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Polygons with Prescribed Gauss Map in
Hadamard Spaces and Euclidean Buildings

Andreas Balser

Abstract. We show that given a stable weighted configuration on the asymptotic boundary of a lo-

cally compact Hadamard space, there is a polygon with Gauss map prescribed by the given weighted

configuration. Moreover, the same result holds for semistable configurations on arbitrary Euclidean

buildings.

In the first section, we recall some background material on Hadamard spaces

and Euclidean buildings, and we introduce the concepts needed to state and prove
our theorems. In particular, we define stability for weighted configurations on the
boundary at infinity of a Hadamard space. In the second section, we introduce ultra-
limits and the special cases ultraproducts and asymptotic tubes which we use in our

proofs. In the third section, we prove our results.

Main Theorem Let X be a Euclidean building and c a semistable weighted configura-

tion on its boundary at infinity, or let X be a locally compact Hadamard space and c

a stable weighted configuration on its boundary at infinity. Then the associated weak

contraction Φc has a fixed point. In particular, there exists a polygon p in X such that c

is a Gauss map for p.

For a slightly more general statement in the case of a Hadamard space, see Corol-
lary 3.9.

As an immediate consequence, we can formulate the following classification of

configurations which can occur as Gauss maps on Euclidean buildings and symmet-
ric spaces:

Corollary Let X be a symmetric space of non-compact type or a Euclidean building,

and let c be a weighted configuration on its boundary at infinity. Then there exists a

polygon having this configuration as a Gauss map if and only if the configuration is

semistable in the building case and nice semistable in the case of a symmetric space.

Necessity of semistability, as well as the Theorem and the Corollary in the case
where X is a symmetric space or a locally compact Euclidean building were shown
in [KLM1, KLM2]. We extend their ideas by suitable use of ultralimits. Along the

way, we discuss how rays project to subspaces, and obtain the following result of
independent interest:

Proposition Let X ′ be a Hadamard space and X ⊂ X ′ a closed convex subset. Let

o ∈ X, ρ := oη a ray in X (with η ∈ ∂∞X ′), and π : X ′ → X be the nearest point

projection.
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322 A. Balser

If ∠(η, ∂∞X) < π
2

, then the segments o (π ◦ ρ(t)) converge to the ray oξ (in the cone

topology), where ξ ∈ ∂∞X is the unique point with ∠(η, ξ) = ∠(η, ∂∞X).

If the projection of the ray oη to X is bounded, then there exists a point p ∈ X such

that π ◦ pη(t) = p for all t > 0.

In the last section, we discuss relations of the above results to algebra.

1 Introduction

1.1 Hadamard spaces

We will use the language of non-positively curved metric spaces, as developed in
[Bal95].

Throughout, let X be a Hadamard space, unless otherwise stated.
Recall that X has a boundary at infinity ∂∞X, which is given by equivalence classes

of rays, where two (unit-speed) rays are equivalent if their distance is bounded.
In particular, we will use Busemann functions bη associated to an asymptotic

boundary point η ∈ ∂∞X. A Busemann function measures (relative) distance from
a point at infinity, and is determined up to an additive constant only. Busemann

functions are convex (along any geodesic) and 1-Lipschitz.
Geodesics, rays, and geodesic segments are always assumed to be parametrized by

unit speed (i.e., they are isometric embeddings).
For a line l in X, there is the space Pl of parallel lines. Pl splits as a product Pl

∼=
l ×CS(l), where CS(l) is a Hadamard space again.

For points x, ξ with x ∈ X, ξ ∈ X ∪ ∂∞X, and t ≥ 0 (if ξ ∈ X, let t ≤ d(x, ξ)),
we let xξ(t) denote the point on the segment/ray xξ at distance t from x. When we
denote a ray by oη, we order the points such that o ∈ X and η ∈ ∂∞X.

Definition 1.1 For ξ ∈ ∂∞X and t ≥ 0, we define the map φξ,t : X → X defined
by φξ,t (x) := xξ(t). Observe that φξ,t is a 1-Lipschitz map by convexity of a non-
positively curved metric.

Let o ∈ X be a point in a Hadamard space, and let η, ξ ∈ ∂∞X. Let c, c ′ be the rays
oη, oξ. For points c(t), c ′(t ′), one can consider the Euclidean comparison triangle cor-
responding to the points o, c(t), c ′(t ′), i.e., the Euclidean triangle with side-lengths

d(o, c(t)), d(c(t), c ′(t ′)), d(c ′(t ′), o) (which is well defined up to isometries of the Eu-
clidean plane). The comparison angle between c(t) and c ′(t ′) at o is the angle of the
comparison triangle at the point corresponding to o. It is denoted by ∠̃o(c(t), c ′(t ′)).

We have the following monotonicity property:

0 < t ≤ s and 0 < t ′ ≤ s ′ implies ∠̃o(c(t), c ′(t ′)) ≤ ∠̃o(c(s), c ′(s ′)).

