidation 47·2c 4·5 485·3a 59·3 142·4b 15·7 496·2a 64·6 157·7b 4·4
Elongation 40·5c 6·1 1002·7a 26·4 239·4b 25·4 1010·9a 19·1 258·1b 20·8
18 : 4n-3 to 20 : 4n-3 15·1b 2·3 412·0a 9·4 3·1c 1·6 410·4a 7·2 0·0c 0·0
20 : 5n-3 to 22 : 5n-3 12·4c 1·8 279·2a 7·9 110·9b 12·4 283·1a 6·0 119·9b 11·4
22 : 5n-3 to 24 : 5n-3 12·6c 1·8 253·1a 7·5 123·0b 11·6 260·1a 6·5 134·6b 11·0

Δ-5 desaturation 13·4b 2·1 346·5a 9·9 0·0c 0·0 347·4a 6·4 0·0c 0·0
Δ-6 desaturation 30·2c 4·5 808·6a 19·3 123·0b 11·6 821·7a 17·2 134·6b 11·0
18 : 3n-3 to 18 : 4n-3 17·6b 2·7 555·5a 12·1 0·0c 0·0 561·5a 12·2 0·0c 0·0
24 : 5n-3 to 24 : 6n-3 12·6c 1·8 253·1a 7·5 123·0b 11·6 260·1a 6·5 134·6b 11·0

n-6 and n-3 PUFA
Δ-5 desaturation 154·9b 3·0 387·8a 10·8 16·5c 0·4 378·6a 7·2 12·6c 0·2
Δ-6 desaturation 323·3b 5·7 929·2a 23·4 175·4c 12·3 920·5a 21·3 178·1c 10·3

SO, sunflower oil-based diet; LO, linseed oil-based diet; FO, fish oil-based diet; SO/LO, SO until day 60 and then LO from days 61–96; SO/FO, SO until day 60 and then FO from
days 61–96.

a,b,c,d,e Mean values within a row with unlike superscript letters were significantly different (Tukey’s post hoc test on square root transformed values, α 5%).
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recovery rates in n-3 LC-PUFA were also reported for the 10th
day of the period and achieved about 50% for both the SO/LO
and SO/FO fish groups. This means that the recovery in n-3 LC-
PUFA was higher during the first 10 d of the 36-d experimental
period than during the subsequent 26 d that followed. This
observation corresponds to the well-established dilution
kinetics following a decreasing exponential curve(8,23,41,50). For
example, this phenomenon was previously observed in Atlantic
salmon fed a linseed oil diet for 40 weeks and then a fish oil diet
for a further 24 weeks, where a DHA recovery rate of 83% was
observed by the end of the 24-week finishing period, while
already reaching 79% by the 16th week of the finishing
period(23). Interestingly, the DHA recovery rate was not slower
and lower than that of the other n-3 LC-PUFA as the recovery
rate values were similar on one hand on the short term (day 70)
and on the other hand on the long term (day 96).

In vivo fatty acid metabolism

The whole body fatty acid balance method clearly demonstrated
the significantly increased apparent in vivo elongation and
desaturation activities with regard to the n-3 biosynthesis pathway
in fish fed on LO and the n-6 pathway in fish fed on SO. The high
apparent in vivo bioconversion capacity of rainbow trout fed on
plant-based diets is well established(16,19,20) and is confirmed in

the present study. In fish fed on LO, 25% of the consumed ALA
was being bioconverted into higher homologues on day 60 of the
experiment, while this value reached 27% on day 96. In com-
parison, 27% of consumed ALA was also bioconverted in fish
subjected to the SO/LO treatment from day 61 through day 96. In
contrast with the present results, a previous study reported that
only 12% of consumed ALA was bioconverted in rainbow trout
with an initial mean weight of approximately 90 g fed a linseed oil
diet for 72d, with the majority either being accumulated (58%) or
oxidised (30%)(20). However, that study used, on one hand, fish
with a bigger size than ours, and, on the other hand, diets for-
mulated with 7% of fishmeal and therefore supplying fish with
dietary EPA and DHA(20).

At the end of the experimental period, no differences in
apparent in vivo enzyme activity were observed along the n-3
pathway between the SO/LO and LO treatments. Moreover, no
effects were observed on the 10th day of the experimental
period. This indicates that the high n-3 PUFA depletion
obtained with the SO treatment did not increase the apparent
in vivo bioconversion of n-3 PUFA during the experimental
period when ALA-rich linseed oil was present. It thus appears
that the fish fatty acid composition has no importance, in con-
trast to the dietary fatty acid input, on the capacity of fish to
convert ALA into n-3 LC-PUFA. Interestingly, the present study
reported a significant impact of the n-3 PUFA depletion on the

Table 8. Fatty acid metabolism (nmol/g per d), deduced by the whole body fatty acid balance method, of rainbow trout held on varying dietary lipid source
diets for a 10-d experimental period after a 60-d pre-experimental period
(Mean values with their standard errors; n 3 except sunflower oil-based diet (SO) until day 60 and then fish oil-based diet (FO) from days 61–96 (SO/FO)
treatment (n 2))

