
Protein Data Bank (PDB): Fifty-three years young
and having a transformative impact on science
and society

Helen M. Berman1,2,3 and Stephen K. Burley1,2,4,5,6

1Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers,
The State University of New Jersey, Piscataway, NJ, USA; 2Department of Chemistry and Chemical Biology, Rutgers, The
State University of New Jersey, Piscataway, NJ, USA; 3Department of Quantitative and Computational Biology, University
of Southern California, Los Angeles, CA, USA; 4Rutgers Cancer Institute, Rutgers, The State University of New Jersey, New
Brunswick, NJ, USA; 5Rutgers Artificial Intelligence and Data Science (RAD) Collaboratory, Rutgers, The State University
of New Jersey, Piscataway, NJ, USA and 6Research Collaboratory for Structural Bioinformatics Protein Data Bank, San
Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA

Abstract

This review article describes the co-evolution of structural biology as a discipline and the Protein
Data Bank (PDB), established in 1971 as the first open-access data resource in biology by like-
minded structural scientists. As the PDB archive grew in size and scope to encompass macro-
molecular crystallography, NMR spectroscopy, and cryo-electronmicroscopy, new technologies
were developed to ingest, validate, curate, store, and distribute the information. Community
engagement ensured that the needs of structural biologists (data depositors) and data consumers
weremet. Today, the archive housesmore than 230,000 experimentally determined structures of
proteins, nucleic acids, and macromolecular machines and their complexes with one another
and small-molecule ligands. Aggregate costs of PDB data preservation are ~1% of the cost of
structure determination. The enormous impact of PDB data on basic and applied research and
education across the natural and medical sciences is presented and highlighted with illustrative
examples. Enablement of de novo protein structure prediction (AlphaFold2, RoseTTAfold,
OpenFold, etc.) is the most widely appreciated benefit of having a corpus of rigorously validated,
expertly curated 3D biostructure data.
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Introduction

The Protein Data Bank (PDB) was the first open-access digital archive in biology; it was a
vanguard in the open-access data movement (Berman, 2008; Protein Data Bank, 1971). Over the
past fifty-three-plus years, it has co-evolved with the scientific research it supports and continu-
ally embraced new technologies for 3D biostructure data deposition, validation, biocuration,
preservation, and dissemination.

In this review, we first trace how the contents of the PDB have grown in terms of the types of
structures and the experimental methods used for determination.We show how cyberinfrastructure
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has evolved in parallel to meet the needs of the ever-growing archive.
We then describe how data standards and policies were established in
collaborationwith a growing cohort of stakeholders, thereby enabling
the PDB to be a pioneer in embracing the FAIR (Findability,
Accessibility, Interoperability, and Reusability (Wilkinson et al.,
2016)), FACT (FAIRness, Accuracy, Confidentiality, and Trans-
parency (van der Aalst et al., 2017)), and TRUST (Transparency,
Responsibility, User focus, Sustainability, and Technology (Lin
et al., 2020)) principles emblematic of responsible data manage-
ment. The costs of data capture, archiving, and delivery in accord
with the FAIR and FACT principles are also discussed.

Thereafter, we describe the immense impact of the PDB on basic
and applied research in virtually all areas of biology and medicine.
The impact of the PDB on structure-guided drug discovery and
vaccine development played central roles in helping to reduce the
ravages of HIV and combat the COVID-19 pandemic. The exist-
ence of the PDB led to the creation of a new field of science–
structural bioinformatics–that, in turn, yielded transformative
advances in protein structure prediction and design. The impact
of the PDB on the chemical, computational, mathematical, phys-
ical, and social sciences is also described.

Evolution and growth of the PDB

Content of the PDB

The types of structures archived in the PDB have evolved with the
progress of structural biology. In the 1970s, atomic-level 3D
biostructures were mostly smaller, single-domain globular pro-
teins (Figure 1), such as myoglobin (Kendrew et al., 1958; Ken-
drew et al., 1960), hemoglobin (Bolton and Perutz, 1970; Perutz
et al., 1960), lysozyme (Blake et al., 1965), and ribonuclease
(Kartha et al., 1967; Wyckoff et al., 1967). The first experimental
structure of a large nucleic acid, yeast Phe tRNA, was determined

in 1974 (Kim et al., 1973; Robertus et al., 1974). The 1980s saw the
first atomic-resolution structure of a full turn of a B-DNA double
helix (Drew et al., 1981), icosahedral virus structures (Abad-
Zapatero et al., 1980; Harrison et al., 1978), and an ever-
increasing number of protein structures. In the late 1980s, the
structure of the first protein-nucleic acid complex was deter-
mined (Anderson et al., 1987), and then the first nucleosome
structure was determined in the late 1990s (Luger et al., 1997).
The 2000s saw the determination of the first ribosome structures
(Ban et al., 2000; Carter et al., 2000; Schluenzen et al., 2000). By
1999, the PDB archive had reached 10,000 structures. By 2014,
the archive housed 100,000 structures; now, there are more
than 230,000 structures (Figure 2).

The size and complexity of structures deposited in the PDB
reflect advances in technologies available for structure determin-
ation. In the early days, atomic-level structures were determined
exclusively by macromolecular X-ray crystallography (MX).
Although the steps needed to determine a structure remain the
same (Figure 3a), methods for carrying out each step have evolved
significantly over the years. In the 1950s, proteins were purified at
a large scale from natural sources (e.g., spermwhale muscle tissue)
and crystallized using batch methods. Data were collected on
photographic films using CuK? X-ray sources. The phases of each
structure factor were determined using multiple isomorphous
replacement in which additional diffraction data are measured
from crystals soaked with heavy-atom labeling reagents. Resulting
electron density maps were interpreted by building atomicmodels
manually at 5 cm/1 Å scale with Kendrew’s wire models inside a
Richard’s box (Martz and Francoeur, 2004; Richards, 1968). Until
the late 1970s, the fit of atomic coordinates to electron density
maps was not computationally optimized (refined); rubredoxin
(a 54 amino acid protein, PDB ID 4rxn (Watenpaugh et al., 1980))
was the first protein structure to be refined against experimental
data (Watenpaugh et al., 1972). New technologies for gene cloning

Figure 1. Early structures in the PDB: (a) Oxygen carrying; (b) enzymes. (c) Electron transport. Images from Molecule of the Month: PDB Pioneers (Goodsell 2011).
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and facile expression of exogenous proteins in Escherichia coli and
so forth enabled rapid production of large quantities of proteins
for structural analyses. Moreover, having control of which part of
a protein to express enabled studies of individual protein domains
when full-length proteins could not be crystallized. Multi-well
hanging-drop/vapor diffusion crystallization plates began to be
used for manual crystallization trials. Over time, crystallization

reagent kits were designed, and robots did the job of setting up and
screening for crystallinity (McPherson, 2017). The advent of
bright synchrotron radiation sources made it possible to have
more intense X-rays at tunable wavelengths, the latter supporting
development of multiple-wavelength anomalous dispersion or
MAD phase determination (Hendrickson, 1985). X-ray detectors
have also improved dramatically in terms of efficiency and speed.