From this, one can deduce a notion of angle between geodesic segments and rays:

∠o(η, ξ) := lim
t,t ′→0

∠̃o(c(t), c ′(t ′)) ∈ [0, π],

and an “angle at infinity”, the Tits angle between boundary points

∠(η, ξ) := ∠Tits (η, ξ) := lim
t,t ′→∞

∠̃o(c(t), c ′(t ′)) ∈ [0, π].
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Polygons with Prescribed Gauss Map in Hadamard Spaces and Euclidean Buildings 323

It is easy to see that the Tits angle between η, ξ does not depend on the chosen base-
point o. The length metric induced on ∂∞X by ∠ is called Tits distance Td, and makes

∂∞X a CAT(1) space. If the Tits angle (between η, ξ) is less than π, there is a unique
geodesic ηξ ⊂ ∂∞X connecting them.

Similarly, the space of directions So, i.e., the completion of the space of starting
directions of geodesic segments initiating in o (modulo the equivalence of directions

enclosing a zero angle), can be regarded as a CAT(1) space.
We state Lemma [BH99, II.8.3], since it will be of fundamental importance in

the proof of Lemma 2.4. It says that given one geodesic ray oη and another point
y ∈ X, the ray yη can be approximated by segments yρ(t) for t large enough, and the

approximation can be controlled independently from the Hadamard space X.

Lemma 1.2 Given ε > 0, m > 0 and c > 0, there is a constant K = K(ε, m, c) > 0
such that: for every ray ρ = oη in a Hadamard-space X, if y ∈ X satisfies d(y, o) ≤ m,

then we have

d
(

yη(c), yρ(K)(c)
)

< ε.

1.2 Euclidean Buildings

We will also need some Euclidean building geometry. For an introduction, we refer
to [KL97, §4]. A brief introduction of the notation we use can be found in [KLM2,
§2.4]. Note that in particular, a Euclidean building is a Hadamard space.

The boundary at infinity of a Euclidean building X of rank n is a spherical building
of dimension n − 1; we refer to [KL97, §3] for an introduction.

We will use that a spherical building is a spherical simplicial complex, where all the
simplices are isometric to a spherical polytope ∆ (in particular, ∆ tesselates Sn−1),

which is the spherical Weyl chamber of the building. Apartments (i.e., isometrically
embedded copies Sn−1) intersect in (unions of) Weyl chambers.

We prove some elementary lemmas which we will use later:

Lemma 1.3 Let X be a Euclidean building, l a line in X with l(∞) = η ∈ ∂∞X, and

c a ray asymptotic to η. Then c eventually coincides with a line parallel to l.

Proof Pick an apartment A ′ ⊃ c, and an apartment A containing η− := l(−∞) in

its boundary, which has the property that ∂A = ∂A ′ near η (i.e., let S ⊂ ∂∞A ′ be the
subset of ∂∞A ′ consisting of the union of Weyl chambers containing η, and let A be
an apartment containing S and η− in its boundary).

We want to show that c(t) ∈ A for large t , which finishes the proof.

We may assume that η is singular, since otherwise c(t) ∈ A for large t by [KL97,
Lemma 4.6.3].

Pick regular points ξi ∈ S (i ∈ {1, 2}) such that η is the midpoint of ξ1ξ2 (and
∠Tits (ξ1, ξ2) < π).

Let ci be the ray c(0)ξi ⊂ A ′. For some t0, both ci(t0) ∈ A ∩ A ′ (again by [KL97,
Lemma 4.6.3]). Then the midpoint of c1(t0)c2(t0) is also in A ∩ A ′; this midpoint is
c(T) for some T (since c1, c2 span a flat sector in A ′), implying that c(t) is in A ∩ A ′

for t ≥ T.
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324 A. Balser

Observe that this shows in particular that the space of strong asymptote classes of
rays asymptotic to η is isometric to CS(l) (see [Kar67], [Lee97, §2.1.3]).

Lemma 1.4 Consider a ray ρ = oξ and a segment op ′ in a Euclidean building X.

Then there is an apartment containing ρ and an initial part of op ′.

Proof The claim is clear if ρ and op ′ initially coincide or their initial directions are
antipodal. So we assume not. By [KL97, Lemma 4.1.2], there is a point p ∈ op ′,

such that the triangle D := ∆(o, p, ξ) is flat (i.e., a flat half-strip). If X is discrete, the
claim follows from [BL04, Proposition 1.3, Remark 1.4]. We give a direct argument
for our special situation here.

We show that D is contained in a half-plane: let H be a flat half-strip containing D

with ∂H ⊃ op; assume that H cannot be enlarged under these conditions, and is not
a half-plane. Since X is complete, we see that H is closed, i.e., of the form ∆(p1, p2, ξ).
Now Sp1

H is a geodesic segment, which can be prolonged to a geodesic of length π in

the spherical building Sp1
X. By [KL97, Lemma 4.1.2], this yields a direction in which

we can glue another flat half-strip to H, so H was not maximal.
Thus, D is contained in a half-plane, and this half-plane is contained in a plane

by [Lee97, Lemma 5.2]. Finally, every plane in X is contained in an apartment by

[Lee97, Corollary 5.4].

