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Abstract

With a focus on the risk contribution in a portofolio of dependent risks, Colini-Baldeschi
et al. (2018) introduced Shapley values for variance and standard deviation games. In this
note we extend their results, introducing tail variance as well as tail standard deviation
games. We derive closed-form expressions for the Shapley values for the tail variance
game and we analyze the vector majorization problem for the two games. In partic-
ular, we construct two examples showing that the risk contribution rankings for the
two games may be inverted depending on the conditioning threshold and the tail fat-
ness. Motivated by these examples, we formulate a conjecture for general portfolios.
Lastly, we discuss risk management implications, including the characterization of tail
covariance premiums and reinsurance pricing for peer-to-peer insurance policies.
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1. Introduction

Tail risk denotes the chance of losses exceeding a fixed threshold. Since extreme losses
can compromise the stability of a portfolio of risks, the quantification of tail risk is a widely
studied topic in operational research and in actuarial science [4, 15, 33]. In the risk management
of financial and insurance portfolios, modelling the tail risk provides important insights. The
calculation of tail risk measures is imposed by regulators on banks and insurance companies
in order to assess the companies’ solvency ability [14, 26, 27].

One fundamental problem in the study of tail risk concerns its allocation into individual risk
sources [22]. For instance, consider a portfolio of insurance contracts. Estimating the contribu-
tion of individual risks (i.e. policyholders) to the total portfolio loss is essential for undertaking
proper actuarial and risk management actions. Different tail risk allocation methods can be
found in the literature: [16] allocates the tail variance loss into individual risk contributions
and calls this allocation method the tail covariance premium principle; [39] slightly modifies
this premium principle and introduces the adjusted tail covariance premiums; [14] studies the
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properties of optimal risk sharing methods for quantile-based risk measures; [6] allocates the
worst-case value-at-risk among homogeneous agents.

The Shapley value [34] from cooperative game theory is attracting increasing attention as an
allocation method satisfying desirable properties. The main rationale of the Shapley value is to
fairly attribute the total value created by a team of players to individual team members. If play-
ers are identified with risks and the grand total value with a specific risk metric, the Shapley
value becomes a very flexible and general fair attribution method. It has been applied to quan-
tify variable importance in statistical linear regression models [18, 25], computer experiments
[21, 29–31], health risk analysis [9], and actuarial science [24, 32, 36]. The Shapley value
was proposed in [1] as a solution to allocating the capital according to the tail expectation risk
measure.

A recent work [8] considered the problem of allocating the variance and the standard devi-
ation of a portfolio into individual risk components using the Shapley value. It provided a
closed-form expression for the Shapley value for the variance game and conjectures the rela-
tionship of the Shapley values for the variance and standard deviation games (namely, the
normalized variance Shapley values majorize the standard deviation ones); [5, 17] proved
that the conjecture holds true in the case of independent risks, while [17] provided some
counterexamples in the dependent case.

In this work, we want to extend the results of [8] to allocating the tail risk measured by the
tail variance and tail standard deviation. To do this, we first introduce the Shapley values for
the tail variance and the tail standard deviation games, and we provide a closed formula for
the Shapley value for the former game. We then investigate the relationship between the two
Shapley values. To illustrate, suppose you have a set of n independent risks (i.e. non-negative
random variables) and consider the tail-conditioned random variables generated by a tail-risk
scenario. This way, the total risk is given by the sum of losses exceeding the threshold. As a
consequence, a dependence is generated among the tail-conditioned random variables. Does
the conjecture of [8] (which holds true for the independent, unconditioned risks) continue
to hold for the tail-conditioned random variables, independently from the tail threshold? We
present two illustrative examples. In the first one the original independent risks are light-tail
distributed and the majorization continues to hold in the tail-conditioned case. In fact, com-
paring two differently distributed tail-conditioned variables, our computations show that the
difference of their variances increases as the tail threshold increases, and so does the differ-
ence of the covariances between the two risks with a third one whose distribution is equal to
that of the second one.

In the case of a heavy-tail example, instead, the original random variables have suitable
heavy-tail distributions and the majorization is inverted for a sufficiently high threshold of
the tail. Then, we conjecture that such inversion cannot occur for light-tail distributions,
while it occurs for suitable heavy-tail distributions. We observe, in particular, that the inverted
majorization may imply an inverted ranking between the Shapley values relative to the variance
and standard deviation games. Since heavy-tail distributions are used to model catastrophic
risks, our conjecture, if verified, can have important theoretical and practical implications. For
instance, one consequence is that the allocation of the standard deviation and the variance
might produce two different risk rankings, since a policyholder could be considered as the
riskiest one in one metric but not in the other.

Furthermore, the analytical derivation of the Shapley values for the tail variance game
allows the characterization of the covariance premium principles of [16, 39] as Shapley values.
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The fairness of the Shapley value as an allocation method provides a theoretically sound justifi-
cation for the adoption of these premium principles. Lastly, we discuss the possible application
of the above Shapley value allocations to the pricing of a peer-to-peer reinsurance contract [11].
Since the majorization of the Shapley values for the tail variance and the tail standard deviation
games in [8] does not hold in general, the choice of a tail risk premium might invert the risk
ranking contribution in peer-to-peer insurance. Finally, we recall that [20] recently proposed
the Shapley value for tail sensitivity analysis. However, our contribution is quite different, since
they consider another type of game, do not find a closed form expression for the Shapley value,
nor study the majorization problem.

This paper is structured as follows. Section 2 introduces the Shapley value. Section 3
presents the variance and the standard deviation games of [8] and recalls a result on the inverted
majorization in the dependent case. In Section 4 we introduce the Shapley values for the tail
variance and standard deviation games. Section 5 discusses the majorization problem and the
dependence of the risk ranking on the conditioning threshold and on the tail fatness. Section 6
presents the implications for the tail risk management of portfolios of insurance risks.

