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Analytical results for pitching kinematics and
propulsion performance of flexible foil
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Natural flyers and swimmers employ flexible wings or fins to propel. While the
complex interaction between the foil with deformation and the surrounding non-steady
fluid environment defines the propulsion performance of the propellers, elucidating
the interaction mechanism through theoretical models earns much challenge. Based on
elastokinetics and linear potential flow theory, this study proposes a simplified analytical
model to clarify the kinematics and the propulsion performance of a flexible thin foil
pitching in flow. The dynamical forces, including the inertial force of the foil and the
non-steady fluid pressure, are used to determine the averaged deformation angle of the foil.
Combining the averaged deformation angle and the prescribed driving pitching motion,
the kinematics of the foil is resolved analytically. Based on the analytical expressions for
the corresponding pitching motion, analytical relations among the physical parameters of
the stiffness and the mass of the foil and the driving frequency are given to these critical
conditions, including resonance of the flow–structure system, equal pitching amplitude
between the flexible foil and the rigid counterpart, phase angle transition from π/2 to
−π/2. Subsequently, the performance of the foil, including the thrust, the power and the
propulsive efficiency, as a function of the flexibility of the foil are derived, together with
the introduction of a bluff body type offset drag to the thrust. The formulated analytical
theory, which matches nicely with previous reports, will help to interpret the effect of the
flexibility and regulate the propulsive performance of the flexible foil when pitching in
fluid.

Key words: flow-structure interactions, swimming/flying, propulsion

1. Introduction

Natural flyers and swimmers employ the complex interaction between the foils and the
surrounding fluid to generate sufficient thrust to locomotion, where the deformation of the
flexible foil adds new challenges to the flow–structure interaction. Thus, a vast number
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of investigations from various aspects have been deployed to reveal the mechanism of
the interaction between the flexible foil and the fluid, such as from active and passive
foil deformation (Tytell et al. 2010; Flammang & Lauder 2013; Ulrich & Peters 2014;
Joshi & Bhattacharya 2022), from localized and distributed flexibility (Shahzad et al.
2018; Shi, Xiao & Zhu 2020; Wang, Huang & Lu 2020; Kurt, Mivehchi & Moored 2021;
Wang et al. 2021; Demirer et al. 2022), from tethered and unconstrained motion (Arora
et al. 2018; Lin, Wu & Zhang 2020; Fernandez-Feria, Sanmiguel-Rojas & Lopez-Tello
2022; Wu et al. 2022) and from vortical structures and their interactions (Eldredge &
Jones 2019; Linehan & Mohseni 2020; Jia et al. 2021; Zhang et al. 2021; Verma &
Hemmati 2022). Among these investigations, elucidating the propulsive performance of
the flexible foil earns much attention as this will not only help to unveil the flight or
swimming mechanism (Wu 2011; Gazzola, Argentina & Mahadevan 2014; Sun 2014;
Lauder 2015; Chin & Lentink 2016; Saadat et al. 2017; Dabiri 2019; Wang et al. 2022),
it will also help to optimize the manmade flying vehicles and swimming robotics through
flapping propulsion (Karasek et al. 2018; Zhu et al. 2019; Chin et al. 2020; Haider et al.
2021; Lee, Kim & Chu 2021; Zhong et al. 2021). For flexible foils flapping in fluid,
even the intrinsically three-dimensional problem can be simplified to the two-dimensional
counterpart, unveiling the coupling mechanism between the motion of the foil and the
surrounding fluid is still difficult, which is mainly contributed by the two-way coupling
between the non-steady flow and the complex deformation of the foil (Zhu, He & Zhang
2014; Akkala, Eslam Panah & Buchholz 2015). While experiments and simulations have
been the widely adopted procedures to elucidate this flow–structure interaction in general,
theoretical modelling also holds much potential in revealing the coupling mechanism
between them, as it can not only provide valuable insights into the understanding of this
fluid–structure interaction, but also reveals the effect of those physical parameters over
large ranges with high efficiency (Chen et al. 2018; Riso, Riccardi & Mastroddi 2018).

Among the early research that focuses on the theoretical modelling for the flapping
foil in fluid, the pioneer works from Theodorsen (1935), Garrick (1936) and von Kármán
and Sears (1938) have revealed the performance of the rigid thin plate flapping in fluid,
where the fluid was treated as inviscid and incompressible while the flapping amplitude
was sufficiently small, all of which guaranteed the suitability of the linear potential flow
theory. When treating the foil as a flexible body, the theoretical work of Wu, who aimed
to fish propulsion, has solved the flow disturbed by a waving plate through the one-way
coupling method, where the progressing wave of the flexibility foil was set by the given
wavelength and phase velocity along the chord (Wu 1961). These early investigations
provide basic ingredients to the flow dynamics, which inspired the recently formulated
analytical solutions for the response of the flexible foil flapping in fluid. Based on the
linear potential theory, Alben built a theoretical framework to determine the vortex sheet
on the flexible foil and in the wake, together with the deformation of the foil, which
aimed to unveil the optimal flexibility of the foil when flapping in fluid (Alben 2008).
While the Chebyshev series method was employed in his work, the complex interaction
between the foil deformation and the fluid–structure interaction was less clear. Later on,
besides the widely prescribed motions of pitching and heaving, the shifting motion of
the foil was included in his theory (Alben 2011). Floryan and Rowley focused on the
relationship between propulsive efficiency and resonance for a flexible foil with vanishing
mass, and their theorical model revealed that the propulsive efficiency did not show
resonant behaviour unless the viscosity drag was included in the thrust or the stiffness
of the foil is sufficient low (Floryan & Rowley 2018). For compliant membrane wings,
Tzezana and Breuer used the Chebyshev series method to elucidate the thrust, drag and
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wake structure when flapping in fluid (Alon Tzezana & Breuer 2019). While these studies
focused on uniformly distributed flexibility along the foil, Moore treated the foil with
torsional flexibility and formulated exact solutions to describe the emergent pitching
motion, along with expressions for thrust generation and power consumption (Moore
2014). Based on the Chebyshev numerical method, Moore investigated the role of stiffness
distribution of the foil in the thrust production and clarified that the torsional spring was
the optimal flexibility arrangement for thrust (Moore 2015). For distributed flexibility with
a low mass ratio, Floryan and Rowley used the Chebyshev numerical method to elucidate
the propulsive performance and the optimal distribution of flexibility of the passively
flexible foil and revealed that thrust increment will accompany power consumption when
the stiffness is large (Floryan & Rowley 2020). While the Chebyshev series method seems
the standard method to determine the deformation of the foil and the fluid flow through the
collocation procedure (Walker & Patil 2014; Moore 2017), it has obviously simplified the
direct two-dimensional fluid solver, which makes rapid searching of all possible material
distributions possible. However, the numerical solution from the Chebyshev series method
makes the correlation between the performance of the foil and the physical parameters still
less clear, which calls for the development of closed-form theory to this flow–structure
interaction.