Figure 3. Structure determination pipelines for (a) MX, (b)NMR, and (c) 3DEM. Figure from https://pdb101.rcsb.org/learn/pdb-and-data-archiving-curriculum/about/ (Lawson et al.
2018).

Figure 2. Overall growth of structures released in the PDB archive (https://www.rcsb.org/stats).
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Together, these myriad technical advances helped inspire the
launch of the National Institute of General Medical Sciences
Protein Structure Initiative (Norvell and Machalek, 2000) to
determine the structures of all unique protein shapes, which,
in addition to increasing the number and quality of PDB struc-
tures, resulted in major efficiency improvements in structure
determination processes. These advances have made it possible
to use extremely small samples and, for smaller proteins, prod-
uce structures in a matter of days to weeks rather than years.
Today, efforts are being devoted to ever more challenging prob-
lems (e.g., integral membrane proteins, large multi-complex
protein assemblies). Total archival holdings of MX structures
as of January 2025 were ~191,000. Public release of new MX
structures by the PDB averaged ~10,000/year for 2019–2024.

Nuclearmagnetic resonance orNMR spectroscopy emerged as a
structure determination method in the 1980s (Williamson et al.,
1985) (Figure 3b). Unlike MX, most NMR samples are dilute
solutions (typically ~5 mM), which can make sample preparation
easier. While relatively small protein structures are amenable to
NMR structure determination methods, the technique is particu-
larly well suited to measuring protein dynamics and exploring the
behavior of intrinsically disordered proteins. Total archival hold-
ings of NMR structures as of January 2025 were ~14,400, most of
which are represented as ensembles of atomic-level structures.
Public release of new NMR structures by the PDB has plateaued
to a few hundred/year (311 in 2024).

The 1990s saw PDB deposition of the first electron microscopy
or 3DEM structure (bacteriorhodopsin (Henderson and Schertler,
1990)) (Figure 3c). 3DEM offers three critical advantages versus
MX: (i) crystals are not required, (ii) it is suitable for studying larger
macromolecular systems, and (iii) it can be used for composition-
ally and conformationally heterogeneous samples. Over more than
thirty years, significant advances in sample preparation and vitri-
fication, electron optics, direct electron detection, motion correc-
tion, and cyberinfrastructure have made it possible to determine
3DEM structures at higher and higher resolution, leading to what
has been termed the “Resolution Revolution (Kuhlbrandt, 2014).”
As of late January 2025, 3DEM structure holdings in PDB exceeded
those of NMR (24,379 versus 14,440), and public release of new
3DEM structures in 2024 by PDB was ~63% of new MX structures
(5793 versus 9241). At the same time, the highest resolution 3DEM
structure archived in the PDB was that of murine apo-ferritin at
1.09 Å resolution (PDB ID 8rqb (Kucukoglu et al., 2024)).

In 2014, a structure of a Nup-84 sub-complex of the Sacchar-
omyces cerevisiae nuclear pore complex was among the very first
integrative structures to be determined by combining experi-
mental information from multiple methods (PDB-Dev ID
PDBDEV_00000001/PDB/PDB-IHM ID 8zz1 (Shi et al., 2014)).
Structures determined using information from various biophysical
(e.g., MX, 3DEM, NMR, small-angle scattering, cross-linking mass
spectrometry, Forster resonance energy transfer (FRET)) and com-
putational (e.g., homology modeling and de novo structure predic-
tion) methods are classified as integrative/hybrid methods (IHM)
structures, which typically could not have been determined using a
single method. Some of the early IHM structures were archived in a
prototype data resource, PDB-Dev (pdb-dev.wwpdb.org (Burley
et al., 2017; Vallat et al., 2021; Vallat et al., 2018)). In late 2024, the
contents of the PDB-Dev prototype resource were unified with PDB
holdings and designated as PDB-IHMstructures. Each of the original
PDB-Dev structures now has both a PDB-Dev ID and a PDB
ID. PDB-Dev has been rebranded as PDB-IHM (pdb-ihm.org
(Vallat B et al., in press)).

Policies

Policies for managing PDB data have evolved considerably since
1971. At the outset, deposition was purely voluntary. In the 1980s, it
became clear that unless there were deposition guidelines, there was
a high likelihood that valuable data would be lost. Fred Richards
worked with colleagues on a petition demanding that deposition be
a prerequisite for publication (Barinaga, 1989). The Biological
Macromolecular Commission of the IUCr convened a committee
of prominent structural biologists to establish data deposition
guidelines. In 1989, these guidelines were published (International
Union of Crystallography, 1989), and in time, most scientific
journals began requiring the deposition of 3D biostructure to the
PDB (as evidenced by the inclusion of a valid PDB ID) as a
prerequisite for publication. Many funding organizations, both
governmental and philanthropic, require PDB depositions by their
awardees.

In 2003, the Worldwide Protein Data Bank (wwPDB) was
established as a global consortium partnership to jointly manage
the PDB archive (Berman et al., 2003). PDB data centers in the US
(RCSB Protein Data Bank or RCSB PDB), UK (Protein Data Bank
in Europe or PDBe), and Japan (Protein Data Bank Japan or
PDBj) were signatories to the first formal wwPDB Charter devel-
oped to ensure that all PDB data follow uniform standards and
that the information remains freely available. The Charter is
reviewed and renewed regularly. Current members include RCSB
PDB (Berman et al., 2000; Burley et al., 2025), PDBe (Armstrong
et al., 2020), PDBj (Kinjo et al., 2018), Biological Magnetic
Resonance Bank (BMRB (Hoch et al., 2023; Romero et al.,
2020; Ulrich et al., 2008)), and Electron Microscopy Data Bank
(EMDB (wwPDB Consortium, 2023)). Protein Data Bank China
(PDBc (Xu et al., 2023)) recently joined the organization as an
Associate Member. Each wwPDB data center is responsible for
ingesting structures deposited from within their assigned geo-
graphic catchment area (RCSB PDB: Americas and Oceania;
PDBe: Europe, Africa, and Israel), PDBj (Asia and the Middle
East), and PDBc (People’s Republic of China). Leaders of each
wwPDB partner organization meet frequently with one another
and annually with the wwPDB Advisory Committee (https://
www.wwpdb.org/about/advisory).