2. Shapley value

Consider the situation in which a team of players generate a value. The Shapley value orig-
inates from game theory [34] as a method to attribute to every player of the team the fair
part of the value they contributed. Let v(J) be the value generated by the coalition of players,
J ⊆ N = {1, 2, . . . , n}, with the assumption v(∅) = 0. The total value of the game produced by
the team is then v(N).

Consider the following desirable properties for an attribution method:

• Efficiency:
∑n

i=1 φi(v) = v(N).

• Symmetry: If v(J ∪ {i}) = v(J ∪ {j}) for all J ⊆ N \ {i, j}, then φi(v) = φj(v).

• Dummy player: If v(J ∪ {i}) = v(J) for all J ⊆ N, then φi(v) = 0.

• Linearity: If two value functions v and w have Shapley values, respectively, φi(v) and
φi(w), then the game with value αv + βw has Shapley values αφi(v) + βφi(w) for all
α, β ∈R.

The efficiency property states that the sum of the Shapley values of all players must equal
the total value of the game to be shared. The symmetry property requires that players making
the same contributions to any coalition must be paid equal shares. If the marginal contribution
v(J ∪ {i}) − v(J) is null whatever coalition the ith player joins, this player receives a null share
and is called a dummy player. The linearity property states that if two games are combined,
then the received share of each player must be the combination of their shares from the two
games.

Shapley [34] proved that the value given by

φi(v) =
∑

J⊆N\{i}

(n − |J| − 1)!|J|!
n! [v(J ∪ {i}) − v(J)]

is the unique attribution method satisfying these four properties, where |J| denotes the cardi-
nality of J. This is called the Shapley value. We note that the Shapley value for the ith player
is based on the marginal increase in the value v(J ∪ {i}) − v(J) when they join coalition J, and
such marginal increase is then averaged over all possible coalitions J.
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Equivalently, the Shapley value can be expressed in terms of permutations as [8]

φi(v) = 1

n!
∑

ψ∈P(N)

(v(Pψ (i) ∪ i) − v(Pψ (i))),

where P(N) is the set of all permutations of N, and Pψ (i) is the set of all players who precede
i in the order directed by the permutation ψ .

One important feature of the Shapley value is that it is considered a fair attribution method.
To formalize the concept of fairness, consider the following property of balanced contributions.

• Balanced contributions: Denote by v−k the game obtained by restricting the set of play-
ers to N \ {k}. Then φ satisfies the axiom of balanced contributions if φi(v) − φi(v−j) =
φj(v) − φj(v−i) for all i, j ∈ N.

The Shapley value was characterized in [19] using the efficiency and the balance contribu-
tion properties. This property can be interpreted in terms of fairness since, for two cooperating
players, it states that the value produced by them is the same with respect to what they would
produce without cooperation. It was stated in [3] that the Shapley value is the unique effi-
cient attribution method satisfying this equal contribution property, making it ‘a benchmark
for fairness’ (p. 23). This fairness feature becomes a relevant justification for the adoption of
the Shapley value as allocation method.

3. Variance and standard deviation games of [8]

Given a set of risks (X1, X2, . . . , Xn), pose S = ∑n
i=1 Xi and SJ = ∑

i∈J Xi for every J ⊆ N =
{1, 2, . . . , n}. The value function for the variance game was defined in [8] as ν(J) = Var[SJ].
The intuition is to regard risks as players producing a total value of the game ν(N) = Var[S],
i.e. the variance of the portfolio. Thus, the Shapley value for the variance game quantifies the
contribution of every risk to the porfolio variance. It was proved that the Shapley value for the
variance game is

φi(ν) = Cov[Xi, S], (1)

where Cov[·, ·] denotes the covariance. The representation in (1) is very convenient, since in
general it is not possible to find an explicit representation of the Shapley values and expensive
numerical techniques must be adopted [31].

We note that this expression of the Shapley values for the variance game in (1) is well
studied in the actuarial literature. In particular, the normalized Shapley value for the variance
game,

φ̃i(ν) = φi(ν)

ν(N)
= Cov[Xi, S]

Var[S]
, (2)

is known as the covariance allocation method [13, 28]:

[the covariance allocation method] explicitly takes into account the dependence struc-
ture of the random losses (X1, X2, . . . , Xn). Business units with a loss that is more
correlated with the aggregate portfolio loss S are penalized by requiring them to hold a
larger amount of capital than those that are less correlated [13, p. 8].

A second game was introduced in [8]. It defined the standard deviation game considering
the value function μ(J) = √

Var[SJ] for all J ⊆ N. However, in such a case it is not possible
to express the resulting Shapley value φi(μ) in closed form. Then, [8] compared the resulting

https://doi.org/10.1017/jpr.2023.28 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.28


Tail variance and Shapley values 157

Shapley values for the variance game with those for the standard deviation game in terms
of vector majorization. In particular, a conjecture was formulated on the majorization of the
Shapley values. Given two vectors x, y ∈R

n, x is said to be majorized by y (x ≤ y) if

n∑
i=k

x(i) ≤
n∑

i=k

y(i) for all k ∈ {2, . . . , n},
n∑

i=1

xi =
n∑

i=1

yi,

where x(1) ≤ x(2) ≤ · · · ≤ x(n) is the increasing rearrangement of x. Using this notation, the
conjecture can be formulated as follows.

Conjecture 1. (Colini-Baldeschi et al. [8].) For any n × n covariance matrix �, if ν is the
corresponding variance game and μ the corresponding standard deviation game, then

1

μ(N)
�(μ) ≤ 1

ν(N)
�(ν), (3)

where � denotes the vector of the Shapley values.

This conjecture was proved to hold true in the independent case in [5, 17]. However, [17]
provided two counterexamples to the conjecture considering three dependent random variables.
In general, such counterexamples can be seen to derive from Theorem 1.

3.1. Inverted majorization

Denote by y and x the normalized vectors of Shapley values relative, respectively, to the
variance and the standard deviation game, i.e.

yi = φi(ν)∑n
i=1 φi(ν)

= φi(ν)

ν(N)
, xi = φi(μ)

μ(N)
.

Then the following theorem holds.