SO LO FO SO/LO SO/FO

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

SFA and MUFA
β-Oxidation 1101·5 421·5 20·6 7·0 63·0 29·9 355·2 333·1 685·1 99·4
Elongation 1994·9 374·3 6025·3 1511·3 6072·1 355·9 3045·2 964·3 1702·3 220·8
Δ-9 desaturation 273·5b 53·9 1354·2a 340·3 1281·6a 61·8 506·5a,b 185·0 192·9b 9·8

n-6 PUFA
β-Oxidation 463·6a 111·2 401·2a 118·7 12·9b 12·9 454·2a 135·7 200·3a,b 43·0
Elongation 372·1a 45·4 305·6a,b 42·0 180·0b,c 19·0 142·6c 23·4 107·3c 34·5
18 : 3n-6 to 20 : 3n-6 201·4a 29·9 141·5a,b 21·3 70·4b,c 5·0 75·2b,c 16·4 28·0c 9·8
20 : 4n-6 to 22 : 4n-6 73·2a 6·5 50·9a,b 7·9 35·6a,b 5·5 8·8c 3·2 20·8b,c 13·3
22 : 4n-6 to 24 : 4n-6 61·2 5·4 46·2 7·3 32·9 4·9 4·0 2·5 17·8 14·1

Δ-5 desaturation 157·6a 15·8 85·0a,b 10·6 44·4b,c 6·9 31·7b,c 11·8 18·9c 10·2
Δ-6 desaturation 339·3a 51·3 225·7a,b 36·0 136·5b,c 10·4 96·6b,c 22·0 50·8c 33·3
18 : 2n-6 to 18 : 3n-6 278·0a 45·8 179·5a,b 30·7 103·6b,c 5·6 92·7b,c 19·7 32·9c 19·2
24 : 4n-6 to 24 : 5n-6 61·2 5·4 46·2 7·3 32·9 4·9 4·0 2·5 17·8 14·1

n-3 PUFA
β-Oxidation 38·8 15·6 439·5 162·4 302·5 57·0 360·2 80·0 186·5 44·3
Elongation 58·4b 30·3 979·4a 208·9 141·0b 62·3 1221·1a 63·9 252·2b 46·4
18 : 4n-3 to 20 : 4n-3 38·4b 18·2 414·9a 95·3 22·4b 2·6 509·3a 22·4 55·2b 21·2
20 : 5n-3 to 22 : 5n-3 9·2 6·4 262·7 60·7 53·2 27·1 338·8 21·8 86·6 13·8
22 : 5n-3 to 24 : 5n-3 9·4 5·8 230·1 51·9 65·4 33·1 310·5 20·4 105·7 11·4

Δ-5 desaturation 9·7b 8·1 323·4a 74·3 0·0b 0·0 409·7a 24·4 0·0b 0·0
Δ-6 desaturation 46·5b 24·4 842·9a 166·3 65·4b 33·1 992·5a 46·0 123·8b 29·5
18 : 3n-3 to 18 : 4n-3 37·1b 18·6 612·8a 114·5 0·0b 0·0 681·9a 26·4 18·1b 18·1
24 : 5n-3 to 24 : 6n-3 9·4 5·8 230·1 51·9 65·4 33·1 310·5 20·4 105·7 11·4

n-6 and n-3 PUFA
Δ-5 desaturation 167·4b 21·5 408·4a 84·5 44·4c 6·9 441·4a 36·2 18·9c 10·2
Δ-6 desaturation 385·8b 67·1 1068·6a 201·3 201·9b 42·3 1089·1a 67·6 174·6b 62·8

LO, linseed oil-based diet; SO/LO, SO until day 60 and then LO from days 61–96.
a,b,c Mean values within a row with unlike superscript letters were significantly different (Tukey’s (parametric, α 5%) or Wilcoxon’s (non-parametric, α 1·69%) post hoc tests on square