Following the vortical impulse theory while in the limit of linearized inviscid flows,
Fernandez-Feria updated the thrust force and the propulsive efficiency for a pitching
and heaving rigid foil (Fernandez-Feria 2016), which was originally formulated by von
Kármán and Sears (1938). Based on the vortical impulse theory, Alaminos-Quesada and
Fernandez-Feria investigated the propulsion of a foil undergoing a flapping undulatory
motion, where analytical expressions are given in the case when a chordwise flexure
mode, which is approximated by a quadratic function, is superimposed to a pitching
or heaving motion of the foil (Alaminos-Quesada & Fernandez-Feria 2019). Later
on, they updated their work to the two-coupling problem where the passive small
deflection is allowed for the foil (Fernandez-Feria & Alaminos-Quesada 2021). Their
analytical solution is closed form and is realized by using a quartic approximation
to the deflection, which compares well with previous reports given by Floryan and
Rowley through the Chebyshev series method (Floryan & Rowley 2018). Subsequently,
Alaminos-Quesada and Fernandez-Feria used this approximation method to determine the
propulsion performance of tandem flapping foils (Alaminos-Quesada & Fernandez-Feria
2021), the flutter stability (Fernandez-Feria 2022) and the energy harvesting through
a pitching flexible foil (Fernandez-Feria & Alaminos-Quesada 2022). Compared with
these previous numerical solutions from the Chebyshev series method, although their
analytical solution (Fernandez-Feria & Alaminos-Quesada 2021) has obviously uncovered
the coupling mechanism of this flow–structure interaction to a larger extent, their lengthy
forms of the analytical expressions seem less clear when employed to elucidate the effect of
the stiffness and the mass of the flapping foil and the driving frequency on its performance.

In this study, we propose an analytical solution to the pitching foil with flexibility,
which aims to reveal the kinematics and the performance of the flexible pitching foil
with simple analytical expressions. The analytical solution is realized by transforming the
deflection of the foil into the averaged deformation angle, where this deformation angle
together with the driving pitching motion at the leading edge defines the pitching motion
of the equivalent flat foil. With this treatment, the pitching amplitude and the phase angle,
together with the propulsive performance, are given analytically in simple closed forms.
With this simple closed-form solution, three critical conditions are resolved analytically for
the first time, where explicit expressions are given among the dimensionless stiffness, the
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Figure 1. Schematic of the pitching motion of a thin foil with passive bending deformation. The length scale
has been scaled by c/2. The pitching angle θ is the result from the driving pitching angle θ0 and the averaged
deformation angle θd determined by the deflection of the foil.

mass ratio and the reduced pitching frequency. These three critical conditions include the
resonance condition for a broad range of physical parameters, the equal pitching amplitude
condition between the flexible foil and the rigid counterpart, which signifies the gain from
flexibility, and the phase angle transition from π/2 to −π/2. Through introducing a bluff
type drag to the thrust, the net thrust and the propulsive efficiency are clarified, which
recovers these previous reports nicely.

2. Theoretical modelling

As shown in figure 1, a two-dimensional thin foil with a cord length of c is immersed in
an inviscid flow. The pitching motion of the foil is realized by driving its motion at the
leading pivot point with a small pitching motion of θ0. The flow has a constant free-stream
speed U∞ along the x axis. As a common practice, the origin point is set to the middle
point of the foil. As the thin foil pitches along its leading pivot point, the pitching motion
will introduce an inertial force caused by the foil and aerodynamical load caused by the
surrounding flow to the foil, both of which cause the deformation of the original flat foil.
We focus on the small deformation scenario of the foil, where it has sufficient stiffness
such that the deformation of the foil is small when compared with its chord.

To clarify the response of the flexible foil as a result of the driving pitch motion, we use
the elastokinetics method to determine the deformation of the foil under the dynamical
loading of the inertial force and the aerodynamic fluid force, as has been done in our
recent work (Du & Wu 2023). With the deflection of the foil, the averaged deformation
angle θd of the foil will be introduced. Together with the driving pitch angle at the leading
edge and the deformation angle of the foil, the finalized pitching angle of the foil can be
determined, as shown in figure 1. As the averaged deformation angle θd is sufficiently
small, we use a flat foil with the pitching angle θ to determine the fluid flow, where the
camber effect of the foil is ignored in the current study. In the following of this section,
we will first introduce the solution to the fluid flow, which gives the pressure loading on
the foil analytically. Then, based on the pressure loading and the inertial force on the foil,
its deformation will be formulated, from which the averaged deformation angle of the foil
can be determined. Together with the deformation angle and the driving pitch motion at
the leading point, the pitching motion of the foil will be derived analytically.