1.3 Weighted Configurations at Infinity

In this subsection, we recall some notions from [KLM1, KLM2] needed to discuss
the relationship of configurations on ∂∞X and polygons in X.

Definition 1.5 Let X be a Hadamard space. A weighted configuration c on ∂∞X is
an n-tuple of points (ξ1, . . . , ξn) in ∂∞X together with a weight function

m : {1, . . . , n} → R>0.

There is a weighted Busemann function associated to a weighted configuration c. It

is given by

bc :=

n∑

i=1

mibξi
.

Weighted Busemann functions are convex, asymptotically linear, Lipschitz-continu-
ous, and well defined up to an additive constant. As for any convex, asymptoti-

cally linear Lipschitz-function on a Hadamard space, we can associate a function
slopebc

: ∂∞X → R to a weighted Busemann function, which is given by assigning

the asymptotic slope of bc on a ray oξ to the point ξ. Since two rays asymptotic to the
same boundary point have bounded distance and bc is Lipschitz, the slope does not

depend on the choice of o, so slopebc
is well defined (see also [KLM1, §3]).

We have

slopec(ξ) := slopebc
(ξ) = −

n∑

i=1

mi cos ∠(ξi , ξ).
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Figure 1: Gauss maps

The configuration c is called semistable if slopec ≥ 0, and it is called stable if
slopec > 0.

Observe that (semi-)stability is defined purely in terms of the Tits-geometry of
∂∞X, without reference to X itself.

Now we discuss the relation between polygons and weighted configurations: con-
sider a polygon p in X, which is determined by an n-tuple of points (x1, . . . , xn)
(with xi 6= xi+1 for all i ∈ Zn = Z/nZ

1). We can associate a set of weighted con-

figurations G(p) on ∂∞X to p, by choosing ξi such that xi+1 ∈ xiξi , and setting
mi := d(xi, xi+1). Then all c ∈ G(p) are semistable by [KLM2, Lemma 4.3] (their
proof generalizes without problems). Observe that (if X is not geodesically complete)
it may happen that G(p) = ∅.

An element c ∈ G(p) is called a Gauss map for p (since this construction, in the
case of the hyperbolic plane, was mentioned in a letter from Gauss to Bolyai, [Gau63];
see Figure 1).

On the other hand, consider a weighted configuration c. Let

Φc := φξn,mn
◦ · · · ◦ φξ1,m1

.

Since a composition of 1-Lipschitz maps is 1-Lipschitz, Φc is 1-Lipschitz, i.e., a weak
contraction. Every fixed point of Φc is a first vertex of a polygon p with c ∈ G(p).

A more general discussion of measures on ∂∞X (if X is a symmetric space or
Euclidean building) can be found in [KLM1, KLM2].

1For notational convenience, we consider the indices modulo n.
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326 A. Balser

2 Ultralimits, Ultraproducts, and Asymptotic Tubes

2.1 Ultralimits

This section introduces the notion of ultralimit, and the special cases ultraproduct

and asymptotic tube, which play an important role in our proof. We keep the general
discussion of ultralimits brief and refer the interested reader to [BH99, pp. 77–80]
and [KL97, §2.4] for more details.

Definition 2.1 Let ω be a (fixed) non-principal ultrafilter2, and let (Xi, di, oi)i be a

sequence of metric spaces with metrics di and basepoints oi . Then

Xω := lim
ω

(Xi , di, oi)

is the ultralimit of this sequence, a space consisting of equivalence classes of sequences
(xi) with xi ∈ Xi and d(xi , oi) bounded. The distance between two such sequences
(xi,n)n (for i ∈ {1, 2}) is limω d(x1,n, x2,n), the accumulation point of (d(x1,n, x2,n))n

picked by ω. The equivalence classes consist of sequences having distance zero.

If all Xi are CAT(0), then their ultralimit is a Hadamard space; if all Xi are (addi-
tionally) geodesically complete, then every geodesic segment, ray and line in Xω arises
as ultralimit of geodesic segments, rays, and lines, respectively [KL97, 2.4.2, 2.4.4].

If all Xi are Euclidean buildings with isometric spherical Weyl chamber, then their
ultralimit is also a Euclidean building with the same spherical Weyl chamber [KL97,
§5.1].

Let us assume for the rest of this section that (Xi , di)i = (X, d)i is a constant
sequence, and X is a Hadamard space, so only the basepoint varies in the construction
of the ultralimit Xω .

Then there is a natural map ∗ : ∂∞X → ∂∞Xω , obtained by assigning to ξ ∈ ∂∞X

the equivalence class of rays in Xω, which has finite distance from the ray defined by
the sequence of rays oiξ. We denote the image of ξ by ξ∗.