root transformed values).
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n-6 PUFA bioconversion capacity of SO/LO fish. Indeed,
reduced apparent in vivo elongation, as well as apparent in vivo
Δ-5 and Δ-6 desaturation activities along the n-6 pathway were
observed in fish of the SO/LO treatment in comparison to those
of the LO treatment. These decreased activities related to the
n-6 pathway should point out that, in the case of fish previously
depleted in n-3 PUFA, elongases and desaturases neglect the
conversion of LA into n-6 LC-PUFA in the case of an ALA
supply. Nevertheless, this did not correspond to increased
apparent in vivo elongation or desaturation activities on the n-3
pathway and suggests that the effects are not always entirely
predictable. In line with the results observed at the end of the
36-d experimental period, at the 10th day sampling point, the
activities on the n-6 biosynthesis pathway appeared somewhat
reduced in the SO/LO fish in comparison to the LO fish group.
Recent studies have investigated the impact of n-3 PUFA-
deprived diets on fish fatty acid metabolism and n-3 LC-PUFA
deposition/ retention(19,31,32). Francis et al.(19) reported a modu-
latory effect on n-3 LC-PUFA deposition in rainbow trout fed a
classic LA-rich sunflower oil diet and then a fish oil diet. The
authors reported that the n-6 PUFA from the sunflower oil diet
evoked a sparing of n-3 LC-PUFA from catabolism and resulted
in higher n-3 LC-PUFA deposition in fish(19). A similar sparing
effect was also reported for sunshine bass (Morone chrysops×
Menticirrhus saxatilis) fed a SFA-rich diet for which limited
effects of fish oil replacement were reported on fillet fatty acid
composition(51,52). More precisely, sunshine bass fed a 50%
coconut oil diet and then a finishing fish oil diet recovered more
effectively the n-3 LC-PUFA content observed for fish fed a fish
oil diet throughout than fish fed three other diets formulated
with 50% grapeseed, linseed, or poultry oils for the grow-out
period(52). The authors concluded that dietary SFA appeared to
be a preferential substrate for catabolism and induced an
increased n-3 LC-PUFA deposition during the finishing per-
iod(52). The present study reported no effect of the fish n-3
PUFA depletion on the apparent in vivo enzyme activity along
the n-3 pathway in the SO/LO fish group, even on the 10th day
of the experimental period. Further experiments should be set
up to verify the absence of a transient metabolic adaptation in
response to a previous shortage in dietary n-3 PUFA, for
instance on the 2nd or 3rd days of the experimental period. The
results of Hagar & Hazel(53) support the validity of this sug-
gestion by reporting that in rainbow trout acclimated at either 5
or 20°C and then transferred to the opposite temperature, an
increase in hepatic Δ-6 desaturase activity within the first 3 d of
temperature transfer before reverting to baseline values on the
6th day was observed. The whole body fatty acid balance
method is nevertheless unsuitable for such short experimental
periods of a few days and other evaluation tools should thus be
used, such as gene expression and enzyme activity measure-
ments at the tissue or cellular level(31,54–58). These approaches
should be implemented in further studies specifically focusing
on tissues, such as liver and intestine, especially during the 1st
day after dietary lipid replacement.
The present study is based on the n-3 PUFA depletion of fish

with an initial mean weight of 0·7g, which means fish that were
previously fed on a standard diet for about 5 weeks. Com-
plementary studies targeting the previously reported nutritional

programming phenomenon(31–33) may be performed. In such
studies, the n-3 PUFA depletion starts at a much earlier stage,
such as at the alevin stage and low n-3 LC-PUFA diets are used as
first feeding and during a short period. For example, a 3-week
early exposure of rainbow trout swim-up fry to a diet formulated
with rapeseed oil, palm oil and linseed oil improved fish growth,
feed intake and FE when the diet was used again 7 months
later(33). The lipid bioconversion capacity could also be improved
by impacting broodstock. A recent study reported that feeding
broodstock gilthead seabream with linseed oil induced long-
term effects on the juvenile progeny fed a plant-based diet, as
demonstrated by increased fish growth, FE and Δ-6 desaturase
gene expression, as compared with juveniles from broodstock
fed a fish oil diet(59). In the present study, it was potentially
tougher to highlight a difference of apparent in vivo enzyme
activity than with other fish species, as rainbow trout possesses a
high lipid bioconversion capacity. A similar experiment performed
on another species possessing a reduced basal lipid bioconversion
capacity might more readily highlight the potential stimulation
of a n-3 PUFA depletion on the fatty acid bioconversion capacity.
As examples, two previous studies on European sea bass reported
increased Δ-6 desaturase gene expression in juveniles fed a n-3
LC-PUFA deficient diet when previously fed a n-3 LC-PUFA
deficient larval diet, as compared with groups fed rich n-3
LC-PUFA larval diets(31,32). In contrast, the lipid bioconversion
capacity of common carp was not improved when fed a traditional
cereal diet enriched with 1% plant-derived oil for 180d and then a
finishing linseed oil diet or fish oil diet for 30d(24).

Conclusions

The present study demonstrated that the initial high bio-
conversion capacity of rainbow trout to convert ALA into n-3
LC-PUFA was not modulated by a n-3 PUFA depletion of fish
fatty acid composition through feeding for 60 d with a diet rich
in sunflower oil. Indeed, the apparent in vivo enzyme activities
related to that bioconversion remained stable along the n-3 fatty
acid pathway. In contrast, the fish n-3 PUFA depletion nega-
tively modulated the n-6 PUFA bioconversion capacity of fish in
terms of reduced apparent in vivo elongation and desaturation
enzyme activities, both on the 10th day and at the end of the
36-d experimental period. Further research on salmonids and
other fish species is required to enhance the knowledge on fish
fatty acid bioconversion metabolism and to improve fish bio-
conversion capacity through nutritional intervention strategies.
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