2.1. Fluid pressure on the foil
In the pure pitching configuration with small amplitude, as shown in figure 1, the
time-harmonic vertical displacement H is given by

H(x, t) = (x + 1) tan θ ∼= (1 + x)θ = Φ(1 + x) ei2πt, (2.1)
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where the length x and H have been scaled by half-chord of the foil c/2 and the time t has
been scaled by the driving flapping period T. The finalized pitching amplitude Φ in (2.1)
includes the contribution of the driving pitch amplitude and the deformation of the foil,
which is the key parameter needed to be determined in this study. Here, i is the imaginary
unit and the real part in i should be taken.

In order to determine the pressure distribution on the foil, we resort to the classic
solution by Wu (1961). For small amplitude oscillation of the foil in an incompressible
inviscid flow, the linear inviscid theory applies and the seminar work of Wu has provided
the analytical solution to the flow in detail (Wu 1961). Based on this solution, Moore
derived the fluid flow for a flat foil with time-harmonic heaving and pitching kinematics
and provided the solution for the pressure distribution on the foil (Moore 2014). We use
their solution to obtain the pressure distribution on the pitching foil. Based on the vertical
displacement H given in (2.1), the fluid flow can be determined by setting β0 = 2Φ and
β1 = Φ in (2.5) in Moore’s solution (Moore 2014). With the knowledge of the fluid flow,
the pressure on the foil, as given in (A7) in Moore’s solution (Moore 2014), can be given
analytically as

p(x, t) = 1
2
πρf 2c2Φ

√
1 − x2

(
U

1 + x

[
i(1 − 3Ck)− UCk

π

]
+ 4(π − iU)+ 2πx

)
ei2πt,

(2.2)

where ρ is the density of fluid, f = 1/T is the pitching frequency, U = 2U∞/cf is the
dimensionless free-stream velocity, U∞ is the free-stream velocity in the far field and Ck
is the well-known Theodorsen function (Theodorsen 1935) given by

Ck = H(2)
1 (k)

iH(2)
0 (k)+ H(2)

1 (k)
= Fk + iGk, (2.3)

where k = πfc/U∞ = 2π/U is the reduced frequency, H(2)
0 and H(2)

1 are the Hankel
function of the second kind with orders 0 and 1, respectively. The reduced frequency k
can be correlated to the widely used Strouhal number through

St = Φ

π
k. (2.4)

Thus, although we assume the system has a small Strouhal number, the reduced frequency
k can be any positive number presuming that the pitching amplitude is small enough. As
the pressure distribution given in (2.2) is derived from the incompressible linear inviscid
theory, it applies when the Reynolds number is sufficient large such that the viscosity
force can be ignored, the oscillation amplitude Φ is small such that the disturbance to the
flow lies in the linear range and the Strouhal number St of the system is small and the
free-stream velocity is much lower than the local sound speed.

2.2. Foil deformation
To determine the foil deformation, the inertial force of the foil will be needed. Thus,
the effective displacement of the foil referring to the inertial force will be determined
first. As shown in figure 1, the dotted line indicates the chord position of the foil, as has
been used to determine the pressure on the foil given in (2.2), which is a straight line
(yc = c(1 + x)θd/2) with a rotating angle θd compared with the driving pitching position.
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The finalized foil indicated by the solid line is a curved line, which can be represented by a
parabola curve (yf = c(1 + x)2θd/4) compared with its flat state, if the deformation of the
foil is small. Based on the chord line and the parabola curve, the effective displacement of
the foil when modelling the inertial force can be approximated by ye = (yc + yf )/2 + yp,
where yp = c(1 + x)θ0/2 is the displacement introduced by the driving pitching motion θ0
set at the leading edge. As will be shown in this work, without a fluid force, this effective
displacement will bring the natural frequency of the foil with the precision of 99.4 %
when compared with its exact value. Details of the analytical formulation of the vibration
of a cantilever beam can be found in Appendix A. With the effective displacement ye, the
inertial force on the foil can be given as

fi(x, t) = −ml
∂2ye

∂t2
= −mlc

2

(
1 + x

2
+ (1 + x)2

4

)
∂2θd

∂t2
− mlc(1 + x)

2
∂2θ0

∂t2
, (2.5)

where ml is the line density of the foil.
Based on the pressure load on the foil and the inertial force, the deflection of the foil can

be determined by the Euler–Bernoulli beam equation through

8
c3 B

∂4w
∂x4 = fi + p, (2.6)

where B is the bending stiffness of the foil. The factor 8/c3 is introduced as the length
scale has been scaled by c/2. Inserting (2.2) and (2.5) into (2.6), the deflection of the foil
w can be solved analytically by including the free boundary condition at the trailing end
and the fixed boundary condition at the leading edge. Details of the analytical solution
to the deflection are given in Appendix B. From the deflection of the foil, the averaged
deformation angle can be given as

θd =
∫ 1

−1

∂w
∂x

dx = w(1)
2
. (2.7)

Thus, with the deflection of the foil at the trailing edge w(1), the averaged deformation
angle of the foil can be derived as

θd = −59mlc4

720B

(
θ̈d + 66

59
θ̈0

)

+ π2c3

8B

⎡
⎢⎢⎣ρf 2c2

4

25U
(

i(1 − 3Ck)− UCk

π

)
96

+ ρf 2c2

4
(109π − 92iU)

48

⎤
⎥⎥⎦Φ ei2πt.