Now we can push a weighted configuration c on ∂∞X forward to a weighted con-
figuration c∗ on ∂∞Xω by mapping the ξi to ξi,∗ and keeping the weights.

Lemma 2.2 Under the assumptions above, let Φ∗ denote the weak contraction associ-

ated to the pushed forward configuration. Then Φ∗ has the form

Φ∗ ((xi)i) = (Φ(xi))i .

Proof It suffices to show that for any ξ ∈ ∂∞X and a real number m > 0, pushing
towards ξ∗ by φξ∗,m has the form given above. So let x = (xi)i ∈ Xω. Recall that by
definition, the distances d(xi , oi) are bounded. Hence, the ray xξ∗ can be represented
by the ultralimit of the rays xiξ, which implies the claim.

2In our context, a non-principal ultrafilter is a means of (consistently) choosing an accumulation point
for any bounded sequence of real numbers.
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2.2 Ultraproducts

Definition 2.3 For a metric space X let the ultraproduct of X be the ultralimit of the

constant sequence (Xi , di, oi) := (X, d, o); i.e., Xω := limω(X, d, o) (where we have
chosen a basepoint o for X, which has no influence on the isometry type of Xω).

There is a canonic isometric embedding X → Xω sending x to (x, x, . . . ). Observe
that if X is proper (e.g., a locally compact CAT(0)-space), the ultraproduct Xω is

isometric to X. For details on ultraproducts, see [Lyt04, §11].

2.3 Asymptotic Tubes

One of the main ideas in the proof of our main theorem is that the weak contraction

Φc associated to a weighted configuration asymptotically moves a ray to a parallel ray.

We make this idea precise by using particular ultralimits. Throughout this section,
X will be a Hadamard space and ρ = oη will be a ray in X.

Let ξ ∈ ∂∞X. The following lemma says that pushing towards η and ξ asymptot-
ically commutes when moving out along ρ.

Lemma 2.4 Let m, c > 0 and ξ ∈ ∂∞X. Then

lim
t→∞

d
(
φξ,m ◦ φη,c ◦ ρ(t), φη,c ◦ φξ,m ◦ ρ(t)

)
= 0.

Proof Let ot := ρ(t), xt := φη,c(ot ) = ρ(t + c), yt := φξ,m(ot ), and α̂ := ∠(η, ξ).
We may assume α̂ 6= 0, since otherwise η = ξ, and there is nothing to show.

If we set zt := φη,c(yt ), then the claim is d(zt , yt+c) −−−→
t→∞

0.

Let ε > 0 be given.

(i) Let K = K(ε, m, c) be the constant from Lemma 1.2. We may assume K ≥ c.

Let z ′t := ytρ(t + K)(c). We have d(z ′t , zt ) ≤ ε, so we try to get information
about d(z ′t , yt+c).

ξ

ot xt ot+K

η

yt+cyt zt

z ′t

Figure 2: The points from the proof of Lemma 2.4
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(ii) Let ᾱ < α̂ be such that for a Euclidean triangle ABC with sides AC, AB of length
K − c, m respectively, the length of the third side varies by at most ε when the

angle at A varies in the interval [ᾱ, α̂].

Let l be the maximal length of the third side (occurring when the angle is equal
to α̂).

(iii) Observe that in a Euclidean triangle ABC with sides AC, AB of length K, m re-

spectively, and angle at A in the interval [ᾱ, α̂], the third side has length at least
c + (l − 2ε).

Since the constant K from Lemma 1.2 is independent from the Hadamard space
(so we may choose X = R

2 here), the claim follows from (ii).

(iv) Finally, let T > 0 be such that for t > T, we have ᾱ ≤ αt := ∠ot
(η, ξ) ≤ α̂

(observe that the second inequality is trivial).

Now we consider the triangle ∆(yt yt+cρ(t + K)) for t > T. Since the angle cor-
responding to α in the comparison triangle is in the interval [ᾱ, α̂], (ii) implies

d(yt+c, ρ(t + K)) ≤ l ; and since φξ,m is 1-Lipschitz, we have d(yt , yt+c) ≤ c. On
the other hand, we have d(yt , ρ(t + K)) ≥ c + l − 2ε by (iii).

Considering the Euclidean comparison triangle, this shows that we have control

over d(z ′t , yt+c), and this quantity becomes arbitrarily small as ε goes to zero. With
(i), this finishes the proof.

Definition 2.5 In the situation described above, define the CAT(0)-space

Xω := limω(X, d, ρ(i)).

Observe that in Xω , the image of ρ is a line l. Let Tη = Tρ := Pl, and call this space

the asymptotic tube of η (it is easy to see that Tρ
∼= Tρ ′ if ρ and ρ ′ are rays asymptotic

to η).

Consider the map ∗ : ∂∞X → ∂∞Xω introduced at the end of Section 2.1.

Lemma 2.6 We have ∗ : ∂∞X → ∂∞Tη , and for any ξ ∈ ∂∞X, we have ∠(ξ, η) =

∠(ξ∗, η∗).