At present, wwPDB members jointly manage three Core
Archives, including the Protein Data Bank, the Electron Micros-
copy Data Bank, and the Biological Magnetic Resonance Data
Bank. Each wwPDB Core Archive is safeguarded and maintained
by a wwPDB-designated Archive Keeper as follows: Protein Data
Bank: RCSB PDB; Electron Microscopy Data Bank-EMDB; Bio-
logical Magnetic Resonance Data Bank-BMRB. The PDB Core
Archive houses atomic coordinates of all PDB structures and
related metadata and experimental data for all MX structures.
The EMDB Core Archive houses electric Coulomb potential
maps (hereafter 3DEM density maps) for all 3DEM structures
stored in PDB and a sizeable number of additional density maps
with no corresponding atomic coordinates in PDB (typically
derived from lower-resolution 3DEM studies). The BMRB Core
Archive houses NMR data for NMR structures stored in PDB and
a considerable volume of additional biomolecule NMR data with
no corresponding atomic coordinates in PDB. wwPDB members
also jointly manage the NextGen PDB archive (files-nextgen.
wwpdb.org), which is an enriched PDB archive that includes
annotations from external database resources in the metadata
that goes beyond content available in the PDB main archive
(Choudhary et al., 2024).
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Evolving infrastructure for ingesting, managing, and delivering
PDB data

Key steps required for operating an open-access repository are data
ingestion, validation, biocuration, archiving, query, and distribution
(https://pdb101.rcsb.org/learn/pdb-and-data-archiving-curriculum/
about/ (Lawson et al., 2018)). In this section, we review how
cyberinfrastructure supporting the PDB has evolved during more
than 53 years of continuous PDB operations.

In 1971, data were transferred to magnetic tapes and mailed to
the PDB, where they were processed on Control Data Corporation
CDC 6600/7600 main-frame computers, which at the time were
state-of-the-art machines. The CDC 6600 was networked viaDAR-
PANET (a precursor to the World Wide Web) to graphics work-
stations at two locations in the United States, allowing visualization
of 3D biostructure data. The CRYSNET project, funded by the
United States (US) National Science Foundation in 1973, was
innovative in its time and provided some financial support for
the PDB (Meyer et al., 1974).

Initially, atomic coordinate data were stored in the Diamond
format (Diamond, 1971). In 1976, the (now legacy) PDB file format,
based on the 80-column Hollerith punch cards, was created and
became extremely popular and widely used by the structural biol-
ogy community (Bernstein et al., 1977). As the size and complexity
of structures grew, it became clear that the 80-column format
limited the number of atoms and/or polymer chains that could be
contained in a single structure data file. During the 1990s, a
Working Group convened by the International Union of Crystal-
lography (IUCr) Commission on BiologicalMacromolecules devel-
oped a machine- readable format that was self-defining and gave
explicit relationships (Fitzgerald et al., 2005). The new “macromol-
ecular Crystallographic Information File (mmCIF)” has no limita-
tions on the number of atoms or residues. As the PDB archive
contains structures determined by severa methods, the format is
now called PDBx/mmCIF (Westbrook et al., 2022). It became the
Master PDB archival format in 2014 (Berman et al., 2014).

At present, PDBx/mmCIF is jointly maintained by the wwPDB
PDBx/mmCIF Working Group (Westbrook et al., 2022) and the
wwPDB partners. Data dictionary terms and definitions are con-
tinuously formulated, reviewed, and modified to support existing
data remediation and inclusion of new and rapidly evolving meth-
odologies. This fully extensible data standard also supports data
items and metadata elements for newer experimental methods that
could not be accommodated within the restrictive legacy PDB
format.

Once the World Wide Web became available in the 1990s, a
computer program named AutoDep made it possible to deposit 3D
biostructure data to PDB electronically (Lin et al., 2000). For more
than two decades, Brookhaven National Laboratory (BNL) hosted
the only PDB data center that accepted depositions and processed
incoming atomic coordinate data. In the late 1990s, a data center at
the European Bioinformatics Institute (originally called theMacro-
molecular Structure Database, later rebranded as PDBe) began a
collaboration with the BNL PDB to process data (Boutselakis et al.,
2003). In 1998, the Research Collaboratory for Structural Bioinfor-
matics (RCSB) formed as a collaboration between Rutgers, The
State University of New Jersey, the National Institute for Standards
and Technology, and the San Diego Supercomputer Center suc-
cessfully competed for US federal agency funding to manage the
United States (US) PDB data center (Berman et al., 2000). Central

to the RCSB PDB project was its development of an integrated 3D
biostructure data deposition system (AutoDep Input Tool, ADIT),
built atop the PDBx/mmCIF data dictionary. PDBj (Kinjo et al., 2018)
became the first Asian PDBdata center in 2000. Initially, two different
data deposition systemswere used by the wwPDB: AutoDep by PDBe
and ADIT by RCSB PDB and PDBj. To ensure that data were fully
consistent, data were exchanged regularly between sites and reviewed.
A major software development project created the global OneDep
system (Young et al., 2017) for comprehensive deposition, rigorous
validation (Feng et al., 2021; Gore et al., 2017; Young et al., 2017), and
expert biocuration (Young et al., 2018) of MX, 3DEM, NMR, and
micro-electron diffraction structures, supporting experimental data
and related metadata. Biocuration involves checking for self-
consistencies, enforcing controlled vocabularies that are part of the
PDBx/mmCIF dictionary, checking polymer sequences against the
sequence databases, standardization of ligand atomnaming, etc., and
value-added annotations (i.e., disease-causing mutations and qua-
ternary structure information).

In the early days of the PDB, validation was focused on the
geometry and chemistry of bothmacromolecules and bound small-
molecule ligands. In addition to polypeptide backbone Ramachan-
dran checks, MolProbity evaluation (Williams et al., 2018) became
the part of wwPDB validation. Although it was always possible for
MX structure factor data to be deposited into PDB, it was not until
2008 that they becamemandatory (wwPDB, 2024). That important
policy change made it possible for OneDep to validate atomic
coordinates against experimental electron density map data.
NMR chemical shift deposition became mandatory in 2010
(wwPDB, 2024). For 3DEM structures, deposition of 3DEMdensity
maps became mandatory in 2016 (wwPDB, 2024).