Theorem 1. Consider three non-negative valued risks (X1, X2, X3) such that Var[X1]<
Var[X2]<Var[X3], whereas the Shapley values relative to the variance game are equal, i.e.
Cov[Xi, X1 + X2 + X3] = 1

3 Var[X1 + X2 + X3], i = 1, 2, 3. Then, denoting by y and x the vec-
tors of normalized Shapley values relative, respectively, to the variance game ν and the
standard deviation game μ, y is majorized by x.

Remark 1. It is easily checked that the theorem also holds in the cases Var[X1] = Var[X2]<
Var[X3] and Var[X1]<Var[X2] = Var[X3].

The proof can be found in [17]. Theorem 1 provides counterexamples to the conjecture in
[8], as under its conditions the majorization in (3) is inverted. Conversely, if the three risks
were independent, the conjectured majorization would hold, as proved in [5, 17]. In such a
case the Shapley values relative to the variance game are equal to the variances of the risks.

As we saw in Section 2 the Shapley value is a fair method to share the total value of the game
among individual risks. The Shapley values of the two games are fair allocations of the two
total game values, namely the portfolio variance and standard deviation. However, coming to
the relationship between the two Shapley values, Theorem 1 shows that, in the dependent case,
the Shapley value for the variance allocation may produce a risk ranking which is different
from the one produced by the Shapley value for the standard deviation game. In fact, under the
assumptions of the theorem, considering the variance and standard deviation Shapley values
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as risk metrics, it occurs that, by a small modification of the random variables’ distributions,
the riskiest random variable relative to the variance game is not the riskiest one in the standard
deviation game. This implies that, depending on the choice of the value of the game, one
random variable Xi can be considered proportionally less or more risky for the portfolio. Then,
simply changing the game (i.e. the way we measure risk in the portfolio), an effect of risk
transfer takes place among the random variables, since the risk ranking is changed.

4. Tail variance and standard deviation games

In this paper we want to extend the results of [8] to the tail variance and the tail standard
deviation. This allows the risk analyst to identify and quantify the most important risks driving
the tail variability; it can be done introducing a tail threshold s and conditioning the loss as
follows.

Definition 1. We define the value function for the tail variance game as νs(J) = Var[SJ | S> s].

In parallel to the results of [8], we can characterize the tail variance game.

Theorem 2. For the value function defined in Definition 1, φi(νs) = Cov[Xi, S | S> s].

Proof. First of all, we define new variables (X̃1, X̃2, . . . , X̃n) as follows:

X̃i =

⎧⎪⎪⎨⎪⎪⎩
x if Xi = x> s,

x if Xi = x ≤ s and
∑

j �=i Xj > s − x,

0 if
∑n

j=1 Xj ≤ s − x.

(4)

Then, it is easily checked that, for any subset J of {1, 2, . . . , n},

Var

[ ∑
i∈J

X̃i

]
= Var

[ ∑
i∈J

Xi | S> s

]
.

It follows that the tail variance game νs, relative to the variables (X1, X2, . . . , Xn), is
equivalent to the variance game relative to (X̃1, X̃2, . . . , X̃n). Hence, we can apply the result
of [8], implying φi(νs) = Cov

[
X̃i,

∑n
j=1 X̃j

]
. On the other hand, we get Cov

[
X̃i,

∑n
j=1 X̃j

] =
Cov[Xi, S | S> s], which proves the theorem. �

This closed-form expression generates the Shapley value for the tail variance game, avoid-
ing the problem of estimating the value for all the 2n possible coalitions, which becomes
computationally demanding as n increases. The Shapley value may be negative: if Xi con-
tributes to hedging the total tail risk, it is rewarded with a negative Shapley value. In the
actuarial literature we can find different works concerning this allocation principle. For
instance, [37] derived an analytical expression for Cov[Xi, S | S> s] in the case of sums of
multivariate normal random variables. This result was extended in [38] to the case of ellipti-
cal distributions. Nonetheless, in our contribution for the first time this allocation principle is
interpreted as a Shapley value. If we normalize the Shapley values for the tail variance game,
we obtain

φ̃i(νs) = φi(νs)

νs(N)
= Cov[Xi, S | S> s]

Var[S | S> s]
,

which are again Shapley values by linearity. In analogy to the covariance allocation princi-
ple in (2), we call the Shapley value φ̃i(νs) the tail covariance allocation principle. Note that
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this allocation is a pure number independent of the currency unit. It represents the fractional
contribution of the random variable Xi to the tail covariance.

In parallel to [8], we can introduce the tail standard deviation game.

Definition 2. We define the value function for the tail standard deviation game as μs(J) =√
Var[SJ | S> s].

The related Shapley value allocates the tail standard deviation as the total value of the game.
However, as in the unconditioned case, no closed-form expression is available. In order to
compare the rankings of the two Shapley values arising from Definitions 1 and 2, we consider
the majorization problem in the next section.

5. The majorization problem and the dependence on the threshold

It is interesting to investigate whether the analogue of Conjecture 1 could hold true in the
tail conditional case. The answer is negative for suitable heavy-tail variables, as our following
example will show.

To illustrate our scenario, we consider the situation where non-negative random variables
refer to losses of an insurance portfolio. The insurance premiums are paid only if the total loss
of the portfolio overtakes a given threshold s ≥ 0. Thus, when s> 0, we have observed how
that is equivalent to considering a new portfolio (X̃1, X̃2, . . . , X̃n) defined by (4). Therefore,
assuming X1, X2, . . . , Xn to be independent, X̃1, X̃2, . . . , X̃n are no longer so. Hence, we won-
der whether the majorization x̃(s) ≤ ỹ(s), holding when s = 0, may not hold or even be inverted
for higher values of s.

To this end we consider two examples, where three independent non-negative variables
X1, X2, X3 have, respectively, light-tail (exponential) and heavy-tail (slightly modified Pareto
ones) distributions. By applying Theorem 1 we prove that in the latter case the inverted
majorization occurs for suitable high values of the tail threshold, while the majorization
is preserved in the light-tail case. In the following, we provide outlines of the proofs of
Propositions 1 and 2, omitting the details that appear in the full proofs in the Appendix.