(2.8)

2.3. Flapping response with flow and foil flexibility coupling
The finalized pitching angle, as shown in figure 1, is given by

θ = θ0 + θd. (2.9)

By assuming the driving pitch motion θ0 to be Φ0 ei(2πt+ϑ), with Φ0 being the driving
pitching amplitude and ϑ is the phase angle between the driving pitching motion and the
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finalized pitching motion, (2.9) can be reduced to

π2c3

8B

[
118mlcf 2

45
+ ρf 2c2

4
25U(3Gk − UFk/π)

96
+ ρf 2c2

4
109π

48

]
Φ

+
(

1 + 7π2f 2mlc4

180B

)
Φ0 cosϑ = Φ,

π2c3

8B

[
25(1 − 3Fk − UGk/π)

96
− 23

12

]
ρf 2c2U

4
Φ +

(
1 + 7π2f 2mlc4

180B

)
Φ0 sinϑ = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)

from which the finalized pitching amplitude is given by

Φ = A3√
(1 − A1)

2 + A2
2

Φ0, (2.11)

and the phase angle is given by

ϑ = atan
A2

A1 − 1
. (2.12)

The dimensionless parameters of A1 and A2 are given by

A1 = 3k2

2S

[
118
45

R + 25π(3Gk − 2Fk/k)/k + 109π

192

]
,

A2 = −
(

159 + 75Fk + 50Gk

k

)
πk

128S
,

A3 = 1 + 7Rk2

15S
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

where R = ml/ρc is the mass ratio representing the inertia ratio of solid to fluid and
S = 12B/ρU2∞c3 is the dimensionless stiffness of the foil representing the ratio of elastic
restoring force to the fluid forces. A nomenclature table for all the symbols is listed in
Appendix C. Based on the finalized pitching amplitude and the phase angle, the pitching
motion of the foil is finalized, which can be used to determine the deflection of the foil
through (B1)–(B7). With the driving pitching motion at the leading edge and the deflection
of the foil along its span direction, the snapshots of the flexible foil can be determined.
As can be checked, the snapshots show a comparable morphology, as determined by
numerical solutions (Floryan & Rowley 2018, 2020). We ignore the snapshots of the foil
in this study as we mainly focus on the overall performance of the pitching foil.

From (2.11), we introduce the response parameter Υ to characterize the response of the
flexible foil under driving pitching motion in the fluid flow, which is defined to be

Υ = (1 − A1)
2 + A2

2

A2
3

=

(
2S − 118

15
Rk2 − ak

)2

+ b2
k(

2S + 14
15

Rk2
)2 , (2.14)
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Figure 2. Values of ak and bk as a function of the reduced frequency k in the value ranges of (a) 0.001 to 1
and (b) 1 to 1000.

where ak and bk are functions of k given by

ak = (109k2 + 75Gkk − 50Fk)
π

64
,

bk = (159k + 75Fkk + 50Gk)
π

64
.

⎫⎪⎬
⎪⎭ (2.15)

With the parameter of Υ , the finalized pitching amplitude can be given from (2.11) as

Φ = 1√
Υ
Φ0. (2.16)

Therefore, the complex interaction between the flexible foil and the surrounding fluid
flow will be determined by the value of Υ , which is a function of the mass ratio R, the
dimensionless stiffness S and the reduced frequency k. While ak and bk surely influence
the response of the pitching foil, we show their value as a function of the reduced frequency
k in figure 2. It shows that, when k reduces from 1 to zero, ak and bk will decrease from
their positive values to the negative ones and finally approach the fixed values determined
by Fk and Gk, respectively. On the other side, if k is larger than 1, ak and bk will increase
with increasing k and their values will scale with k2 and k, respectively, if k is large enough,
say larger than 10.

The finalized pitching amplitude given in (2.16) shows a rather simple form compared
with the reported analytical solutions. To check its accuracy, we first check the natural
frequency of the system without a fluid force. Under this condition, ak and bk vanish
and Υ = (2S − 118Rk2/15)2/(2S + 14Rk2/15)2. Therefore, resonation happens if Υ = 0,
which gives the reduced frequency k0 as

k0 =
√

15S
59R

. (2.17)

This gives k0 ≈ 0.5042
√

S/R, which compares well with k0 ≈ 0.5075
√

S/R from the exact
result for the first resonant frequency of a cantilever beam (Rao 2011) and is more precise
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Figure 3. The resonance frequency kr as a function of (a) mass ratio R for dimensionless stiffness of S = 10
and (b) dimensionless stiffness S for mass ratio of R = 0.01. The results from F & A (Fernandez-Feria &
Alaminos-Quesada 2021) and F & R (Floryan & Rowley 2018) are included for comparison, where the result
of F & R can be treated as exact. The star in (a) corresponds to (2.20).

than the value of k0 ≈ 0.497
√

S/R obtained from a quartic-order approximation to the
beam deformation provided by Fernandez-Feria & Alaminos-Quesada (2021).

On the other hand, if the fluid–structure interaction is included, the resonance frequency
will be determined by the minimum value of Υ under given S and R. Although a numerical
procedure is needed to determine the resonation frequency kr in general, we can propose
an approximation analytical relation between S, R and the resonant frequency kr. This is
realized by observing that, for given k and R, the minimum value for Υ is reached if

∂Υ

∂S
= 4(

2S + 14
15

Rk2
)3

[(
2S − 118

15
Rk2 − ak

)(
44
5

Rk2 + ak

)
− b2

k

]
= 0, (2.18)

from which the analytical relation between S, R and the resonation frequency kr can be
given as

Sr = 1
2

⎛
⎜⎝118

15
Rk2

r + ak + b2
k

44
5

Rk2
r + ak

⎞
⎟⎠ . (2.19)

It can be easily checked from (2.19) that, if R is large enough, the resonation frequency kr
will reduce to (2.17), that is the resonation is regulated by the elasticity of the foil. If R is
much smaller than unity, its effect may be ignored and the resonance will be determined
by

Sr = 1
2

(
ak + b2

k
ak

)
. (2.20)

2.4. Model validation
For the dimensionless stiffness of S = 10, we compare the resonance frequency kr as a
function of R between our theory and that from previous theories. The result shown in
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figure 3(a) clearly demonstrates the accuracy of our theory in capturing the resonance
frequency of this flow–structure system. While the numerical result determined by Floryan
& Rowley (2018) (F & R) is based on a more general theory (Floryan & Rowley 2018),
which can be treated as the exact solution to the problem, our numerical solution seems to
match as well as that from the solution obtained by Fernandez-Feria & Alaminos-Quesada
(2021) (F & A) (Fernandez-Feria & Alaminos-Quesada 2021) when the mass ratio R is
small (R < 0.1) and matches better than F & A when R is large (R > 1). Furthermore,
among all these theoretical models, the analytical relation given in (2.19) shows a
comparable match to the result of F & R (Floryan & Rowley 2018), thus demonstrating
the applicability of our analytical solution to the flow–structure interaction problem.