In 2008, thewwPDB began establishing a series of Task Forces to
define validation criteria for each structure determination method
supported by the PDB (Henderson et al., 2012; Montelione et al.,
2013; Read et al., 2011; Sali et al., 2015; Trewhella et al., 2013;
wwPDB, 2024). Method-specific Task Forces, consisting of subject
matter experts, evaluated procedures for rigorous assessment of
structures with reference data sets and made recommendations to
the wwPDB for adoption within the OneDep software system.
Their efforts gave rise to a rich suite of structure validation tools
that are today used to generate a wwPDB Validation Report for
every incoming structure (Gore et al., 2017; Gore et al., 2012; Smart
et al., 2018a, b; Young et al., 2017). These validation reports are first
used by depositors, then journal editors and manuscript reviewers,
and finally by PDB data consumers.

Once all the structure data and related metadata are validated
and reviewed by wwPDB biocurators and depositors, they are
archived as flat PDBx/mmCIF formatted files. Other research
communities have followed suit, and now there are multiple work-
ing groups setting data formatting, archiving, and validation stand-
ards for various biophysical methods (Hanke et al., 2024; Leitner
et al., 2020; Trewhella, 2018).

An important attribute of the PDBx/mmCIF data dictionary/
data standard is that all of the information is stored as tables, which
lend themselves to creating a relational database that can be
searched efficiently. In the 1990s, the Nucleic Acid Database
(NDB) became a testbed for the utility of such a database built atop
the PDBx/mmCIF data standard (Berman et al., 1992). NDB
proved to be fit for purpose; it supported many different kinds of
queries of the data and presented results in various formats.
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Building on this experience, RCSB PDB used PDB data stored in
PDBx/mmCIF format to build a core database and integrated
features from external databases to provide rich contextual reports
for every structure in the PDB (Berman et al., 2000).

From 1977 to 1992, PDB data were distributed via magnetic
tape. Just one tapewas sufficient to store a copy of the entire archive.
In 1977, a total of 14 tapes, each housing 77 structures, were
publicly distributed; in 1992, 262 tapes (957 structures). Thereafter,
distribution of PDB data utilized CDs, followed by DVDs first by
BNL and then RCSB PDB. In the late 1990s, it became possible to
distribute information via the internet (Stampf et al., 1995), and
now it is the only way PDB data are distributed. In 2023, more
than 3.1 billion structure data files were downloaded from the PDB
main archive and web portals operated by RCSB PDB, PDBe, and
PDBj combined.

PDB stakeholders

When the PDB was launched, almost all of its users were data
depositors – structural biologists. Before deposition became man-
datory, motivations for deposition varied, including the assurance
that the data would never be lost, the desire to have someone else
check the data for serious errors, or the desire to share scientific
information for the public good. As archival holdings grew, protein
crystallographers increasingly used previously deposited structure
data to determine new structures via the molecular replacement
approach to diffraction data phasing. PDB structures are also used
to interpret lower-resolution 3DEM density maps. Computational
biologists began to use the resource to classify and compare struc-
tures, thus creating a whole new field of structural bioinformatics.
Drug companies began to use the PDB to facilitate structure-guided
drug discovery. Educators began to use the PDB to teach biology at
all levels. Computer scientists, mathematicians, and statisticians
used the large PDB data set for their analyses. Today, structural
biologists probably represent <1% of the very large and diverse
community of PDB data consumers numbering in the many mil-
lions worldwide.

The PDB has received funding from US government agencies
since its inception. Current funders of wwPDB members are as
follows: RCSB PDB: US National Science Foundation, National
Institutes of Health, and US Department of Energy; PDBe:
European Molecular Biology Laboratory-European Bioinformatics
Institute, Wellcome Trust, Biotechnology and Biological Sciences
Research Council, Medical Research Council, and European
Union; PDBj: Japan Science and Technology Agency Department
for Information Infrastructure and Japan Agency for Medical
Research and Development; EMDB: European Molecular Biology
Laboratory-European Bioinformatics Institute, and Wellcome
Trust; BMRB: National Institute of General Medical Sciences;
PDBc: Shanghai Advanced Research Institute, Chinese Academy
of Sciences, and ShanghaiTech University.

Costs and benefits of 3D biostructure data archiving

Preservation and dissemination of research results have never been
free. The purchase price of Charles Darwin’s “On the Origin of the
Species” was nearly US$100 in today’s money when first published
in 1859. That volume was but a summary of the vast amount of
information thatDarwin assembled and analyzed before presenting
his ideas on natural selection to theworld. Notwithstanding the cost
of the book and the enormous body of research Darwin and others
undertook to make it possible, there can be no serious debate as to
the value proposition of preserving the observations and ideas that

went on to stimulate generations of biologists in developing our
current understanding of evolution. The second half of this review
explores the cost of preserving and disseminating 3D biostructure
data and enumerates tangible benefits therefrom.

How much does it cost to capture, archive, and distribute PDB
data?

To explain how much it costs to ingest, safeguard, and distribute
PDB data, we used key performance indicators and other metrics
documented during 2023 RCSB PDB operations.

We first provide a summary of the results, followed by the full
details.

1. Average one-time cost to archive each new PDB structure
in 2023 is ~US$420 (<1% of the estimated cost of an inexpen-
sive determination of the MX structure of a single domain
globular protein from a prokaryote).

2. Average annual cost to preserve a PDB structure in 2023 was
~US$10 (<0.01% of the estimated average replacement cost of
a PDB structure).

3. Average annual cost to serve a unique IP Address Client from
the RCSB PDB research-focused web portal RCSB.org
in 2023 was ~30 US Cents.

During 2023, wwPDB partners based in the US, Europe, and Asia
received a record 17,063 new depositions from structural biolo-
gists working on every inhabited continent. RCSB PDB processed
6,698 (~40%) of the global depositions. US federal agency grant
monies budgeted for data ingestion, rigorous validation, and
expert biocuration at RCSB PDB in 2023 totaled ~US$2.8 million.
The 2023 one-time, non-recurring cost to ensure that these 3D
biostructure data are FAIR was ~US$420/structure received/pro-
cessed.