5.1. A light-tail example without inversion

Consider three independent non-negative variables X1, X2, X3 with distributions given
by F1(x) = 1 − e−(1+ε)x, F2(x) = F3(x) = 1 − e−x. We have Var[X1] = (1 + ε)−2 <Var[X2] =
Var[X3] = 1, while E[X1] = (1 + ε)−1 <E[X2] =E[X3] = 1.

Proposition 1. Consider the tail-conditioned variables X̃i. Then, no matter how high the tail
threshold s is and how small the parameter ε is, φ1(νs)<φ2(νs) = φ3(νs), so that the inverted
majorization caused by Theorem 1 does not occur.

Proof (outline). Taking s> 0 sufficiently high and ε > 0 sufficiently small, we want to
estimate the sign of the difference

G(ε, s) = φ1(νs) − φ2(νs) = Cov[X̃1, X̃1 + X̃2 + X̃3] − Cov[X̃2, X̃1 + X̃2 + X̃3].

Explicitly, recalling that X̃2 and X̃3 are identically distributed,

G(ε, s) =E[X̃2
1] −E[X̃2

2] +E[X̃1X̃3] −E[X̃2X̃3] −E
2[X̃1] −E[X̃1]E[X̃3] + 2E2[X̃2]. (5)

First of all, we observe that, for i �= j �= k,

Prob(X̃i > x) = Prob(Xi > x and Xj + Xk > s − x) = Fi(x)
∫ +∞

s−x
(fj ∗ fk)(z) dz,
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where Fi(z) = 1 − Fi(z), fi(z) = F′
i(z), and fj ∗ fk denotes the convolution product, so that∫ +∞

s−x (fj ∗ fk)(z) dz = (Fj ∗ Fk)(s − x). Moreover,

Prob(X̃i ≤ x and X̃j ≤ y) = 1 − Prob(X̃i > x) − Prob(X̃j > y) + Prob(X̃i > x, X̃j > y), (6)

where

Prob(X̃i > x, X̃j > y) = Prob(Xi > x, Xj > y, Xk > s − x − y) = Fi(x)Fj(y)Fk(s − x − y).

We can now proceed to compute the terms in (5) by expanding them as formal power series
of ε. Observing that G(0, s) = 0 for all s> 0 and G(ε, 0)< 0 for all ε > 0, we are led to the
formal power series G(ε, s) = e−s ∑

εmpm(s). Since the functions pm(s) grow at most poly-
nomially in s, taking ε≤ e−s means the series

∑
εmpm(s) converges for any high value of

s. In this case, the sign of G(ε, s) when s is sufficiently high is given by the sign of p1(s).
Therefore, if it happens that, for sufficiently high values of s, p1(s)> 0, there exists some
pair (ε, s) satisfying G(ε, s) = 0 and therefore meeting the conditions of Theorem 1. The first
observation concerns the computation of E[X̃1] and E[X̃2] =E[X̃3]. It is checked that, in any
case, E[X̃i] = e−sai(s) + e−s(εbi(s) + h.o.t.(ε)), where ai(s) and bi(s) grow polynomially in s,
and h.o.t.(ε) means higher-order terms in ε. Therefore, the coefficients of ε in E

2[X̃i] and
E[X̃i]E[X̃j] all tend to zero when s → +∞, as e−2sq(s), where q(s) is a polynomial in s.

Consider now E[X̃2
1]. We have

E[X̃2
1] =

∫ s

0
x2

[
− d

dx
F1(x)(F2 ∗ F3)(s − x)

]
dx +

∫ +∞

s
x2f1(x) dx.

Integrating by parts and letting L(x) denote the primitive of 2xF1(x) which satisfies
L( + ∞) = 0, it remains to calculate

−L(0)(F2 ∗ F3)(s) −
∫ s

0
L(x)(f2 ∗ f3)(s − x) dx.

Then, after a certain number of steps, it is found that the contribution to εp1(s) is given by
ε(−s4/6 + l.o.t.(s)), where l.o.t. stands for lower-order terms.

In the case of E[X̃2
2] the contribution to εp1(s) is only given by∫ s

0
x2

[
− d

dx
F2(x)(F1 ∗ F3)(s − x)

]
dx,

and standard calculations lead to ε(−s4/12 + l.o.t.(s)), which, in G(ε, s), becomes ε(s4/12 +
l.o.t.(s)).

Consider now E[X̃1X̃3] and E[X̃2X̃3]. Then,

E[X̃1X̃3] =
∫ +∞

0

∫ +∞

0
xy

∂

∂x∂y
K(x, y) dx dy

since K(x, y) = Prob(X̃3 ≤ x, X̃1 ≤ y). Therefore, by (6), (∂/∂x∂y)K(x, y) = (∂/∂x∂y)H(x, y),
where

H(x, y) = Prob(X̃3 > x, X̃1 > y) = F3(x)F1(y)F2(s − x − y),
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with x, y> 0 and F2(s − x − y)< 1 when x + y< s. Hence, we have to calculate E[X̃1X̃3] on
the triangle T = {0< x< s, 0< y< s − x}, i.e.∫∫

T

xy
∂

∂x∂y
H(x, y) dx dy.