For a mass ratio of R = 0.01, we compare the resonance frequency kr as a function of S
between our theory and that from the previous theory of F & R (Floryan & Rowley 2018).
The result shown in figure 3(b) shows that, when the dimensionless stiffness S is large, the
numerical solution from (2.14) can always provide a comparable resonance frequency kr to
that from F & R (Floryan & Rowley 2018). However, when the dimensionless stiffness S is
small, the resonance frequency kr determined from our theory is different from the results
given by F & R (Floryan & Rowley 2018). This is caused by the fact that our theory is based
on Euler–Bernoulli beam theory, which cannot recover the flutter type resonance branch
emerging when the dimensionless stiffness S is sufficient small (S ≤ 0.1). Figure 3(b) also
shows that the analytical relation given in (2.19) can provide a meaningful value when the
dimensionless stiffness S is larger than a typical value of 10 and the reduced frequency k is
larger than 1. This is because the analytical relation given in (2.19) is derived by assuming
that k and R are both fixed, which means that the minimization of Υ over S can only bring
the local ones to Υ . For given mass ratio R of the pitching foil, these local minimum values
of Υ are coincidence with the global ones only when the dimensionless stiffness S and the
reduced frequency k are larger than their corresponding certain critical values.

To further validate our theoretical model, we make a direct comparison on the response
parameter Υ between our theoretical model and direct simulation with data extracted from
Peng et al. (2022). As shown in figure 4, the match is good between our theoretical model
and the simulation for broad ranges of dimensionless stiffness and reduced frequency.
Both model and simulation show that, when the dimensionless stiffness increases, the
response parameter Υ will decrease firstly and reach a minimum value and then approach
to the constant of 1. The minimum value for Υ corresponds to the resonance condition,
whereas Υ = 1 corresponds to an equal pitching amplitude between the finalized pitching
motion and the driving one. For the resonance condition, our model can nicely recover the
critical dimensionless stiffness for resonance, as shown by the thin vertical lines. For the
equal pitching amplitude condition (Υ = 1), both theoretical model and simulation show
that there is a critical dimensionless stiffness satisfying this condition and this critical
dimensionless stiffness increases as the reduced frequency increases. Although the exact
value varies a bit between the theoretical model and simulation, our theoretical model
can recover the trends for the critical dimensionless stiffness as a function of the reduced
frequency.

When driving at resonance condition, our model fails to give the accurate response
parameter as that from simulation provided by Peng et al. (2022). This is because the
driving pitching amplitude used by Peng et al. is 0.1, which makes the finalized pitching
amplitude obviously larger than the ones that the linear inviscid theory holds. As shown
in the inset of figure 4, for the corresponding trailing amplitude of the flexible foil, our
theoretical model matches quantitatively with the simulations both for the resonance
stiffness and the corresponding trailing amplitude when the dimensionless stiffness is
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Figure 4. The response parameter Υ as a function of the dimensionless stiffness while under different reduced
frequencies k from 1.257 to 3.770 shown by lines and symbols with different colours. The scatters are the results
from direct simulation extracted from Peng et al. (2022), with the driving pitching amplitude of 0.1 and mass
ratio of 1. The dashed line is corresponding to Υ = 1 and the dotted line is corresponding to Υ = 0.3. The
vertical thin lines correspond to the resonance condition determined from simulation. The inset shows the
trailing amplitude normalized by the span of the foil, with the reduced frequency k of 3.142.

away from the resonance value. Near the resonance condition, the finalized pitching
amplitude will be as large as 0.4, which is obviously beyond the regime in which
linear inviscid theory can be utilized. In fact, we have checked that, when the driving
pitching amplitude is small, such that the linear inviscid theory still holds, our theory can
reasonably recover the resonance pitching amplitude.

Overall, based on the comparison between our theoretical model and these previous
models (Floryan & Rowley 2018; Fernandez-Feria & Alaminos-Quesada 2021) and direct
simulations (Peng et al. 2022), the response parameter Υ coined in this work could nicely
forecast the response of the flexible foil when pitching at the leading edge, demonstrating
the suitability of using it to uncover the physics of the flow–structure interaction system.

3. Results and discussions

In § 2, we have presented the analytical formulation for the response of the flexible foil
as a result of the driving pitch motion at the leading edge. Based on this formulation,
this section presents the results of the kinematics and the propulsion performance of the
pitching flexible foil. While the response of the pitching foil is solely determined by the
mass ratio R, the dimensionless stiffness S and the reduced frequency k, in this section,
a broad parameter ranges including S ∈ [0.1, 1000], k ∈ [0.1, 100] and R ∈ [0.01, 10] will
be used to determine the response of the pitching foil. Based on these parameter ranges,
the pitching amplitude and the phase angle will be determined first and then the thrust and
propulsive efficiency will be presented. Here, a lower mass ratio of R = 0.01 corresponds
to underwater swimmers and higher ones of R ≥ 1 correspond to fliers.