In its role as wwPDB-designated PDB Archive Keeper during
the same period, RCSB PDB safeguarded the data for a total of
214,070 PDB structures (~1.4 TB of total digital storage), with an
estimated replacement cost of ~US$21 billion. US federal agency
grant monies budgeted for data preservation by RCSB PDB in 2023
totaled ~US$2.2 million. The annual recurring cost to preserve and
safeguard the entire PDB archive was ~US$10.30/structure/year
(in 2023).

Under the wwPDB charter, RCSB PDB disseminates data at no
charge and with no limitations on its usage from its RCSB.org
research-focused web portal. In 2023, the web portal hosted visits
from ~8.2 million unique IP addresses in nearly every country and
territory recognized by the United Nations. US federal agency grant
monies budgeted for data dissemination at RCSB PDB in 2023
totaled ~US$2.5 million. The average recurring cost of serving each
RCSB.org client in 2023 was ~30 USCents/RCSB.org unique IP
Address Client. These data dissemination metrics and cost esti-
mates do not include any users the wwPDB reaches indirectly when
PDB data are reused and redistributed by nearly 500 external data
resources, serving many millions more users. They also do not
capture usage statistics when copies of the PDB archive are held
inside biopharmaceutical and biotechnology company firewalls or
stored locally for the convenience of large bioinformatics research
teams in academia.

What is the value in capturing, securely archiving, and freely
distributing PDB data?

We now review the enormous impact of open-access PDB data on
structural biology as a discipline; the natural, chemical, engineering,
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mathematical, and physical sciences; biomedicine; biotechnology
innovation; protein structure prediction; the global biodata ecosys-
tem; and regional, US, and global economies.

Structural biology as a scientific discipline

Open access to PDB data has both accelerated the development of
structural biology as a scientific discipline and enabled its repro-
ducibility. For MX, >90% of new structures are today determined
by molecular replacement using previously deposited PDB struc-
tures or Computed Structure Models (CSMs, see the Protein
Structure Prediction section) to overcome the crystallographic
phase problem. The development of NMR and 3DEM as main-
stream structural biology methods benefited significantly from
open access to the PDB, BMRB, and EMDB Core Archives.
wwPDB Biocurators and OneDep structure validation tools con-
tribute to the reproducibility of experimental methods currently
supported by the PDB. Inarguably, MX is among the most repro-
ducible experimental techniques in the biological sciences (Liebsch-
ner et al., 2013).

Open-access PDB data have also enabled the analyses of ensem-
bles of structures to understand common principles in macromol-
ecular anatomy and biological and biochemical function. Archival
contents have been used to classify and understand protein
domains, and there now exist knowledge bases providing such
classifications and grouping them into superfamilies (Conte et al.,
2000; Orengo et al., 1997). Protein–protein interactions (Jones and
Thornton, 1996) and protein-nucleic acid interactions have also
been analyzed across the archive (Jones et al., 2001). More
than 1,000 papers describing these types of analyses and resources
have been published to date (Basner, 2017).

Natural, chemical, computational, engineering, mathematical,
physical sciences, and beyond

Knowledge of 3D structures (shapes) of biomolecules helps to
explain how they function in nature, accelerating discovery across
the biosciences. PDB structures include proteins and nucleic acids
coming from every living kingdom (see Figure 7 in (Burley et al.,
2022)) and increasing numbers of designed biopolymers. Among
the latter are MX structures of a designed digoxigenin binding
protein (PDB IDs 4j8t, 4j9a (Tinberg et al., 2013)) and an engin-
eered organophosphate hydrolase (PDB ID 3tig (Khare et al.,
2012)), and a designed DNA nanomaterial (PDB ID 3gbi (Zheng
et al., 2009)).

PDB data impact basic and applied research on health and
diseases of humans, animals, and plants; production of food and
energy; and other research about global prosperity, resilience, and
environmental sustainability. There are many anecdotal accounts
in the scientific literature attesting to the importance of the PDB.
On the occasion of the 50th birthday of the PDB in 2021, for
example, the Journal of Biological Chemistry published two
PDB50-themed special issues (Berman and Gierasch, 2021; Gier-
asch and Berman, 2021).

Bibliometric analyses provide opportunities for quantitative
assessment of the impact of PDB data. The inaugural RCSB PDB
publication (Berman et al., 2000) had been cited more than 30,000
times as of January 2025, according to the ClarivateWeb of Science
(Copyright Clarivate 2024. All rights reserved). Taking a broader
view, a 2018 study (Burley et al., 2018) demonstrated citations of
PDB data spanning the biosciences from Agriculture to Zoology.
Not surprisingly, nearly 90% of published PDB structures

analyzed in 2018 were cited by Biochemistry &Molecular Biology
journals. High impact was also documented in other areas of
fundamental biology and biomedicine (Cell Biology, Pharmacol-
ogy and Pharmacy, Microbiology, Genetics & Heredity). Related
analyses highlighted PDB structure publications frequently cited
in STEM-related journals focused on Materials Science, Physics,
Computer Science, Chemistry, Engineering, and Mathematics
(Feng et al., 2020). PDB data are also being used in the Social
Sciences to understand human behavior and incentives in aca-
demic research (Hill and Stein, 2019) and even by artists (Voss-
Andreae, 2005).

Additional unpublished bibliometric analyses provide further
evidence of PDB data impact. As of January 2023, 168,902 PDB
structures (~84% of the archive) were reported in 78,334 unique
primary publications, which were cited 5,601,496 times. At that
time, individual publications of PDB structures had been cited
~38 times on average, and each of 148,874 (~75% of the archive)
PDB structures had garnered at least one citation of their corres-
ponding primary publication. Again, as of January 2023, the
“most popular” PDB structure, PDB ID 1aoi (Luger et al.,
1997), that of the nucleosome core particle (Figure 4), had been
cited >4,500 times. Additional highly cited PDB structure statis-
tics are as follows: 85 PDB IDs had each been cited >1,000 times;
nearly 600 PDB IDs had each been cited >500 times; and >11,300
PDB IDs had each been cited >100 times). The top 10% of
published PDB structures had each been cited at least 79 times.
These data provide compelling evidence of the enormous breadth
of PDB data impact across the scientific literature. They also
document that many PDB structures are reported in “citation
classic” publications.

