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Abstract

We prove the following conjecture of Z.-W. Sun [‘On congruences related to central binomial coefficients’,
J. Number Theory 13(11) (2011), 2219–2238]. Let p be an odd prime. Then

p−1∑
k=1

(
2k
k

)
k2k ≡ −

1
2

H(p−1)/2 +
7
16

p2Bp−3 (mod p3),

where Hn is the nth harmonic number and Bn is the nth Bernoulli number. In addition, we evaluate∑p−1
k=0 (ak + b)

(
2k
k

)
/2k modulo p3 for any p-adic integers a, b.
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1. Introduction

In 2006, Adamchuk [1] proposed the following congruence involving central binomial
coefficients: for any prime p ≡ 1 (mod 3),

2(p−1)/3∑
k=1

(
2k
k

)
≡ 0 (mod p2).

This conjecture was confirmed by the author [6]. Many researchers studied congru-
ences for sums of binomial coefficients (see, for instance, [7, 10, 14, 17]). Pan and Sun
[10] used a combinatorial identity to deduce that if p is a prime, then

p−1∑
k=0

(
2k

k + d

)
≡

( p − d
3

)
(mod p) for d = 0, 1, . . . , p,
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where ( ·· ) is the Jacobi symbol. They also showed that for any odd prime p,

p−1∑
k=0

(3k + 1)
(
2k
k

)
≡ −

( p
3

)
(mod p).

In 2018, Apagodu [2] conjectured that for any odd prime p,

p−1∑
k=0

(5k + 1)
(
4k
2k

)
≡ −

( p
3

)
(mod p).

Mao and Cao [7] confirmed this conjecture and also showed that for any odd prime p,

p−1∑
k=0

(15k + 5)
(
4k
2k

)
≡ −

( p
5

)
(mod p).

The Bernoulli numbers {Bn} and the Bernoulli polynomials {Bn(x)} are given by

x
ex − 1

=

∞∑
n=0

Bn
xn

n!
(0 < |x| < 2π), Bn(x) =

n∑
k=0

(
n
k

)
Bkxn−k (n ∈ N).

Mattarei and Tauraso [8] deduced that for any prime p > 3,

p−1∑
k=0

(
2k
k

)
≡

( p
3

)
− 1

3
p2Bp−2

(1
3

)
(mod p3).

Sun [13] obtained many congruences involving central binomial coefficients
and proposed many conjectures. Our first goal is to prove a conjecture of Sun
([13, Conjecture 5.2] or [16, Conjecture 6]).

THEOREM 1.1. Let p be an odd prime. Then

p−1∑
k=1

(
2k
k

)
k2k ≡ −

1
2

H(p−1)/2 +
7
16

p2Bp−3 (mod p3).

Sun [14] proved that for any odd prime p,

p−1∑
k=0

(
2k
k

)
2k ≡ (−1)(p−1)/2 − p2Ep−3 (mod p3), (1.1)

where the Euler numbers {En} are given by

E0 = 1 and E2n = −
n∑

k=1

(
2n
2k

)
E2n−2k (n ≥ 1).

Our second goal is to generalise (1.1) as follows.
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[3] Congruences involving central binomial coefficients 3

THEOREM 1.2. For any odd prime p and p-adic integers a, b,

p−1∑
k=0

(ak + b)

(
2k
k

)
2k ≡ (−1)(p−1)/2(b − a) + ap(2 − 2p−1) − (b − a)p2Ep−3 (mod p3).

REMARK 1.3. If we set a = 0, b = 1, we obtain (1.1), and with a = b = 1, we obtain

p−1∑
k=0

(k + 1)

(
2k
k

)
2k ≡ p(2 − 2p−1) (mod p3). (1.2)

Finally, we prove the following result.

THEOREM 1.4. Let p be an odd prime. Then

p−1∑
k=0

(k + 1)2

(
2k
k

)
2k ≡ (−1)(p−1)/2 + p(2p−1 − 2) + p2 − p2Ep−3 (mod p3).

REMARK 1.5. Combining (1.1), (1.2) and Theorem 1.4,

p−1∑
k=0

(k2 + 3k + 1)

(
2k
k

)
2k ≡ p2 (mod p3).