Proof Let ξ ∈ ∂∞X and m > 0. We claim that the map

lξ,m : t 7→ (φξ,m ◦ ρ(i + t))i

defines a line parallel to l in Xω (for given t , we set the coordinates with i + t < 0

arbitrarily; since these are finitely many, they have no influence on the point defined
in Xω). Indeed, by the Lemma above, the following equality holds in Xω (for t ′ > t):

lξ,m(t ′) = (φξ,m ◦ φη,t ′−t ◦ ρ(i + t))i =

(
φη,t ′−t ◦ φξ,m ◦ ρ(i + t)︸ ︷︷ ︸

defining lξ,m(t)

)

i
.
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The right-hand side shows d(lξ,m(t ′), lξ,m(t)) = t ′ − t for t ′ ≥ t ; hence, lξ,m is a
geodesic line. Clearly, lξ,m stays within bounded distance of l, so it is parallel to l (by

[BH99, II.2.13]).

For given t , we have

∠ρ(i+t)(ξ, η) −−−→
i→∞

∠(ξ, η) and ∠ρ(i+t)(ρ(0), ξ) → π − ∠(ξ, η)

(by [Bal95, Prop. 4.2]), so we find d(lξ,m, l) = m sin ∠(ξ, η).

It is clear that the flat strip spanned by lξ,m ′ and l contains lξ,m for m ′ > m > 0,
so ξ determines a half-plane in Pl if ∠(η, ξ) 6= 0, π. In the other cases, l = lξ,m.

The following observation is immediate from the previous lemma:

Lemma 2.7 Let c be a weighted configuration on ∂∞X, and consider the map

∗ : ∂∞X → ∂∞Tρ. Then slopec(η) = slopec∗
(η∗).

Remark 2.8 One can show that ∗ also has the following properties: the half-planes
determined by ξ, ξ ′ agree if the geodesic segments ηξ, ηξ ′ start in the same direc-

tion. The induced map between the spaces of directions Sη(∂∞X) → Sη∗(∂∞T) is
1-Lipschitz, but not an isometric embedding in general.

We show below that in a Euclidean building, one even gets a map (with the prop-
erties we need) ∗ : ∂∞X → ∂∞Pl for a line l containing ρ. The same result holds for
symmetric spaces of noncompact type.

The question arises whether in a general Hadamard space, one can get a suitable
map to the boundary of R × Xη , the space of parametrized strong asymptote classes

at η (see [Kar67], [Lee97, §2.1.3], [KLM1, §3.1.2]).

However, consider the following subset of the Euclidean plane:

X = {(x, y) | x ≥ 1, y ≥ log x}.

With the induced length metric, X becomes a Hadamard space; the boundary at in-
finity is an arc of length π

2
. Consider the boundary point η corresponding to the ray

ρ in X which is given by parametrizing the graph of the logarithm with unit speed.

Then Xη consists of one point only (every ray asymptotic to η eventually lies on the
graph of the logarithm), but Tη is a half-plane.

2.4 Asymptotic Tubes in Euclidean buildings

In the case where X is a Euclidean building or a symmetric space, the construction
described above specializes to the folding map described in [KLM1, §3.2.5]. We dis-

cuss the building case:

Lemma 2.9 Let X be a Euclidean building, ρ = oη a ray in X, and l a line extending ρ.

Let T be the asymptotic tube associated to ρ. Then there is a natural isometric embedding

ι : Pl → T, and we have Im(∗) ⊂ ∂∞(ι(Pl)).
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Proof We state an explicit formula for ι. We map p ∈ Pl to (φη,i(p))i .
Since φη,t |Pl

is an isometry of Pl for every t ≥ 0, the first claim holds.

Let ξ ∈ ∂∞X be a boundary point of X. For t large enough, the rays ρ(t)η
and ρ(t)ξ bound a Euclidean sector (by discreteness of the angle, see [KL97, Axiom
4.1.2.EB2]). This shows that φξ,m eventually maps the ray ρ to a parallel ray. Since
this ray eventually coincides with a line parallel to l by Lemma 1.3, the claim follows.

An immediate consequence is:

Lemma 2.10 Let c be a weighted configuration on the boundary of the Euclidean

building X. Let l be a line with limt→±∞ l(t) = ξ±. Let c∗ denote the weighted config-

uration on ∂∞Pl obtained from c via Lemma 2.9. Then there exists T > 0 such that

∀t > T : Φc ◦ l(t) = Φc∗ ◦ l(t).

Proof In the proof of Lemma 2.9, we showed that the definition of ι implies that
the claim holds for configurations consisting of a single point, i.e., for maps φξ,m.

Since Φc, Φc∗ are finite compositions of such maps, the lemma follows.

For Euclidean buildings, we obtain the following refinement of Lemma 2.7:

Lemma 2.11 Let X be a Euclidean building, and let c be a weighted configuration

on its boundary at infinity. Let η ∈ ∂∞X, and l a line asymptotic to η. Consider the

measure c∗ on ∂∞Pl obtained via Lemma 2.9. Then

slopec = slopec∗

on a neighborhood of η.