Biomedicine

3D structures of bacterial and viral proteins archived in the PDB are
routinely used to discover and develop treatments and cures for
infectious diseases. As of November 2024, the archive housed
nearly 76,000 structures of bacterial proteins. The two National

Figure 4. MX structure of the nucleosome core particle PDB ID 1aoi (Luger et al. 1997).
Image from the Molecule of the Month (Goodsell, 2000).
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Institute for Allergy and Infectious Diseases Structural Genomics
Centers for Infectious Diseases (Myler et al., 2009; Stacy et al., 2015)
have together contributed >3,300 human pathogen protein struc-
tures to the archive. Collectively, bacterial protein structures in the
PDB provide insights into microbial evolution (e.g., (Koonin and
Makarova, 2019)); metabolic pathways (e.g., (Brunk et al., 2018));
the human microbiome (e.g., (Walker et al., 2022)); potential
targets for antimicrobial drug discovery (e.g., (Shaikh et al.,
2021)); molecular mechanisms underpinning antibiotic resistance
(e.g., (Reeve et al., 2015)); and structure-guided drug discovery (e.g.,
(Simmons et al., 2010)). Similarly, as of November 2024, the PDB
archive housed ~21,400 structures of viral proteins. They provide
valuable insights into virus evolution (e.g., (Krupovic and Bamford,
2008)) and interactions with host cell proteins (e.g., (Goodsell and
Burley, 2020)). They also include information critical to combatting
many of the viral pathogens already known to infect humans and
others that may do so in the coming decades. For example, the PDB
houses more than 2,600 human immunodeficiency virus-1 related
structures, including more than 700 structures of the dimeric
aspartyl protease (e.g., PDB ID 3hpv (Wlodawer et al., 1989)),
many of which are co-crystal structures with bound to small-

molecule inhibitors. These data played critical roles in structure-
guided discovery of ten protease inhibitors approved for treating
acquired immunodeficiency syndrome or AIDS, the first of which
was saquinavir (PDB ID 1hxb (Krohn et al., 1991)). More recently,
PDB data (more than 4,600 experimentally determined SARS-
CoV-2 protein structures) played central roles in the fight against
COVID-19 (Figure 5, reviewed in (Burley, 2025)), contributing to
bothmRNA vaccine design (Corbett et al., 2020) and discovery and
development of nirmatrelvir, the active ingredient of Pfizer’s Pax-
lovid (Owen et al., 2021). Looking ahead to the possibility of a
global pandemic caused by influenza A H5N1 virus (Kupfersch-
midt, 2023), there are currently >250 H5N1-related PDB structures
and nearly 600 PDB structures of other influenza virus proteins
(Bittrich et al., 2025).

Published case studies (e.g., (Hu et al., 2018)) and anecdotal
accounts presented at scientific meetings leave no doubt as to the
important contributions to drug discovery made by structural
biologists working within the biopharmaceutical industry. The
first quantitative analysis of the impact of structural biologists and
PDB structures on drug approvals across all therapeutic areas was
published in 2019. PDB holdings were examined to identify 3D

Figure 5. SARS-CoV-2 Genome and Proteome Organization. Near complete 3D knowledge of the SARS-CoV-2 proteome derives from >4,600 SARS-CoV-2 related PDB structures and
CSMbased on SARS-CoV-1 related structures archived in the PDB. Figure adapted from (Lubin et al., 2022) and available fromPDB-101 (https://pdb101.rcsb.org/learn/flyers-posters-
and-calendars/flyer/sars-cov-2-genome-and-proteins). Color coding: shades of blue-non-structural proteins; shades of green: structural proteins and proteins encoded by various
open-reading frames; yellow/orange/red-duplex RNA; orange-S-adenosyl methionine; and shades of red-enzyme inhibitors.
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biostructures relevant to the discovery and development of 171
new small-molecule drugs across all therapeutic areas approved
by the US Food and Drug Administration (FDA) from 2010 to
2018 (Westbrook and Burley, 2019). The PDB archive housed
5,364 structures, providing atomic-level, 3D information for
~88% of the targets of these 171 small-molecule drugs. Structure-
guided drug discovery approaches were used to generate >70% of
these new drugs. In approximately 20% of cases, the number of
PDB structures of the drug target exceeded 100.

Two follow-up studies focused on new anti-cancer drugs. One
study documented that access to PDB structure information facili-
tated discovery and development of >90% of the 79 new anti-
neoplastic agents approved by the US FDA from 2010 to 2018
(54 small-molecule drugs and 25 biologics) (Westbrook et al.,
2020). The other (Burley et al., 2024) went on to review small-
molecule anti-cancer drugs approved by US FDA from 2019 to
2023. During this latter period, open access to PDB structure
information facilitated discovery and development of 100% of
34 newly approved anti-neoplastic agents. Approximately 80% of
these new drugs were the products of structure-guided drug dis-
covery. Figure 6, for example, illustrates PDB ID 6o8m (Canon
et al., 2019), showing the mechanism of action at the atomic level
in 3D of sotorasib covalent targeting the G12C mutant form of
KRAS (Lanman et al., 2020). Before discovery and development of
sotorasib, RAS oncoproteins were deemed undruggable. Structure-
guided discovery, development, and regulatory approval of this
first-in-class drug set the stage for targeting other mutant forms
of RAS, which collectively occur in ~20% of all human cancers
(Prior et al., 2020).

Analyses of PDB holdings, the scientific literature, and related
documents for each anti-cancer drug-protein target combination
revealed that the impact of public-domain 3D structure data is

broad and substantial, ranging from understanding target protein
biology to identifying a given target protein as druggable to
structure-guided drug discovery. There is every reason to believe
that PDB structures of target proteins will continue to facilitate
structure-guided discovery and subsequent development of new
drugs benefiting patients and their families and society more
broadly for decades to come.

Biotechnology innovation

Patent literature reviews conducted in August 2022 documented
very broad impact of PDB data on innovation. As of June 2022,
searching the US Patent and Trademark Office website (United
States Patent and Trademark Office, 2022) identified ~10,000
issued US patents with PDB mentions (vs. ~6,500 issued patents
in June 2017 (Burley et al., 2018)). Analogous searches of global
patent literature using PatSeer (Gridlogics, 2021) documented
~90,000 issued patents and in-process patent applications world-
wide that include PDB mentions (vs. ~50,000 in mid-2017 (Burley
et al., 2018)). It should be noted that patents and patent applications
mentioning PDB data do not involve attempts to patent protein
structures per se (Committee on Intellectual Property Rights in
Genomic And Protein Research and Innovation, 2006).