3.1. Pitching amplitude
The responded pitching amplitude given in (2.16) shows a linear relation with the
driving pitch amplitude, with the coefficient determined by Υ , which is given by (2.14).
While the resonance condition of the foil has been clarified in § 2 as well as in these
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Figure 5. The map of Se as a function of the mass ratio R and the reduced frequency k. The solid line is
corresponding to Sem by numerical determining the minimum value from (3.1). The dotted line is corresponding
to (3.3). The region for the value of Se larger than 15 is whited out and that smaller than zero is greyed out.

previous reports, here, we mainly focus on the critical condition that defines the situation
when the flexibility of the foil enlarges the pitching amplitude. Based on (2.14), this
condition can be readily given by Υ < Υe = 1, which gives

Se = 1
4

⎡
⎢⎢⎣
(

118
15

Rk2 + ak

)
+ b2

k(
44
5

Rk2 + ak

)
⎤
⎥⎥⎦ . (3.1)

Comparing (2.19) and (3.1), it shows that, for a given reduced frequency k and mass
ratio R, the dimensionless stiffness S for resonance is twice as the critical one where the
flexibility of the foil does not change the pitching amplitude. This relation applies when
(2.19) can capture the resonance condition of the foil. From (3.1), we can determine the
critical reduced frequency k in principle as there is no other unknown parameter if S and
R are given.

The analytical expression of (3.1) implies there is a minimum value for Se, indicated as
Sem, below which there is no solution for the reduced frequency k. To check this statement,
we show the map of Se as a function of R and k in figure 5. It shows that, for a given mass
ratio R in the range 0.01–10, there is a global minimum for the positive value of Se, where
the value for k is indicated as the solid line. Figure 5 also shows that, although the value for
R spans four orders, the critical value for k just spans one order, indicating the value of the
critical reduced frequency k is insensitive to the mass ratio R. The existence of the value
Sem indicates that the foil should have sufficient bending stiffness such that its pitching
amplitude can be enlarged as a result of deformation, although infinite bending stiffness
will never change the pitching amplitude either.

As the minimum value for Se, or Sem, determines whether the flexibility of the foil can
enlarge the pitching amplitude, we propose an approximated analytical solution to Sem
here. Based on (3.1), if treating 44Rk2/5 + ak as the unknown parameter that needs to be
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determined, then it has solution only when

	 =
(

4Sem + 14
15

Rk2
)2

− 4b2
k ≥ 0. (3.2)

This readily gives the value of Sem, below which there is no solution to (3.1); that is, if
S < Sem the pitching amplitude can never surpass its rigid counterpart. Here, Sem can be
given by

2Sem + 7
15

Rk2 = bk = 44
5

Rk2
m + ak, (3.3)

where km is the corresponding reduced frequency. Equation (3.3) shows how to determine
the lower value of Sem, which is realized by determining km through the second equality
if the mass ratio R is specified. While (3.2) indicates the absolute treatment should be put
on bk, implying there may be two solutions to k, we can show that, for R in the range
between 0.01 and 10, only the solution that guarantees a positive bk is legitimate, as has
been given in (3.3). To do so, we show the relation of (3.3) as the dotted line in figure 5.
For a given value of R lying in the range of 0.01 and 10, figure 5 shows that the value for
km that satisfies (3.3) lies in the range between 0.1 and 1. Based on the value range of km
and checking the value of bk from figure 2, it clearly shows that bk is always positive. This
justifies the suitability of choosing the positive value for bk in (3.3) when determining the
critical dimensionless stiffness Sem.

To check the suitability of (3.3) in determining the minimum value for Sem, we make
a comparison between the results from (3.1) and (3.3), which have been shown by the
solid line and dotted line in figure 5. The lines from figure 5 shows that the analytical
relation given in (3.3) can provide a pretty good solution to Sem when compared with
that of the numerical results from (3.1) if the mass ratio R is large, say larger than 1.
Under this condition, k approaches 0.1 and bk approaches zero slowly. When R is small,
there is a notable discrepancy between them, indicating the analytical relation of (3.3)
failed to provide the global minimum value for Se. This is because (3.3) implies the global
minimum for Se happens when bk = 44Rk2

m/4 + ak has been satisfied. While this is true
only when bk is constant over k, this surely breaks down as bk is in principle a function of k.
However, the weak dependence of bk as a function of k when k approaches zero guarantees
that the analytical relation proposed in (3.3) can provide a reliable value for Sem, which
happens to be the condition when the mass ratio R is large and the corresponding value of
km is sufficiently small.

With the information for the minimum value of Se, we move to determine the analytical
relation among R, S and k, which defines whether the flexibility of the foil can enlarge the
pitching amplitude. If (3.2) can be satisfied, the solution to 44Rk2/5 + ak can be given
from (3.1) through

44
5

Rk2 + ak =
(

2S + 7
15

Rk2
)

±
√(

2S + 7
15

Rk2
)2

− b2
k . (3.4)

As with the intermediate functions of ak and bk, these is no simple analytical solution to
k in general. Here, we can formulate asymptotic relations among R, S and k as follows.
While (3.1) has been used to derive the lower boundary for the dimensionless stiffness,
here we consider the condition when the dimensionless stiffness approaches a large value.

979 A5-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
28

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1028


F. Du and J. Wu

Under this condition, we will demonstrate that the condition of 4S2 	 b2
k can be always

satisfied. Based on this relation, two asymptotic relations can be obtained from (3.4). The
first one determines the lower solution for the reduced frequency kl as

44
5

Rk2
l + ak = 0. (3.5)

This relation is rather simple, indicating that there is a critical reduced frequency, denoted
by kl, which is solely determined by R if the value of S is large; that is, kl ∼ f (R). It can be
easily checked that this critical reduced frequency kl is the lower boundary for the reduced
frequency, below which the pitching amplitude of the flexible foil will be smaller than the
rigid counterpart. The second asymptotic relation determines the upper boundary for the
reduced frequency, denoted by ku, as

118
15

Rk2
u + ak = 4S. (3.6)

Based on the definition for ak given by (2.15), the asymptotic solution for the reduced
frequency ku can be given as

ku ∼= 2√
118
15

R + 109π

64

√
S. (3.7)

From (3.7), it shows that the solution for ku satisfies S ∼ k2
u if S is sufficiently large. As ku

is the upper boundary for the reduce frequency k, the condition of 4S2 	 b2
k can be easily

justified if we note that bk ∼ k, as the results from figure 2(b) show.
With these analytical relations for the equal pitching amplitude condition, whether the

foil with flexibility has a larger pitching amplitude can be easily checked. Firstly, we need
to check that the dimensionless stiffness S is larger than the lower boundary determined
by (3.3) analytically or the more accurate one of the minimum from (3.1) numerically. If
this can be satisfied, we need to determine the lower and upper boundaries for the reduced
frequency through (3.5) and (3.7), respectively. If the reduced frequency from the working
condition lies between them, the foil will have a larger pitching amplitude than the driving
one. Otherwise, the pitching amplitude of the foil will decrease as a result of deformation.