Proof Let U be the neighborhood of η consisting of points lying in a common Weyl
chamber with η, and let ξ ∈ U , ξ ′ ∈ ∂∞X. It follows from the proof of Lemma 2.9
that ∠(ξ, ξ ′) = ∠(ξ∗, ξ

′
∗), since the triangles ξηξ ′ and ξ∗η∗ξ

′
∗ are isometric (both are

spherical, have two sides of the same length, and have the same angle at η(∗)).

Lemma 2.12 Let X be a Euclidean building, and c a semistable configuration on its

boundary at infinity. Let η ∈ ∂∞X be a point with slopec(η) = 0, and l a line

asymptotic to η. Consider the measure c∗ on ∂∞Pl obtained via Lemma 2.9. Then

c∗ is semistable on Pl.

Proof The measure c∗ is supported on the product l ×CS(l), and

slopec∗
(η∗) = slopec(η) = 0.

Thus for the antipode η−
∗ of η∗, we have slopec∗

(η−
∗ ) = − slopec∗

(η∗) = 0.

For a point ξ on ∂∞Pl which has distance less than π from η∗, the claim
slopec∗

(ξ) ≥ 0 follows from (strict) convexity of the zero-sublevel set of slopec∗
[KLM1, Prop. 3.1.(ii)], together with Lemma 2.11.
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3 The Results

3.1 Projecting Rays to Subspaces

We examine how rays project to a subspace of a Hadamard space:

Proposition 3.1 Let X ′ be a Hadamard space and X ⊂ X ′ a closed convex subset.

Consider η ∈ ∂∞X ′ such that ∠(η, ∂∞X) < π
2

. Let o ∈ X, ρ := oη, and π : X ′ → X

be the nearest point projection. Then the segments o (π ◦ ρ(t)) converge to the ray oξ
(in the cone topology), where ξ ∈ ∂∞X is the unique point with ∠(η, ξ) = ∠(η, ∂∞X).

Proof Observe that ∂∞X is a closed convex subset of ∂∞X ′ (it is even closed in the

cone topology). Since ∠(η, ∂∞X) < π
2

, the projection ξ of η exists and is unique
[BH99, II.2.6].

Let ᾱ := ∠(η, ξ), ct := ρ(t), pt := π(ct ), and αt := ∠̃o(ct , pt ).

By considering triangles D of the form ∆(o, ct , oξ(t)), we conclude d(ct , pt ) ≤
t sin ᾱ (since the comparison triangle of D has angle at most ᾱ at o, the CAT(0)-

condition gives the upper bound on d(ct , pt )); this implies that αt ≤ ᾱ for all t > 0.

Since d(ct , pt ) ≤ t sin ᾱ, we have d(o, pt ) ≥ t(1−sin ᾱ). Thus, for s(1−sin ᾱ) ≥ t ,
the same argument as for the boundedness of αt shows αt ≤ αs (∗).

Let tn := (1 − sin ᾱ)−n for n ∈ N (observe that ᾱ ≥ αt > 0 as soon as ct 6∈ X).
By what we have shown, αtn

is an increasing bounded sequence, which converges to

some α̂ ≤ ᾱ.

Given ε > 0, let N be such that αtN
≥ α̂ − ε. Then for t ≥ tN+1 (so t ∈ [tn, tn+1]

for some n > N), we have α̂− ε ≤ αtN
≤ αt ≤ αtn+2

≤ α̂ by (∗). Hence αt −−−→
t→∞

α̂.

We will show next that d(pt , ops)/t → 0 for s, t large; since d(pt , o) ≥ t(1−sin ᾱ),
this implies that the segments opt converge to a ray.

For s(1 − sin ᾱ) ≥ t , let ps,t be the projection of ct to the segment ops. For ε > 0,
there exists T such that t ≥ T implies sin αt ≥ sin α̂−ε. Then for s(1− sin ᾱ) ≥ t ≥
T, we have d(ct , pt ) ≥ t(sin αt ) ≥ t(sin α̂ − ε) and d(ct , ps,t ) ≤ t sin αs ≤ t sin α̂.

Consider the comparison triangle ∆(ct , pt , ps,t ). Since pt is the projection of ct to
X, its angle at pt is at least π

2
. Hence for the comparison angle γs,t := ∠̃ct

(pt , ps,t ), we

have cos γs,t ≥
sin α̂−ε

sin α̂ −−→
ε→0

1.

Thus

d(pt , ps,t )/t −−−−−−−−−−−−→
ε→0,s(1−sin ᾱ)≥t≥Tε

0.

This shows that the segments opt converge to a ray oξ̂ for some ξ̂ ∈ ∂∞X.

By [KL97, Lemma 2.3.1], we have ∠(η, ξ̂) ≤ lim inft→∞ ∠̃(ct , pt ) = α̂ ≤ ᾱ.
Hence, α̂ = ᾱ and ξ̂ = ξ.