By the same arguments, in estimating E[X̃2X̃3], we have to compute∫∫
T

xz
∂

∂x∂z
R(x, z) dx dz,

where R(x, z) = F3(x)F2(z)F1(s − x − z). By a suitable change of variables we obtain∫∫
T

xz
∂

∂x∂z
R(x, z) dx dz =

∫∫
T

xy
∂

∂x∂y
H(x, y) dx dy,

so that the difference
∫∫
T

xy ∂
∂x∂y H(x, y) dx dy − ∫∫

T
xz ∂
∂x∂z R(x, z) dx dz is zero. Hence, the

contribution to εp1(s) of higher order in s coming from E[X̃1X̃3] −E[X̃2X̃3] is given by∫ s
0 xf3(x) dx

∫ +∞
s−x yf1(y) dy, which yields, after simple steps, ε(−s4/12 + l.o.t.(s)). In con-

clusion, εp1(s) = ε(−s4/6 + l.o.t.(s)). Hence, no matter how high s is and how small ε is
accordingly, G(ε, s)< 0 and Theorem 1 cannot be applied. �

5.2. A heavy-tail example with inversion

Consider three independent non-negative variables (risks) X1, X2, X3, whose
distributions are

F1(x) = 1 − 1

4
e−kx2 + (h − 2)e−kx2 − h − 5/4

(1 + hx)3
, F2(x) = F3(x) = 1 − 1

4
e−kx2 − 3/4

(1 + 2x)3
,

where h = 2 + ε, with k> 0 high enough and ε > 0 as small as we will need.

Proposition 2. Using the same notation as Section 5.1, there exist pairs (ε, s) satisfying the
conditions of Theorem 1 and therefore inverting the majorization of the Shapley values for the
tail variance and standard deviation games.

Proof (outline). First of all, ε can be chosen so small as to ensure f1(x) = F′
1(x)> 0 for x ≥ 0.

Then, straightforward computations show that, for k sufficiently large and ε sufficiently small,
Var[X1] − Var[X2]> ε/257, implying, in terms of Shapley values, φ1(νε0)>φ2(νε0) = φ3(νε0),
where νε0 denotes the value function for the tail variance game depending on the parameter ε
and the threshold s = 0. On the other hand, we observe that

1 − 5

4h
= 3

8
+ 5

16
ε+ h.o.t.(ε),

1

h
− 5

4h2
= 3

16
+ 1

16
ε+ h.o.t.(ε),

1

h2
− 5

4h3
= 1

10
− 1

64
ε+ h.o.t.(ε).
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Then, adopting the same notation as the previous proposition, we have to estimate the sign
of G(ε, s) when s> 0 is sufficiently high and ε > 0 is accordingly sufficiently small, knowing
that G(0, s) = 0 for all s ≥ 0 and G(ε, 0)> 0 for sufficiently small values of ε > 0.

By steps analogous to those followed in the previous proposition, we are first led to calculate
the contribution to εp1(s) given by E[X̃2

1]. Precisely, we need to compute

−L(0)(F2 ∗ F3)(s) −
∫ s

0
L(x)(f2 ∗ f3)(s − x) dx,

where L(x) is the primitive of 2xF1(x) satisfying L(+∞) = 0. In particular, applying the mean
value theorem, we have to estimate∫ s

0

(
1

h
− 5

4h2

)
2

1 + hx
(f2 ∗ f3)(s − x) dx =

(
1

h
− 5

4h2

)
2

1 + hz
(F2 ∗ F3)(s),

where z ∈ (0, s). This implies that, calling εa(s) the contribution of E[X̃2
1] to εp1(s), a(s) tends

to zero whenever s → +∞ not faster than s−1. In order to evaluate its sign, let us apply the
mean value theorem the other way around,∫ s

0

(
1

h
− 5

4h2

)
2

1 + hx
(f2 ∗ f3)(s − x) dx

=
(

1

h2
− 5

4h3

)
(f2 ∗ f3)( ẑ )2

(
ln(1 + 2s) + ln

(
1 + ε

s

1 + 2s

))
,

so that, when s is sufficiently high, a(s)< 0. It can be checked that the other contributions
to εp1(s) tend to zero when s → +∞ at least as s−2, except possibly the one given by∫ s

0 xf3(x) dx
∫ +∞

s−x yf1(y) dy, yielding∫ s

0

9

4

(
1

(1 + 2x)3
− 1

(1 + 2x)4

)(
3

2

1 − 5/4h

(1 + h(s − x))2
− 1 − 5/4h

(1 + h(s − x))3

)
dx.

Hence, the integrand function tends to zero not faster than (1 − 5/4h)/(1 + hs)2, which can
be written as (

3

8
+ 5

16
ε

)
1

(1 + 2s)2

(
1 − 2ε

s

1 + 2s

)
+ h.o.t.(ε).

Then, when s is sufficiently high, the above integral is smaller than

b − cε
1

16

s

(1 + 2s)2
,

where b and c are suitable positive numbers.
It follows that, for s sufficiently high and ε sufficiently small, G(ε, s)< 0, so that, since

G(ε, 0)> 0, there exist pairs (ε, s) satisfying G(ε, s) = 0. Therefore, Theorem 1 can be applied
and the inverted majorization occurs. �

5.3. Conjecture for tail-conditioned risks

First of all, we observe that the previous examples can be generalized as follows. Consider
a set of n risks (non-negative random variables) (X1, . . . , Xn−1, Xn) that are independent and
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such that X1, . . . , Xn−1 are identically distributed, while the distribution of Xn is different;
in particular, it has a higher or lower variance (using, as we do, a parameter ε, the variance
depends on the sign of ε). The first example we analyzed refers to light-tail distributions
(approximated by exponential distributions). Then, our computations show, in the case n = 3,
and suggest, for any n, that, comparing the tail-conditioned variables X̃n and X̃i, 1 ≤ i ≤ n − 1,
the difference between the two variances, in absolute value, increases as the tail threshold
increases, and so does the absolute value of the difference between the covariances of X̃n

and X̃i with a third random variable X̃j, j �= i, n. The opposite, instead, occurs in our second
example, where suitable heavy-tail distributions are considered. In fact, in such an example,
computations show that the inversion, for a suitable choice of the parameters, is allowed pre-
cisely by the fact that the tails of the distributions are rational functions, rather than negative
exponential ones. As a consequence, in spite of the limits of our examples, we argue there may
be sufficient reasons to formulate the following conjecture.

Conjecture 2. Consider a portfolio of independent risks S = ∑n
i=1 Xi. The inverted majoriza-

tion of the tail Shapley values does not occur if the risks Xi are light-tail distributed for all
i = 1, 2, . . . , n.