Combining Theorem 1.2 with a = 2, b = 1 and Theorem 1.4,

p−1∑
k=0

k2

(
2k
k

)
2k ≡ 2(−1)(p−1)/2 + 3p(2p−1 − 2) + p2 − 2p2Ep−3 (mod p3).

Consequently, we can evaluate
∑p−1

k=0 (ak2 + bk + c)
(

2k
k

)
/2k modulo p3.

We prove Theorem 1.1 in Section 2. Sections 3 and 4 are devoted to proving
Theorems 1.2 and 1.4. Our proofs make use of some congruences involving harmonic
numbers and combinatorial identities which can be found and proved by the package
Sigma [11] via the software Mathematica and some known congruences.

2. Proof of Theorem 1.1

For n, m ∈ {1, 2, 3, . . .}, define the harmonic numbers of order m by

H(m)
n :=

∑
1≤k≤n

1
km , H(m)

0 := 0.

When m = 1, these numbers are the classical harmonic numbers.
To prove Theorem 1.1, we need some lemmas and identities. For each positive

integer n,
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�n/2	∑
k=0

(
2k
k

)(
n
2k

)
2n−2k =

(
2n
n

)
, (2.1)

n∑
k=1

(−1)k

k

(
n
k

)
(H2

k − H(2)
k ) = 2

n∑
k=1

Hk−1

k2 , (2.2)

n∑
k=1

(−1)k

k

(
n
k

)
= −Hn, (2.3)

n∑
k=1

(−1)k

k

(
n
k

)
Hk = −H(2)

n . (2.4)

REMARK 2.1. Equation (2.1) follows from [3, (3.99)]; (2.2) can be proved by induction
on n; (2.3) and (2.4) follow from [3, (1.45)] and an identity of Hernández [4]
(or [15, (3.4)]), respectively.

LEMMA 2.2 [12, Theorems 5.1 and 5.2]. Let p > 3 be a prime. Then

Hp−1 ≡ − 1
3 p2Bp−3 (mod p3), H(3)

(p−1)/2 ≡ −2Bp−3 (mod p),

H(p−1)/2 ≡ −2qp(2) + pqp(2)2 (mod p2), H(2)
(p−1)/2 ≡

7
3 pBp−3 (mod p2).

LEMMA 2.3 [15, Lemma 4.2]. Let p = 2n + 1 be an odd prime and k ∈ {0, . . . , n}. Then(
n
k

)
(−4)k

(
2k
k

) ≡ 1 − p
k∑

j=1

1
2j − 1

+
p2

2

( k∑
j=1

1
2j − 1

)2
− p2

2

k∑
j=1

1
(2j − 1)2 (mod p3).

LEMMA 2.4. Let p = 2n + 1 be an odd prime and k ∈ {0, . . . , n}. Then(
2k
k

)(
p−1
2k

)
4k ≡

(
n
k

)
(−1)k

(
1 − p

2
Hk +

p2

8
(H2

k − H(2)
k )

)
(mod p3).

PROOF. It is easy to check that
(
p − 1

2k

)
=

2k∏
j=1

( p − j
j

)
=

2k∏
j=1

(
1 − p

j

)

≡ 1 − pH2k +
p2

2
(H2

2k − H(2)
2k ) (mod p3).

By Lemma 2.3, modulo p3,(
2k
k

)
4k ≡

(
n
k

)
(−1)k

1 − p(H2k − 1
2 Hk) + 1

2 p2(H2k − 1
2 Hk)2 − 1

2 p2(H(2)
2k −

1
4 H(2)

k )

≡
(
n
k

)
(−1)k

(
1 + p

(
H2k −

1
2

Hk

)
+

p2

2

(
H2k −

1
2

Hk

)2
+

p2

2

(
H(2)

2k −
1
4

H(2)
k

))
.

From this, we immediately obtain the desired result. �
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PROOF OF THEOREM 1.1. The cases p = 3, 5 can be checked directly. We will assume
p > 5 from now on. By (2.1),

p−1∑
k=1

(
2k
k

)
k2k =

p−1∑
k=1

1
k2k

�k/2	∑
j=0

(
2j
j

)(
k
2j

)
2k−2j = Hp−1 +

(p−1)/2∑
j=1

(
2j
j

)
4 j

p−1∑
k=2j

(
k
2j

)
k

.