Proposition 3.2 Let X ′ be a Hadamard space and X ⊂ X ′ a closed convex subset.

Consider η ∈ ∂∞X ′, and assume that for some o ∈ X, the projection of the ray oη to X

is bounded, i.e., there is m such that d(o, π ◦ oη(t)) < m for all t > 0.

Then there exists a point p ∈ X such that π ◦ pη(t) = p for all t > 0.
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Proof Let ct := oη(t) and pt := π(ct ). Let t1 := 1, and define tn inductively by
tn := K( 1

n
, m, tn−1), where K is the constant from Lemma 1.2. Observe that tn is

strictly increasing and unbounded.
Observe that π(ptn

ctn
(tn−1)) = ptn

. Since π is 1-Lipschitz, we get from Lemma 1.2
that d(ptn

, π(ptn
η(tn−1))) < 1

n
.

We consider the ultraproducts Xω ⊂ (X ′)ω . Let πXω : (X ′)ω → Xω be the projec-

tion. Note that πXω can be given in the form

πXω (xn)n = (π(xn))n.

Then p ′ := (ptn
)n is a point in Xω which satisfies πXω (p ′η(t)) = p ′ for all t > 0.

Now let p be the projection of p ′ to X. By the above, we have πXω |X ′ = π, so
πXω (pη(t)) ∈ X. On the other hand, d(πXω (pη(t)), p ′) ≤ d(p, p ′) = d(p ′, X), so
the projection of the ray pη is constant.

Remark 3.3 Observe that a point with the properties from the lemma above is a
global minimum of the Busemann function bη|X . Note also, that the example from
Remark 2.8 shows that the assumption of the proposition above need not be fulfilled

if ∠(η, ∂∞X) ≥ π
2

.

3.2 Persistence of Semistability

Now persistence of semistability follows easily:

Proposition 3.4 Let X ⊂ X ′, where X is a closed convex subset of the Hadamard

space X ′, and let c be a weighted configuration on the asymptotic boundary of X. If c is

semistable on X, then c is semistable on X ′.

Proof Assume there is η ∈ ∂∞X ′ with slopec(η) = −c < 0. From the formula for
the slope, we conclude that there must be some ξi in the support of c which satisfies

∠(η, ξi) < π
2

. Hence Proposition 3.1 applies.
From this point, we obtain a contradiction as in the end of the proof of [KLM1,

Lemma 3.10(ii)]:
Use the notation of the proof above, and for s ≥ t , let p̄s,t := ops(

t
s
d(o, ps). We

may normalize bc such that bc(o) = 0. Then, by convexity, we have bc(cs) ≤ −cs. As
in the proof of [KLM1, Lemma 3.10], we have bc ≥ bc ◦ π (where π is the projection
X ′ → X). In particular, b(ps) ≤ −cs.

For s ≥ t , we conclude from convexity that bc(ps,t ) ≤ −ct . Fixing t and letting

s → ∞, this shows bc(oξ(t cos α̂)) ≤ −ct , implying slopec(ξ) ≤ −c/ cos α̂ < 0. This
is the desired contradiction.

Remark 3.5 Observe that we cannot expect stability to be preserved under general

embeddings, as one sees, e.g., by embedding X into X × R.
We will only use the above proposition for the inclusion X ⊂ Xω . However, we

may not expect stability to be preserved in this case either, as the following example
shows:
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≤ m

do
η

xt

Φc(xt )

Figure 3: For t large, d(o, Φc(xt )) < d(o, xt ).

Consider the disjoint union of copies of H
2 × [−n, n] for n ∈ N, identified along

H
2 ×{0}. This is a Hadamard space by [BH99, II.11.3]. Its boundary is precisely the

boundary of H
2, but its ultraproduct contains a copy of H

2 × R.

3.3 Proof of the Main Theorem

In this section we present the proof of our main theorem. We will need a lemma
about fixed points of weak contractions, which we recall without proof:

Lemma 3.6 ([KLM2, Lemma 4.5]) Let X be a Hadamard space of finite diameter.

Then every weak contraction Φ : X → X has a fixed point.

The following lemma was essentially contained in an earlier version of [KLM2]:

Lemma 3.7 Let c be a weighted configuration on the boundary of a Hadamard space

of the form l × Y , where l is a line with endpoints η, η−, and Y is a Hadamard space.

If slopec(η) > 0, then there exists T > 0 such that d(Φc((l(t), y)), (l(0), y)) < t for

all t > T and y ∈ Y .

Proof The configuration c can be split into configurations c1, c2 on {η, η−}, ∂∞Y

respectively, and this splitting is compatible with the action of Φ (see [KLM1, Lemma
3.12]). In particular, we have (bη ◦ Φc − bη) ≡ slopec η =: d > 0.

Let o := (l(0), y) and xt := (l(t), y). The triangle ∆(o, xt , Φc(xt )) is Euclidean,

so the claim follows from the fact that the displacement of Φc is bounded (by m :=∑n
i=1 mi); see figure 3.