We observe that the unconditional risks are independent. In the tail-conditional case, the
risks become dependent. In our conjecture the majorization of [8] is maintained if the original
distributions are light-tail.

6. Implications for tail risk management

The implications of the above results concern the actuarial allocation of the tail loss of
a portfolio of risks into individual risk contributions. Allocating the tail variance into risk
contributions is essential for the individual fair pricing of insurance/reinsurance contracts. In
this regard the Shapley value provides a useful attribution method for sharing the insurance
premium among the holders of the risks in the portfolio.

Consider a portfolio of non-negative risks (X1, X2, . . . , Xn). Let us assume for the moment
that risks are independent and consider the limit case s = 0. Then, adopting the Shapley val-
ues for the standard deviation game, the highest risks are proportionally allocated a smaller
fraction than they would receive when allocating the variance. In other words, these Shapley
values induce a ‘solidarity’ effect among the risks in the portfolio, since the conjecture of [8]
holds true. Thus, asking whether the majorization holds for any s> 0 is equivalent to asking
whether the Shapley values for the tail standard deviation game always induce a stronger sol-
idarity effect than those for the variance game. However, our example shows that in general
the solidarity of the two Shapley values depends on the threshold s and on the tail fatness.
The implication is that the ranking of the individual risk contributions can be changed by allo-
cating either the tail variance or the tail standard deviation. In the next section we show that
well-known premium principles are Shapley values for tail games and, thus, the ranking of the
premiums to be individually paid might be changed simply depending on the chosen tail game.

6.1. Tail mean-variance games and premium principles

We define the game εs(J) =E[SJ | S> s] as the tail mean game. By the linearity of
the conditional expectation, εs(I ∪ J) = εs(I) + εs(J) for all I, J ⊂ N such that I ∩ J =∅. A
game satisfying this condition is called an additive game [8]. It follows that εs is an additive
game and hence the Shapley value is equal to φi(εs) =E[Xi | S> s]. In the actuarial literature,
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the Shapley value for the tail mean φi(εs) is well known as the conditional tail expectation
(CTE) allocation rule [10, 12, 13, 22, 35].

Consider now the value function

γs(J) = εs(J) + kνs(J), (7)

where k is a positive constant. Using the tail mean and the tail variance games, we construct
the game γs in (7) as a linear combination of the two games. We call the game γs the tail mean-
variance game. This choice is motivated by analogy with the tail mean-variance risk model
introduced in [23]. We can characterize the Shapley values for the game γs.

Proposition 3. For the value function defined in (7),

φi(γs) =E[Xi | S> s] + k · Cov[Xi, S | S> s]. (8)

Proof. Consider the tail mean game εs and the tail variance game νs. Their related Shapley
values are φi(εs) =E[Xi | S> s] and φi(νs) = Cov[Xi, S | S> s] respectively. By the definition
of γs in (7) and the linearity of the Shapley value, the proof is concluded. �

We can connect the result of Proposition 3 to premium principles presented in the actuarial
literature. For the random variable Xi with i = 1, 2, . . . , n, [16] defined the tail covariance
premium TCPs(Xi | S) as

TCPs(Xi | S) =E[Xi | S> s] + a · Cov[Xi, S | S> s],

where a is a non-negative constant. Since the covariance is expressed in a different currency
unit, [39] introduced the tail covariance premium adjusted, TCPAs(Xi | S) as

TCPAs(Xi | S) =E[Xi | S> s] + a
Cov[Xi, S | S> s]√

Var[S | S> s]
.

From (8) it is clear that the premium principles TCPs(Xi | S) and TCPAs(Xi | S) are Shapley
values with the choice k = a and k = a · (Var[S | S> s])−1/2, respectively. More precisely, by
the linearity property of the Shapley value we can write

TCPs(Xi | S) = φi(εs + a · νs),

TCPAs(Xi | S) = φi(εs + a · νs · (Var[S | S> s])−1/2).

This connection constitutes an important theoretical justification for the use of these two
premium principles. In particular, the fairness of the two allocation methods is an appealing
property derived from the Shapley value axiomatization.

6.2. Peer-to-peer reinsurance pricing

The peer-to-peer insurance scheme is a recent form of participating insurance in which a
community of policyholders agree to share the first layer of losses that hit participants [7, 11].
While the monetary transfers (i.e. loss coverage and/or partial premium refunds) among the
policyholders in the community take place ex post, there is the need to protect ex ante the
insurance community from large losses which cannot be distributed among participants. Thus,
a reinsurance contract must be purchased in advance to protect the community. The problem is
then how to calculate a fair reinsurance premium for every participant.
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We propose the Shapley value for the tail variance and standard deviation games as a reliable
answer to this question. Specifically, consider a reinsurance company which is asked to indem-
nify the losses S given the fact that they exceed a threshold s. The total reinsurance premium
paid to the reinsurance company to be shared by policyholders can be quantified according to
the variance principle,

PV(S, s) =E[S − s | S> s] + αV · Var[S − s | S> s], (9)

or the standard deviation principle,

PSD(S, s) =E[S − s | S> s] + αSD
√

Var[S − s | S> s]. (10)

In the standard deviation principle PSD the two terms E[S − s | S> s] and√
Var[S − s | S> s] are expressed in the same monetary unit ($ + $), while the variance

principle includes terms of different units ($ + $2). The Shapley values for the tail variance
and standard deviation games represent an ideal attribution method to allocate the reinsurance
premiums (9) and (10) among the peer-to-peer community members. Precisely, for the ith
policyholder, where i = 1, 2, . . . , n, we find the Shapley values φi(PV(S, s)) and φi(PSD(S, s))
respectively, with the former expressed in closed form as proved by Proposition 3. Note that,
if the coefficients in αV and αSD in (9) and (10) were set to zero as well as s, then we would
find φi(PV(S, 0)) = φi(PSD(S, 0)) =E[Xi | S> 0], which is exactly the CTE allocation method
proposed in [11] to price the peer-to-peer insurance premiums without a reinsurance purchase.