The top ten assignees of worldwide patents mentioning PDB in
mid-2017 included four US research universities (Massachusetts
Institute of Technology; New York University; University of Cali-
fornia Regents; University of Texas), two biopharmaceutical com-
panies (Genentech, Inc.; Amgen, Inc.), two biotechnology
companies (Xencor, Inc.; Novozymes, Inc.), and two agribusiness
companies (DuPont de Nemours, Inc.; Pioneer). These findings
underscore the importance of open access to PDB data for basic and
applied research carried out in universities and not-for-profit

Figure 6. Ribbon representation of the co-crystal structure of sotorasib covalently bound to the G12C KRAS (pink)/GDP complex (PDB ID 6oim (Canon et al., 2019)). Inset highlights a
zoomed-in view of the sotorasib binding site, showing the covalent bond (half green/half yellow) between the drug and Cysteine 12 (yellow atomic ball-and-stick figure). Images
generated using the Mol* Viewer (Sehnal et al., 2021). Image adapted from (Burley et al., 2024).
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institutes, and for-profit biopharmaceutical, biotechnology, and
agribusiness companies.

Protein structure prediction

PDB data facilitated the development of structural bioinformat-
ics as a vibrant subdiscipline of computational biology (Bourne
and Weissig, 2003). Without an open-access repository of rigor-
ously validated, expertly biocurated 3D structures of biological
macromolecules, there would be no homology modeling, no
computational docking of small-molecule ligands, and no de
novo protein structure prediction. Inspired by the work of Anfin-
sen, who showed in the 1970s that the sequence of a polypeptide
chain determines its shape or fold (Anfinsen, 1973); practitioners
of this emerging field strove for decades to predict the 3D
structures of proteins accurately. The 2020 Critical Assessment
of Structure Prediction exercise (CASP (Alexander et al., 2021))
witnessed a sea change in structural bioinformatics. Google
DeepMind’s AlphaFold2 (AF2) Artificial Intelligence/Machine
Learning (AI/ML) software emerged as the top performer for de
novo protein structure prediction, with accuracies often compar-
able to that of lower-resolution experimental methods (Jumper
et al., 2021; Shao et al., 2022; Terwilliger et al., 2024). Subse-
quently, the Rosetta team released RoseTTAFold (Baek et al.,
2021), which generates CSMs of proteins with accuracies com-
parable to AF2.

Today, Computed Structure Models for nearly every protein
sequence represented in UniProt (UniProt Consortium, 2023) are
publicly accessible from the AlphaFold Protein Structure Database
(AlphaFold DB (Varadi et al., 2022)). Some of the millions of CSMs
generated independently of DeepMind (using RoseTTAFold, AF2
Colab, Meta, etc.) are available from the open-access ModelArchive
(Protein Structure Bioinformatics Group, 2024). Both AlphaFold
DB and the ModelArchive utilize the ModelCIF data standard
(Vallat et al., 2023), which interoperates seamlessly with the
PDBx/mmCIF data dictionary described above. It is jointly man-
aged by wwPDB partners and the wwPDB ModelCIF Working
Group (www.wwpdb.org/task/modelcif). A 2021 New England
Journal of Medicine publication described potential uses of CSMs
in clinical research and practice (Burley et al., 2021). Development
of AF2 by John Jumper and Demis Hassabis and the pioneering
protein design work of David Baker earned them shares of the 2024
Nobel Prize in Chemistry. All three newly minted Nobel Laureates
explicitly acknowledged the key role that the Protein Data Bank
played in providing highly curated, validated, machine-readable
data (Callaway, 2024).

The RCSB PDB provides open access to more than one million
CSMs alongside all PDB structures at RCSB.org (Figure 7). Access
to both CSMs and PDB data benefits structural biologists who are
using CSMs when initiating experimental studies (e.g., for expres-
sion construct design) and during MX (Terwilliger et al., 2022) and
3DEM (Subramaniam and Kleywegt, 2022) structure determin-
ation efforts. Making CSMs available to PDB data consumers
working in areas such as plant sciences makes RCSB.org a much
more valuable resource. The current experimental structure cover-
age of the Arabidopsis thaliana proteome in the PDB is ~4%. With
combined delivery of PDB structures and CSMs at RCSB.org, plant
molecular biologist users enjoy access to 3D structure information
spanning the entire A. thaliana proteome.

Delivery of more than one million CSMs alongside PDB struc-
tures also provides full proteome coverage of 3D structural infor-
mation for human, the major model organisms (mouse, rat,

zebrafish, fruit fly, Dictyostelium, Caenorhabditis elegans, A. thali-
ana, S. cerevisiae, Schizosaccharomyces pombe, C. albicans, E. coli,
and Methanocaldococcus jannaschii), 32 human pathogens, three
important food crop plants (rice, maize, and soybean), and select
organisms important for understanding the impact of climate
change. Providing simultaneous access to experimentally deter-
mined structures and CSMs allows both types of information to
be searched, visualized, and analyzed together. It also informs
bioscience researchers and their trainees, and educators and their
students as to some of the limitations of CSMs. They are compar-
able in accuracy to lower-resolution experimental structures and
should not be relied on when a gold-standard, experimentally
determined PDB structure(s) is available (Moore et al., 2022; Shao
et al., 2022).

Information stored in the PDB is made available under the most
permissive Creative Commons CC0 1.0 Universal License (https://
creativecommons.org/licenses/by/4.0/), enabling researchers around
the world to access and utilize the information at no charge and
with no restrictions on its usage. Recognizing its long-standing
commitment to high standards of data preservation, management,
and open access, the PDB is accredited by CoreTrustSeal, an
international organization that certifies data repositories (https://
amt.coretrustseal.org/certificates/). More recently, the PDB was
recognized by the Global Biodata Coalition (https://globalbiodata.
org) as a Global Core Biodata Resource of “fundamental import-
ance to the wider biological and life sciences community and the
long-term preservation of biological data.” PDB remains a van-
guard in the open-access movement.

Worldwide distribution of PDB data is not limited to wwPDB
partner web portals. Review of the Nucleic Acids Research Online
Molecular Biology Database Collection (Rigden and Fernandez,
2023), which comprises databases from the journal’s annual Data-
base Issues, identified ~500 external data resources that distribute
repackaged PDB data to individuals who may not routinely visit
RCSB.org or one of the wwPDB partner web portals (Resources as
of 2022 (Rigden and Fernandez, 2022) listed in able S1 of (Burley
et al., 2022)). Beyond utilization of PDB from open-access knowl-
edgebases, etc., there is substantial reuse of public domain 3D
biostructures within global biopharmaceutical companies (e.g.,
Pfizer, Novartis, Eli Lilly, and Company), most if not all of which
maintain copies of the archive inside company firewalls. Therein,
PDB data are used daily alongside proprietary MX, NMR, and

Figure 7.RCSB.org delivers PDB experimental structures (identifiedwith an Erlenmeyer
flask icon in dark blue) and CSMs (computer screen icon in cyan) from AI/ML that can be
searched, analyzed, visualized, and explored using custom tools and features. Image
from (Burley et al., 2023).
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3DEM structures determined by the company to better understand
target protein biology, identify target proteins as likely to be drug-
gable, and support structure-guided drug discovery and preclinical
development of drug candidates.