Now we have all ingredients for the proof of our main theorem. We start with the

building case:

Theorem 3.8 Let X be a Euclidean building, and let c be a semistable weighted config-

uration on its boundary at infinity. Then the associated weak contraction Φc has a fixed

point. In particular, there exists a polygon p in X such that c is a Gauss map for p.

Proof Fix a basepoint o ∈ X. If we find a ball B(o, R) ⊂ X which is preserved by Φ,
we are done by Lemma 3.6.
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We argue by contradiction: Assume that for each i ∈ N, there exists a point xi ∈ X

such that d(o, xi) ≥ i and d(Φ(xi), o) ≥ d(xi , o) (∗). Observe that (∗) holds for each

x ∈ oxi since Φ is a weak contraction.
The segments oxi define a ray ρ = oη in the ultraproduct Xω (for some η ∈

∂∞Xω). We have
ρ(t) = (oxi(t))i

where we set oxi(t) := o for i < t (clearly, these finitely many points have no influ-
ence on the point defined in Xω).

Let c∗ be the configuration c considered as a configuration on ∂∞Xω , and let Φ∗

be the associated weak contraction. Now ρ satisfies d(Φ∗(ρ(t)), o) ≥ d(ρ(t), o) = t

for all t , since we have

d(Φ∗(ρ(t)), o) = limω d(Φ(oxi(t)), o)︸ ︷︷ ︸
≥t if i≥t

≥ t = d(ρ(t), o).(†)

By Proposition 3.4, there are two cases to be considered:

Case 1 (slopec∗
(η) > 0) We consider the asymptotic tube Tη , and the pushed for-

ward configuration, which we denote by c∗∗; the associated weak contraction will be
denoted by Φ∗∗.

Let l be the line which is obtained from ρ when passing to the asymptotic tube. By
Lemma 2.7 and Lemma 3.7, we have d(Φ∗∗ ◦ l(t), l(0)) < t for large t . This implies

that for large t and ω-almost all i, we have d(Φ∗ ◦ ρ(i + t), ρ(i)) < t .
By the triangle inequality, this implies d(Φ∗ ◦ ρ(i + t), o) < i + t , in contradiction

to (†).

Case 2 (slopec∗
(η) = 0) We argue by induction on rank(X). Let l be a line extend-

ing ρ; we pass to a configuration c∗∗ on ∂∞Pl (via Lemma 2.9). Then c∗∗ is semistable

by Lemma 2.12. Since Pl = l ×CS(l), c∗∗ splits, and we obtain a semistable configu-
ration on ∂∞l and a semistable configuration on ∂∞CS(l).

A semistable configuration on the boundary of a flat Euclidean space (i.p. a line)
yields a constant map Φ; a semistable configuration on ∂∞CS(l) has a fixed point by

the induction hypothesis.
Thus, we have a line of fixed points for c∗∗ in Xω . This line of fixed points yields

a ray of fixed points for Φ∗ by Lemma 2.10. So let p ∈ Xω be a fixed point of Φ∗.
There is a unique point p ′ ∈ X which is closest to p. Since Φ∗ is 1-Lipschitz, it has to

fix p ′. Now the observation Φ∗|X = Φ finishes the proof.

Corollary 3.9 Let X be a Hadamard space, and c a weighted configuration on its

boundary at infinity, which is stable on Xω . Then the associated weak contraction Φc

has a fixed point. In particular, there exists a polygon p in X such that c is a Gauss map

for p.

Proof By assumption, Case 2 in the proof of Theorem 3.8 above does not occur;
hence the proof works exactly the same (observe that building geometry was used
only in the second case).
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In the locally compact case, Xω ∼= X; hence Corollary 3.9 finishes the proof of the
Main Theorem.

Observe that we cannot expect Theorem 3.8 to fully generalize to Hadamard
spaces, since in the case of symmetric spaces, nice semistability of the configuration
is necessary.

4 Relations to Algebra

Here, we discuss the relevance of our main theorem to problems from algebra. Such
problems were studied in [KLM3].

In the algebraic problems, one only fixes the type of a configuration, i.e., the pro-
jection of the points ξi to the spherical Weyl chamber ∆. Taking the weights mi into

account, such a type of a configuration may be viewed as an element of ∆
n
euc , n copies

of the Euclidean Weyl chamber (the Euclidean cone over the spherical Weyl cham-
ber ∆). Consider the following theorem:

Theorem 4.1 ([KLM2, Theorem 1.2]) Let X be a Euclidean building. For h ∈ ∆
n
euc

there exists an n-gon in X with ∆-side lengths h if and only if there exists a semistable

weighted configuration on ∂∞X of type h.

Our main results give a natural proof, and may in fact be seen as a refinement,
since the proof in [KLM2] does not provide explicit configurations for which there
exists a fixed point. This indicates that there will eventually be more applications to
algebra.
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