Finally, [2] stated that ‘measuring variability by variance or standard deviation gives just
different weight to “additional” risk and in that sense is a matter of taste and choice’ [2, p.
220]. The results of our work show that, if the reinsurance company allocates either the total
variance premium (9) or the total standard deviation premium (10) among policyholders using
the Shapley value, it might generate different rankings concerning the individual paid premi-
ums across the community members. Investigating the mechanism and the conditions by which
the threshold level and the tail fatness make the two rankings change is an open question for
future research.

Appendix

Full proof of Proposition 1. Taking s> 0 sufficiently high and ε > 0 sufficiently small, we
want to estimate the sign of the difference

G(ε, s) = φ1(νs) − φ2(νs) = Cov[X̃1, X̃1 + X̃2 + X̃3] − Cov[X̃2, X̃1 + X̃2 + X̃3].

Explicitly, recalling that X̃2 and X̃3 are identically distributed,

G(ε, s) =E[X̃2
1] −E[X̃2

2] + [X̃1X̃3] −E[X̃2X̃3] −E
2[X̃1] −E[X̃1]E[X̃3] + 2E2[X̃2].

First of all, we observe that, for i �= j �= k,

Prob(X̃i > x) = Prob(Xi > x and Xj + Xk > s − x) = Fi(x)
∫ +∞

s−x
(fj ∗ fk)(z) dz,

where Fi(z) = 1 − Fi(z), fi(z) = F′
i(z), and fj ∗ fk denotes the convolution product, so that we

can write
∫ +∞

s−x (fj ∗ fk)(z) dz = (Fj ∗ Fk)(s − x). Moreover,

Prob(X̃i ≤ x and X̃j ≤ y) = 1 − Prob(X̃i > x) − Prob(X̃j > y) + Prob(X̃i > x, X̃j > y),
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where

Prob(X̃i > x, X̃j > y) = Prob(Xi > x, Xj > y, Xk > s − x − y) = Fi(x)Fj(y)Fk(s − x − y).

Next, it is easily seen that G(0, s) = 0 for all s> 0 and G(ε, 0)< 0 for all ε > 0. Therefore,
by Taylor expansions, we can write the formal power series

G(ε, s) = e−s
∑

εmpm(s).

Since the functions pm(s) are easily seen to grow at most polynomially in s, taking, say,
ε≤ e−s, the series

∑
εmpm(s) converges for any high value of s and the sign of G(ε, s), if s is

sufficiently high, is given by the sign of p1(s). Therefore, if it happens that, for sufficiently high
values of s, p1(s)> 0, there exists some pair (ε, s) satisfying G(ε, s) = 0 and therefore meeting
the conditions of Theorem 1.

In order to proceed with the computations, we first calculate

(f2 ∗ f3)(z) = e−zz, (f1 ∗ f3)(z) = e−z[z + ε
(
z − 1

2 z2) + h.o.t.(ε)
]
.

The first observation concerns the computation of E[X̃1] and E[X̃2] =E[X̃3]. It is easily
checked that, in any case,

E[X̃i] = e−sai(s) + e−s(εbi(s) + h.o.t.(ε)),

where ai(s) and bi(s) grow polynomially in s. Therefore, the coefficients of s in E
2[X̃i] and

E[X̃i]E[X̃j] all tend to zero when s → +∞ as e−2sq(s), where q(s) is a polynomial in s.
Consider now E[X̃2

1]. We have

E[X̃2
1] =

∫ s

0
x2

[
− d

dx
F1(x)(F2 ∗ F3)(s − x)

]
dx +

∫ +∞

s
x2f1(x) dx.

Then, integrating by parts, and calling L(x) the primitive of 2xF1(x) satisfying L(+∞) = 0,
it remains to calculate

−L(0)(F2 ∗ F3)(s) −
∫ s

0
L(x)(f2 ∗ f3)(s − x) dx.

Moreover,

L(x) = −2(1 + ε)−1xe−(1+ε)x − 2(1 + ε)−2e−(1+ε)x, (f2 ∗ f3)(s − x) = e−(s−x)(s − x).

We can consider the Taylor expansions of (1 + ε)−1, (1 + ε)−2, and e−εx. Hence, it fol-
lows from straightforward computations that the contribution to εp1(s) is, eventually, given by
ε(−s4/6 + l.o.t.(s)).

In the case of E[X̃2
2] the contribution to εp1(s) is only given by∫ s

0
x2

[
− d

dx
F2(x)(F1 ∗ F3)(s − x)

]
dx,

and calculations analogous to the previous ones lead to ε(−s4/12 + l.o.t.(s)), which, in G(ε, s),
becomes ε(s4/12 + l.o.t.(s)).
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Next, we consider E[X̃1X̃3] and E[X̃2X̃3]. Then,

E[X̃1X̃3] =
∫ +∞

0

∫ +∞

0
xy

∂2

∂x∂y
K(x, y) dx dy,

where K(x, y) = Prob(X̃3 ≤ x, X̃1 ≤ y) = 1 − Prob(X̃3 > x) − Prob(X̃1 > y) + Prob(X̃3 > x,
X̃1 > y). Therefore, (∂2/∂x∂y)K(x, y) = (∂2∂x∂y)H(x, y) with

H(x, y) = Prob(X̃3 > x, X̃1 > y) = F3(x)F1(y)F2(s − x − y),

x, y> 0, and F2(s − x − y)< 1 when x + y< s. Hence, we have to calculate E[X̃1X̃3] on the
triangle T = {0< x< s, 0< y< s − x}, i.e.∫∫

T

xy
∂2

∂x∂y
H(x, y) dx dy.

Then, after simple calculations we find

∫∫
T

xy
∂2

∂x∂y
H(x, y) dx dy =

∫ s

0
x dx

{[
y
∂

∂x
F3(x)F1(y)F2(s − x − y)

]s−x

0

−
∫ s−x

0

∂

∂x
F3(x)F1(y)F2(s − x − y) dy

}
.