By Sigma [11], we find the following identity which can be proved by induction on n:

n−1∑
k=2j

1
k

(
k
2j

)
=

1
2j

(
n − 1

2j

)
.

This, with Lemma 2.4, yields

p−1∑
k=1

(
2k
k

)
k2k − Hp−1 =

1
2

(p−1)/2∑
j=1

(
2j
j

)(
p−1
2j

)
j4 j

≡ 1
2

(p−1)/2∑
j=1

(−1) j

j

( 1
2 (p − 1)

j

)(
1 − p

2
Hj +

p2

8
(H2

j − H(2)
j )

)
(mod p3).

Substituting n = (p − 1)/2 into (2.2)–(2.4),

p−1∑
k=1

(
2k
k

)
k2k − Hp−1 ≡

1
2

(
− H(p−1)/2 +

p
2

H(2)
(p−1)/2 +

p2

4

(p−1)/2∑
k=1

Hk−1

k2

)
(mod p3).

In view of [5, Lemma 3.2] and Lemma 2.2,

(p−1)/2∑
k=1

Hk−1

k2 =

(p−1)/2∑
k=1

Hk

k2 − H(3)
(p−1)/2 ≡

3
2

Bp−3 (mod p).

This, with Lemma 2.2, yields the desired result. �

3. Proof of Theorem 1.2

LEMMA 3.1. For any prime p > 3,

(p−3)/2∑
k=0

(
(p−1)/2

k

)
(−1)k

(2k + 1)(2k + 2)
≡ p − 1 + (−1)(p−1)/2(1 − qp(2) − p + pqp(2)2) (mod p2),

where qp(2) = (2p−1 − 1)/p stands for the Fermat quotient.
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PROOF. By Sigma, we find the following identity which can be proved by induction
on n:

n−1∑
k=0

(
n
k

)
(−1)k

(2k + 1)(2k + 2)
= − 1

2n + 2
− (−1)n

(2n + 1)(2n + 2)
+

4n

(2n + 1)
(

2n
n

) .

Setting n = (p − 1)/2,

(p−3)/2∑
k=0

(
(p−1)/2

k

)
(−1)k

(2k + 1)(2k + 2)
= − 1

p + 1
− (−1)(p−1)/2

p(p + 1)
+

2p−1

p
(

p−1
(p−1)/2

) .

The well-known Morley’s congruence [9] gives

(
p − 1

(p − 1)/2

)
≡ (−1)(p−1)/24p−1 (mod p3) for p > 3. (3.1)

This, with 2p−1 = 1 + pqp(2), yields

(p−3)/2∑
k=0

(
(p−1)/2

k

)
(−1)k

(2k + 1)(2k + 2)
≡ − 1

p + 1
+

(−1)(p−1)/2

p

( 1
2p−1 −

1
p + 1

)

≡ p − 1 + (−1)(p−1)/2 1 − qp(2)
2p−1(p + 1)

≡ p − 1 + (−1)(p−1)/2(1 − qp(2) − p + pq2
p(2)) (mod p2).

This proves Lemma 3.1. �

LEMMA 3.2. Let p > 3 be a prime. Then

(p−3)/2∑
k=0

(
(p−1)/2

k

)
Hk(−1)k

(2k + 1)(2k + 2)
≡ −2qp(2) + 2Ep−3 + 2(−1)(p−1)/2(qp(2)2 − qp(2)) (mod p),

(p−3)/2∑
k=0

(
(p−1)/2

k

)
kHk(−1)k

(2k + 1)(2k + 2)
≡ 2qp(2) − Ep−3 + (−1)(p−1)/2(2qp(2) − qp(2)2) (mod p).