For mass ratios of 0.01 and 1, figure 6 show the pitching amplitudes as a function of
dimensionless stiffness S and reduced frequency k, together with the resonance condition
defined from (2.14) and the equal pitching amplitude condition of Υ = 1 defined from
(3.1). In order to justify the accuracy of the physical model proposed in this study, we also
included these previously reported results in figure 6. For a mass ratio of 0.01, we make a
comparison between our theoretical model with the result from F & R (Floryan & Rowley
2018). As shown in figure 6(a), the reduced frequency for resonance matches well between
our theory and that from F & R when the dimensionless stiffness S is relatively large.
Under this condition, the corresponding resonance frequency kr scales with S with a power
of 1/2, as (2.19) implies. The match becomes worse if the dimensionless stiffness S is
small, under which kr is smaller from our theory when compared with F & R. Besides the
resonance condition, the relation between the reduced frequency k and the dimensionless
stiffness Se for Υ = 1 is consistent between our theory of (3.1) and the results from F &
R. For the equal pitching amplitude condition, although our theory will shift the reduced
frequency down a bit, both theories give that there is a critical stiffness Sem below which
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Figure 6. Pitching amplitudes as a function of dimensionless stiffness S and reduced frequency k for given
mass ratio of (a) R = 0.01 and (b) R = 1. The solid red lines correspond to the natural frequency obtained
from minimization of (2.14) numerically. The solid black lines correspond to the solution given by (3.1), where
the dashed black lines correspond to (3.3), (3.5) and (3.7), respectively. The dashed red line and the dotted line
in (a) correspond to the result from F & R (Floryan & Rowley 2018). The cycle scatters in (b) correspond to
the results from Peng et al. (2022).

the pitching amplitude will decrease no matter the reduced frequency k. All these results
indicate that our theory can provide a meaningful method to evaluate the flexibility effect
on the pitching foil, if noting that our theory has the simple closed-form expressions.

In figure 6(b), we include the simulated results from Peng et al. (2022) as shown by these
scattered symbols. The comparison between our theory and the simulated ones shows that
the theory proposed in this study can nicely capture the effect of the flexibility of the
foil on the pitching amplitude, although a certain discrepancy does exist between them if
the exact pitching amplitude is concerned. The discrepancy is introduced as the pitching
amplitude of the foil is well above 0.1 and even reaches up to 0.2 in their simulations (Peng
et al. 2022). With such large pitching amplitudes, the linear potential flow theory used in
this study surely breaks down. Although, with this limitation, the predictive ability of the
theoretical model in forecasting the pitching amplitude for a flexible foil is still evident.

Next, we justify the analytical relations for Υ = 1 formulated in this study. For a low
mass ratio of R = 0.01 and a relatively high mass ratio of R = 1, figure 6(a,b) shows
that the flexibility of the foil may increase or decrease the pitching amplitude, which is
determined by the combination of the dimensionless stiffness S and the reduced frequency
k if the mass ratio R is given. When the reduced frequency is large (k > 2), figure 6(a,b)
shows that this critical stiffness Sem for equal pitching amplitude is half of the stiffness
at which resonance happens. To obtain a larger pitching amplitude, the dimensionless
stiffness S should be larger than 6.92 if the mass ratio is 0.01, under which the reduced
frequency is approximately 1.14. For a mass ratio of 1, the minimum dimensionless
stiffness S is 2.88 and the corresponding reduced frequency is 0.57. These critical values
for S are determined from the numerical minimization of (3.1). If the analytical relation
of (3.3) is used to determine the critical values, for R to be 0.01 and 1, the dimensionless
stiffness turns out to be 9.26 and 3.73, with the corresponding reduced frequency being
1.93 and 0.82, respectively, as indicated by the stars in these panels. The comparison
of the minimum stiffness between the numerical solution and that from the analytical
relation shows that the analytical relation given by (3.3) is more suitable for the larger
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Figure 7. Pitching amplitude as a function of frequency ratio for dimensionless stiffness S ranging from 0.1 to
1000 as shown in lines with different colours. The solid lines, dashed lines and dotted lines correspond to mass
ratios R of 10, 1 and 0.01, respectively.

mass ratio condition. Although with a certain discrepancy between the analytical results
compared with the numerical solutions, the analytical relation of (3.3) can provide a
meaningful value for the minimum dimensionless stiffness Sem.

If the dimensionless stiffness is larger than Sem, the pitching amplitude can be larger
than the rigid counterpart only when the reduced frequency k is located between the lower
boundary determined by kl and the upper boundary determined by ku, as figure 6 shows.
Figure 6(a,b) shows that the lower boundary of kl is constant over S if S is sufficiently large,
which is solely determined by R, as the horizontal dashed lines in these figures show. For R
to be 0.01 and 1, kl is 0.57 and 0.35, respectively, both of which can be readily determined
from (3.5). As for the upper boundary of ku, the tilted dashed lines determined from (3.7)
match nicely with the upper boundary of the reduced frequency determined numerically
from (3.1). Both figures show that ku scales with the dimensionless stiffness S with a
power of 1/2, as (3.7) gives. These consistencies between the numerical solutions and the
analytical relations demonstrate the suitability of these analytical relations in forecasting
the equal pitching amplitude condition as a result of foil flexibility.