Regional, US, and global economies

Although it has not been possible to carry out comprehensive
analyses of the economic impact of wwPDB Core Archives and
wwPDB partner activities, some data about RCSB PDB operations
are available. A 2017 Rutgers University Office of Research Analy-
tics (ORA) study documented the substantial contributions of PDB
data and RCSB PDB to public sector economies (Sullivan et al.,
2017). The corpus of scientific data (>227,000 3D biostructures) has
an estimated replacement cost of nearly US$23 billion. The Rutgers
ORA analyses of 2017 public sector usage of PDB data delivered via
RCSB.org estimated an aggregate economic value of ~US$9.2 bil-
lion (>1,500 times ~US$6.1million federal funding of RCSB PDB at
that time). Since 2017, the PDB archive has grown by ~67%, and the
number of unique IP clients visiting RCSB.org annually has grown
by >80%, suggesting that the public sector economic impacts of
PDB data and RCSB PDB operations have increased substantially
(as a multiple of ~US$10 million in 2024 federal funding of RCSB
PDB Core Operations).

The Rutgers ORA analysis did not attempt to estimate quanti-
tatively the economic impact of PDB data accruing from societal
benefits generated by pharmaceutical and biotechnology compan-
ies. However, some sense of the magnitude of impact on for-profit
companies and the global economy can be gleaned from themetrics
presented above under Biotechnology Innovation and Biomedi-
cine. We are also unable to quantify the impact of open access to
PDB data on education and STEM workforce training. Introduc-
tory RCSB PDB training materials and documentation delivered at
PDB101.RCSB.org help researchers and their trainees, and educa-
tors and their students learn how to connect 3D biostructures to
knowledge. PDBe and PDBj also provide training resources to users
of their web portals (pdbe.org and pdbj.org, respectively), as do our
other two wwPDB partners EMDB (ebi.ac.uk/emdb/) and BMRB
(bmrb.io).

Perspectives and future directions

The advent of AF2, RoseTTAfold, etc., caused some scientists to
suggest that structural biology as a discipline and those who deter-
mine structures using experimental methods would no longer be
necessary. They failed to recognize that structural biologists have
never shied away from embracing new biophysical and computa-
tional methods to achieve their ultimate goals of visualizing and
understanding biomolecules in 3D at the atomic level. They also
failed to appreciate how useful the results of de novo structure
prediction would be for structural scientists, particularly for those
research teams relying on 3DEMmethods. Individual CSMs can be
fitted into 3DEM density maps coming from both single-particle
and tomographic 3DEM measurements. At present, there are no
computational methods capable of delivering predicted structures
of large macromolecular complexes with accuracies comparable to
lower-resolution experimental methods. Even for individual pro-
teins, experimentally determined structures are more accurate than
CSMs. Moreover, they are often more informative because they
provide atomic-level insights into binding of small-molecule lig-
ands (e.g., enzyme co-factors, inhibitors, US FDA-approved drugs).

It is important to note, however, that the promise of new AI/ML
tools for structural biology depends critically on open access to ever
more experimental structures in the PDB; well-determined, rigor-
ously validated, and expertly biocurated structures are essential for
improving the quality of the training sets on which AI methods
development depends. Thus, the importance of continued focus on
validation by the wwPDB has never been greater. In addition,
biochemical analyses performed by PDB structure depositors are
essential for us to understand complex relationships between struc-
ture and function. The central importance of PDB data to the
development of de novo protein structure prediction tools reliant
on AI/ML approaches raises important questions regarding the
“dark matter” of structural biology – the hundred thousand or
more X-ray co-crystal structures of protein-ligand complexes pre-
served inside biopharmaceutical company firewalls as trade secrets.
Successful development of AI/ML tools that support structure-
guided drug discovery could well hinge on public access to some
of this information, much of which is post- competitive (meaning
that its release will in no way diminish company shareholder value).
The lesson from AF2, RoseTTAfold, etc., is clear. Open access to
tens of thousands of entirely new co-crystal structures “donated” to
the PDB by biopharmaceutical companies will accelerate structure-
guided drug discovery for the benefit of patients, their families, and
all of humanity. Finally, the ambitious goals of providing structural
descriptions of organelles and even whole cells (e.g., the pancreatic
beta cell (Singla et al., 2018)) can and will be realized if structural
biologists continue to develop new structure determination methods
such as integrative and hybrid methods, and PDB, EMDB, and
BMRB continue to ingest, validate, biocurate, and archive reliable
atomic-level 3D structure information for proteins and nucleic acids,
and their complexes with one another and small-molecule ligands.

The overarching mission of the wwPDB is to make highly
curated and therefore trustworthy atomic-level 3D macromolecu-
lar structure information freely available to anyone working and
learning anywhere in the world, with no limitations on data usage.
The wwPDB was founded by three Core Members representing
three continents to ensure the success of the PDB Core Archive;
today, it has five Core Members and an Associate Member that
jointly manage three Core Archives. Various Task Forces and
Working groups have developed rigorous structure validation cri-
teria implemented by the wwPDB. Active involvement of subject
matter experts from the global scientific community ensures that
wwPDB data will remain well-curated and reliable. On a weekly
basis, each wwPDB Core Archive is updated by its respective
Archive Keeper and released to the public. Thereafter, web portals
maintained independently by RCSB PDB, PDBe, PDBj, EMDB, and
BMRB distribute identical 3D biostructure information, together
with unique services and value-added information. With PDB,
EMDB, and BMRB serving as singular wwPDB Core Archive data
resources, fragmentation and balkanization of the world’s 3D bios-
tructure data have been avoided. The wwPDB is a highly effective
consortium, one that is laterally aligned. That is, it allows member
organizations to be independent as appropriate while collaborating
to achieve common goals (The Stakeholder Alignment Collabora-
tive, 2025). We believe that the model provided by the wwPDB for
international collaboration to preserve anddisseminate high-quality
information can be adopted by other scientific disciplines, thereby
enabling exciting new technical and scientific breakthroughs, par-
ticularly those using data-reliant AI/ML approaches.
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