PROOF. By Sigma, we find the following identity which can be proved by induction
on n,

n−1∑
k=0

(
n
k

)
Hk(−1)k

(2k + 1)(2k + 2)
=

Hn

2n + 2
− (−1)nHn

(2n + 1)(2n + 2)
− 4n

(2n + 1)
(

2n
n

)
n∑

k=1

(
2k
k

)
k4k .
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Substituting n = (p − 1)/2 into the above identity and by (3.1),

(p−3)/2∑
k=0

(
(p−1)/2

k

)
Hk(−1)k

(2k + 1)(2k + 2)
≡

H(p−1)/2

p + 1
−

(−1)(p−1)/2H(p−1)/2

p(p + 1)

− (−1)(p−1)/2

p2p−1

(p−1)/2∑
k=1

(
2k
k

)
k4k (mod p).

Tauraso [18] and Sun [14, (1.5)] respectively proved

p−1∑
k=1

(
2k
k

)
k4k ≡ −H(p−1)/2 (mod p3), (3.2)

p−1∑
k= p+1

2

(
2k
k

)
k4k ≡ (−1)(p−1)/22pEp−3 (mod p2). (3.3)

These, with Lemma 2.2, yield

(p−3)/2∑
k=0

(
(p−1)/2

k

)
Hk(−1)k

(2k + 1)(2k + 2)
≡ −2qp(2) + 2Ep−3 + 2(−1)(p−1)/2(qp(2)2 − qp(2)) (mod p).

Similarly, by Sigma, we find the following identity which can be proved by induction
on n:

n−1∑
k=0

(
n
k

)
kHk(−1)k

(2k + 1)(2k + 2)
= − Hn

2n + 2
− n(−1)nHn

(2n + 1)(2n + 2)
+

4n

2(2n + 1)
(

2n
n

)
n∑

k=1

(
2k
k

)
k4k .

Setting n = (p − 1)/2, and invoking (3.1), (3.2), (3.3) and Lemma 2.2,

(p−3)/2∑
k=0

(
(p−1)/2

k

)
kHk(−1)k

(2k + 1)(2k + 2)
≡ −

H(p−1)/2

p + 1
−

(p − 1)(−1)(p−1)/2H(p−1)/2

2p(p + 1)

+
(−1)(p−1)/2

2p2p−1

(p−1)/2∑
k=1

(
2k
k

)
k4k

≡ 2qp(2) − Ep−3 + (−1)
p−1

2 (2qp(2) − qp(2)2) (mod p).

This completes the proof of Lemma 3.2. �

PROOF OF THEOREM 1.2. We can check the case p = 3 directly. From now on, we
assume that p > 3. By Sigma, we find the following identity which can be proved by
induction on n:

n−1∑
k=2j

(ak + b)
(

k
2j

)
=

an(2j + 1) + 2bj + 2b − a
2j + 2

(
n

2j + 1

)
.
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Substituting n = p into this identity and using (2.1),

p−1∑
k=0

(ak + b)

(
2k
k

)
2k =

(p−1)/2∑
j=0

(
2j
j

)(
p

2j+1

)
4 j

ap(2j + 1) + 2bj + 2b − a
2j + 2

= p
(p−1)/2∑

j=0

(
2j
j

)(
p−1
2j

)
4 j

ap(2j + 1) + 2bj + 2b − a
(2j + 1)(2j + 2)

=

(
p−1

(p−1)/2

)
2p−1 (ap + b − a) + p

(p−3)/2∑
j=0

(
2j
j

)(
p−1
2j

)
4 j

(ap + b)(2j + 1) + b − a
(2j + 1)(2j + 2)

.

This, with Lemma 2.4, yields, modulo p3,

p−1∑
k=0

(ak + b)

(
2k
k

)
2k −

(
p−1

(p−1)/2

)
2p−1 (ap + b − a)

≡ p
(p−3)/2∑

j=0

(
(p − 1)/2

j

)
(−1) j (1 −

1
2 pHj)((ap + b)(2j + 1) + b − a)

(2j + 1)(2j + 2)

≡ p
(p−3)/2∑

j=0

(
(p − 1)/2

j

)
(−1) j (ap + b)(2j + 1) + b − a − 1

2 p(2b − a)Hj − bpjHj

(2j + 1)(2j + 2)
.