By the same arguments, in estimating E[X̃2X̃3] we have to compute∫∫
T

xz
∂2

∂x∂z
R(x, z) dx dz,

where R(x, z) = F3(x)F2(z)F1(s − x − z). Setting z = s − x − y and y = s − x − z, we obtain

∫∫
T

xz
∂2

∂x∂z
R(x, z) dx dz =

∫ s

0
x dx

{[
(s − x − y)

(
− ∂

∂x
F3(x)F1(y)F2(s − x − y)

)]s−x

0

−
∫ s−x

0

∂

∂x
F3(x)F1(y)F2(s − x − y) dy

}
,

and the difference∫∫
T

xy
∂2

∂x∂y
H(x, y) dx dy −

∫∫
T

xz
∂2

∂x∂z
R(x, z) dx dz = 0.

Hence, it follows that the contribution to εp1(s) of higher order in s coming from E[X̃1X̃3] −
E[X̃2X̃3] is given by

∫ s
0 xf3(x) dx

∫ +∞
s−x yf1(y) dy, which becomes, after some simple steps,

ε(−s4/12 + l.o.t.(s)). In conclusion, εp1(s) = ε(−s4/6 + l.o.t.(s)). Hence, no matter how high
s is and how accordingly small ε is, G(ε, s)< 0 and Theorem 1 cannot be applied. �
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Full proof of Proposition 2. First of all, ε can be chosen so small as to ensure f1(x) =
F′

1(x)> 0 for x ≥ 0. Then, straightforward computations show that, for k sufficiently large and
ε sufficiently small, Var[X1] − Var[X2]> ε/257, implying that, in terms of Shapley values,
φ1(νε0)>φ2(νε0) = φ3(νε0). On the other hand,

1 − 5

4h
= 3

8
+ 5

16
ε+ h.o.t.(ε),

1

h
− 5

4h2
= 3

16
+ 1

16
ε+ h.o.t.(ε),

1

h2
− 5

4h3
= 1

10
− 1

64
ε+ h.o.t.(ε).

Adopting the same notation as the previous proposition, we have to estimate the sign of
G(ε, s) when s> 0 is sufficiently high and ε > 0 is, accordingly, sufficiently small, knowing
that G(0, s) = 0 for all s ≥ 0 and G(ε, 0)> 0 for sufficiently small values of ε > 0. By steps
analogous to those in Proposition 1, we calculate, first, the contribution to εp1(s) given by
E[X̃2

1]. Hence, as we have seen, we are led to compute

−L(0)(F2 ∗ F3)(s) −
∫ s

0
L(x)(f2 ∗ f3)(s − x) dx,

where L(x) is the primitive of 2xF1(x) satisfying L(+∞) = 0. In particular, applying the mean
value theorem, we have to estimate∫ s

0

(
1

h
− 5

4h2

)
2

1 + hx
(f2 ∗ f3)(s − x) dx =

(
1

h
− 5

4h2

)
2

1 + hz
(F2 ∗ F3)(s),

where z ∈ (0, s). This implies that, denoting by εa(s) the contribution of E[X̃2
1] to εp1(s), a(s)

tends to zero when s → +∞ not faster than s−1. In order to evaluate its sign, let us apply the
mean value theorem the other way around,∫ s

0

(
1

h
− 5

4h2

)
2

1 + hx
(f2 ∗ f3)(s − x) dx

=
(

1

h2
− 5

4h3

)
(f2 ∗ f3)( ẑ )2

(
ln(1 + 2s) + ln

(
1 + ε

s

1 + 2s

))
,

so that, when s is sufficiently high, a(s)< 0. Then, we can calculate E[X̃1]. By the same argu-
ments, we find that in the expression E[X̃1], ε is multiplied by a quantity b(s) tending to zero
when s → +∞ faster than a(s) (in fact, as s−2). Now, let us estimate the contribution to εp1(s)
given by E[X̃2] and E[X̃2

2]. Consider, for example, the latter. Following the above steps, we are
led to calculate

−L(0)(F1 ∗ F3)(s) −
∫ s

0
L(x)(f1 ∗ f3)(s − x) dx,

where L(x) is the primitive of 2xF2(x) satisfying L(+∞) = 0. By applying the mean value
theorem and changing the variable x to s − x, we find

−L(0)[1 − (F1 ∗ F3)(s)] − L(ϕ(s))(F1 ∗ F3)(s).
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However, (F1 ∗ F3)(s) = ∫ s
0 F3(s − z)f1(z) dz = F3(ψ(s))

∫ s
0 f1(z) dz = F3(ψ(s))F1(s). It fol-

lows that the contribution to εp1(s) is given by a quantity εc(s), where c(s) tends to zero when
s → +∞ as s−3. Finally, as far as E[X̃1X̃3] and E[X̃2X̃3] are concerned, we can repeat the argu-
ments of Proposition 1, so that the only contribution to p1(s) tending to zero as s−1 is given by∫ s

0 xf3(x) dx
∫ +∞

s−x yf1(y) dy, yielding, in particular,∫ s

0

9

4

(
1

(1 + 2x)3
− 1

(1 + 2x)4

)(
3

2

1 − 5/4h

(1 + h(s − x))2
− 1 − 5/4h

(1 + h(s − x))3

)
dx.

Hence, the integrand function tends to zero not faster than (1 − 5/4h)/(1 + hs)2, which can
be written as (

3

8
+ 5

16
ε

)
1

(1 + 2s)2

(
1 − 2ε

s

1 + 2s

)
+ h.o.t.(ε).

Then, when s is sufficiently high, the above integral is smaller than

b − cε
1

16

s

(1 + 2s)2
,

where b and c are suitable positive numbers.
It follows that, for s sufficiently high and ε, accordingly, sufficiently small, G(ε, s)< 0, so

that, since G(ε, 0)> 0, there exist pairs (ε, s) satisfying G(ε, s) = 0. Therefore, Theorem 1 can
be applied and the inverted majorization occurs. �
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