It is easy to check that

n−1∑
k=0

(
n
k

)
(−1)k

2k + 2
=

1
2n + 2

n−1∑
k=0

(
n + 1
k + 1

)
(−1)k = − 1

2n + 2

n∑
k=1

(
n + 1

k

)
(−1)k =

1 − (−1)n

2n + 2
.

Setting n = (p − 1)/2,

(p−3)/2∑
k=0

(
(p−1)/2

k

)
(−1)k

2k + 2
=

1 − (−1)(p−1)/2

p + 1
≡ (1 − (−1)(p−1)/2)(1 − p) (mod p2).

This, with Lemmas 3.1 and 3.2, yields, modulo p3,

p−1∑
k=0

(ak + b)

(
2k
k

)
2k −

(
p−1

(p−1)/2

)
2p−1 (ap + b − a)

≡ pa(1 − (−1)(p−1)/2) − p(b − a)(−1)(p−1)/2qp(2)

− ap2qp(2)(1 + (−1)(p−1)/2) − p2(b − a)Ep−3.

Simplifying this congruence using (3.1) and 2p−1 = 1 + pqp(2) gives Theorem 1.2. �

https://doi.org/10.1017/S0004972724000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724000121


[9] Congruences involving central binomial coefficients 9

4. Proof of Theorem 1.4

LEMMA 4.1. Let p > 3 be a prime. Then

p(p + 1)
(p−1)/2∑

k=0

(
2k
k

)(
p−1
2k

)
(k + 1)4k ≡ 2p − 2p2qp(2) (mod p3).

PROOF. By Sigma, we can find and prove the identity

n∑
k=0

(
n
k

)
(−1)kHk

k + 1
= − Hn

n + 1
,

and it is easy to see that

n∑
k=0

(
n
k

)
(−1)k

k + 1
=

1
n + 1

n∑
k=0

(
n + 1
k + 1

)
(−1)k = − 1

n + 1

n+1∑
k=1

(
n + 1

k

)
(−1)k =

1
n + 1

.

Substituting n = (p − 1)/2 into these identities and using Lemmas 2.4 and 2.2,

p(p + 1)
(p−1)/2∑

k=0

(
2k
k

)(
p−1
2k

)
(k + 1)4k ≡ p(p + 1)

(p−1)/2∑
k=0

(
(p−1)/2

k

)
(−1)k(1 − 1

2 pHk)

k + 1

= p(p + 1)
2

p + 1
+

p2(p + 1)
2

2H(p−1)/2

p + 1
= 2p + p2H(p−1)/2 (mod p3).

This proves Lemma 4.1. �

LEMMA 4.2. For any prime p > 3,

(p−1)/2∑
k=0

p
(

2k
k

)(
p−1
2k

)
(2k + 3)4k ≡ (−1)(p−1)/2

(1
2
− 3p

4
+

7p2

8

)
+

p2

2
− p2

2
Ep−3 (mod p3).

PROOF. By Sigma, we can find and prove the following identity:

n∑
k=0

(
n
k

)
(−1)k

2k + 3
=

4n

(2n + 1)(2n + 3)
(

2n
n

) .

Substituting n = (p − 1)/2 into this identity and using Lemma 2.4,

(p−1)/2∑
k=0

p
(

2k
k

)(
p−1
2k

)
(2k + 3)4k ≡

(
p−3

(p−3)/2

)(
p−1
p−3

)
2p−3 + p

(p−1)/2∑
k=0

(
(p−1)/2

k

)
(−1)k(1 − 1

2 pHk)

2k + 3

−
(
(p − 1)/2
(p − 3)/2

)
(−1)(p−3)/2

(
1 − p

2
H(p−3)/2

)
= S1 −

p
2

S2 (mod p3),
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where

S1 =

(
p−3

(p−3)/2

)(
p−1
p−3

)
2p−3 +

1
p + 2

2p−1(
p−1

(p−1)/2

) −
(
(p − 1)/2
(p − 3)/2

)
(−1)(p−3)/2

(
1 − p

2
H(p−3)/2

)
,

S2 = p
(p−1)/2∑

k=0

(
(p−1)/2

k

)
(−1)kHk

2k + 3
.

In view of (3.1) and Lemma 2.2,

S1 =
1
2

(p − 1)2

(
p−1

(p−1)/2

)
2p−1 +

(−1)(p−1)/2

(p + 2)2p−1 +
1
2

(p − 1)(−1)(p−1)/2
(
1 − p

2
H(p−1)/2 +

p
p − 1

)

≡ 1 − 2p + p2

2
(1 + pqp(2))(−1)(p−1)/2 +

(−1)(p−1)/2

2

(
1 − p

2
+

p2

4

)

· (1 − pqp(2) + p2qp(2)2) − 1
2

(−1)(p−1)/2
(
1 − 2p + pqp(2) − p2qp(2) − p2

2
qp(2)2

)

≡ (−1)(p−1)/2

2

(
1 − p

2
+

5p2

4
− pqp(2) − p2

2
qp(2) +

3p2

2
qp(2)2

)
(mod p3).

By Sigma, we can find and prove the identity

n∑
k=0

(
n
k

)
(−1)kHk

2k + 3
= − 2

2n + 3
+

4n

(2n + 1)(2n + 3)
(

2n
n

) (2 −
n∑

k=1

(
2k
k

)
k4k

)
.

Setting n = (p − 1)/2 in this identity and using (3.1), (3.2), (3.3) and Lemma 2.2,

S2 = −
2p

p + 2
+

1
p + 2

2p−1(
p−1

(p−1)/2

) (2 −
(p−1)/2∑

k=1

(
2k
k

)
k4k

)

≡ −p +
1
2

(−1)(p−1)/2
(
1 − p

2
− pqp(2)

)
(2 − 2qp(2) + pqp(2)2 + (−1)(p−1)/22pEp−3)

≡ (−1)(p−1)/2
(
1 − qp(2) − p

2
− p

2
qp(2) +

3p
2

qp(2)2
)
− p + pEp−3 (mod p2).

Hence,

(p−1)/2∑
k=0

p
(

2k
k

)(
p−1
2k

)
(2k + 3)4k ≡ (−1)(p−1)/2

(1
2
− 3p

4
+

7p2

8

)
+

p2

2
− p2

2
Ep−3 (mod p3).

This completes the proof of Lemma 4.2. �

PROOF OF THEOREM 1.4. It is easy to check by (2.1) that

p−1∑
k=0

(k + 1)2
(

2k
k

)
2k =

p−1∑
k=0

(k + 1)2
�k/2	∑
j=0

(
k
2j

) (2j
j

)
4 j =

(p−1)/2∑
j=0

(
2j
j

)
4 j

p−1∑
k=2j

(k + 1)2
(

k
2j

)
.
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By Sigma, we find the following identity which can be proved by induction on n:

n−1∑
k=2j

(k + 1)2
(

k
2j

)
=

n(n + 1)(2nj + 2n + 2j + 1)
2(2j + 1)(2j + 3)

(
n − 1

2j

)
.

Substituting n = p into this identity and using Lemmas 4.1 and 4.2,

p−1∑
k=0

(k + 1)2
(

2k
k

)
2k =

(p−1)/2∑
j=0

(
2j
j

)
4 j

p(p + 1)(2pj + 2p + 2j + 1)
2(2j + 1)(2j + 3)

(
p − 1

2j

)

=

(p−1)/2∑
j=0

(
2j
j

)(
p−1
2j

)
4 j

p2(p + 1)
2j + 3

+

(p−1)/2∑
j=0

(
2j
j

)(
p−1
2j

)
4 j

(2p(p + 1)
2j + 3

− p(p + 1)
2( j + 1)

)

≡ p2
(
(p − 1)/2
(p − 3)/2

)
(−1)(p−3)/2 + 3p2

(p−1)/2∑
j=0

(
2j
j

)(
p−1
2j

)
(2j + 3)4 j

+ 2p
(p−1)/2∑

j=0

(
2j
j

)(
p−1
2j

)
(2j + 3)4 j −

p(p + 1)
2

(p−1)/2∑
j=0

(
2j
j

)(
p−1
2j

)
( j + 1)4 j

≡ (−1)(p−1)/2 − p + p2 − p2Ep−3 + p2qp(2) (mod p3),

which gives the result in Theorem 1.4. �
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