In a recent computation work, Peng et al. proposed that the finalized pitching amplitude
can collapse into a single line if the driving frequency is normalized by the resonance
frequency kr (Peng et al. 2022). To check this statement, for dimensionless stiffness S
ranging from 0.1 to 1000 and mass ratios R of 0.01, 1 and 10, we determine the pitching
amplitude as a function of the ratio between the reduced frequency and the resonance
frequency. The result is shown in figure 7, which shows that the dimensionless stiffness S
will influence the collapse of those curves whereas the mass ratio R will influence the
peak value of the normalized pitching amplitude. The collapse of these curves holds
only when the dimensionless stiffness S is sufficient large, say larger than 10 in this
pitching motion. This is consistent with the parameter range presented by Peng et al.
(2022), where most of the dimensionless stiffness S is well above 10, thus justifying their
method of collapsing the pitching amplitude by the normalized frequency. Noting that the
dimensionless stiffness S = 12K, where K is the scaled bending stiffness defined by Peng
et al. (2022). If the dimensionless stiffness S is smaller than 10, the normalized pitching
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Figure 8. Map of (a) the pitching amplitude at resonance Φr and (b) the resonance frequency kr as a function
of dimensionless stiffness S and mass ratio R. The solid line in (a) corresponds to the condition that the peak
pitching amplitude is the same as the driving pitching amplitude.

amplitude will shift to a lower value when compared with the higher dimensionless
stiffness S condition, indicating the collapse of the pitching amplitude curves fails.

For the effect of the mass ratio R, figure 7 shows that it acts like the damping
parameter for a damped resonant system, where the peaks for the pitching amplitude are
corresponding to damped resonances, with damping scaling inversely with the mass ratio
R, as has been observed by Zhang, Zhou & Luo (2017). For a high mass ratio R (R ≥ 1),
there is a sharp peak for the normalized pitching amplitude, which is smoothed out if
the mass ratio is small (R = 0.01), indicating strong damping exists under this condition.
However, one may suspect their similarity if making a comparison on the dissipative
properties between this flow–structure system and the damped resonant system. This is
because, while the damped resonant system is clearly a dissipative system, where the input
power has been fully dissipated by the damping of the system, this flow–structure system
belongs to the non-dissipative system as the flow is inviscid. To reconcile this difference,
we can isolate the foil from the flow–structure system, where the input power used to drive
its pitching motion is readily dissipated by, or transferred to, the flow, which increases the
kinetic energy of the flow steadily. Thus, with this analogy, the mass ratio R will signify
the energy transfer ability from the foil to the flow; a lower value of R contributes to higher
energy transfer ability and vice versa.

To further evaluate the maximum pitching amplitude for flexible foils, we determine the
map of the pitching amplitude at resonance as a function of the dimensionless stiffness S
and the mass ratio R in figure 8(a), together with the corresponding resonance frequency kr
shown in figure 8(b). For the parameter ranges investigated in this study, figure 8(a) shows
the peak amplitude is mainly regulated by the dimensionless stiffness S, larger stiffness
introduces larger peak pitching amplitude. For given mass ratio R, there is a critical S,
below which the peak pitching amplitude is smaller than the driving pitching amplitude.
While the mass ratio R spans in three orders, the critical S increases slowly from 0.60
to 6.53, demonstrating S is the main contribution to the peak pitching amplitude. We
remark that caution needs to be employed when using figure 8(a) to evaluate the maximum
pitching amplitude obtainable, especially concerning the up to 2 orders of amplification
to the driving amplitude. Under these conditions, the pitching angle will become so large
that flow separation and other high-order effects are highly possible, making the linear
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potential flow theory used in this study fail. The map for the resonance frequency kr
shown in figure 8(b) indicates that the resonance frequency is mainly regulated by the
dimensionless stiffness S, although the effect of R is evident if S is small. For the critical
condition that the peak pitching amplitude is the same as the driving one, the resonance
frequency also lies in a narrow range between 0.19 and 1.07, which changes slowly with
the mass ratio R in a non-monotonic way.

3.2. Phase angle
For the phase angle given in (2.12), it can be represented through ak and bk as

ϑ = atan
bk

2S − 118Rk2/15 − ak
. (3.8)

Thus, whether the phase angle is larger or smaller than zero is determined by the following
two conditions. The first one is bk = 0, from which the reduced frequency k is determined
to be 0.0092, as figure 2 shows. When k is larger than 0.0092, the value of bk is positive,
and vice versa. The second one is

Sp = 59Rk2

15
+ 1

2
ak. (3.9)

We show that the critical condition given in (3.9) controls the sign of the phase angle
uniquely. This is because the value of k in this study is mainly located in the range of
0.1–100, which guarantees that bk is always positive. In fact, (3.9) not only determines the
sign of the phase angle, but also determines the quadrature condition between the driving
pitching motion and finalized pitching motion, where the phase angle is ±π/2.

It shows from (3.9) that, for a given mass ratio R, the reduced frequency k will separate
the dimensionless stiffness Sp into two regions. These two regions have been shown in
figure 9. The first region is the grey coloured region, as shown in figure 9 in the lower
part. In this region, the value of Sp is negative all the time. This indicates the value of
2S − 118Rk2/15 − ak will be positive for any dimensionless stiffness S, meaning the phase
angle is positive over the dimensionless stiffness of the foil. The second region is the upper
part shown in figure 9, where the value of Sp is positive. Under this condition, the value
of 2S − 118Rk2/15 − ak will be positive when the dimensionless stiffness S is larger than
Sp, which brings a positive value to the phase angle. On the other side, the phase angle is
negative. If the critical condition of S = Sp can be satisfied, the phase angle will be ±π/2,
indicating the driving pitching motion and the finalized pitching motion are quadrature.

When elucidating the connections between the pitching amplitude and the phase angle,
it can be easily checked from (3.9) for Sp and (3.3) for Sem that the critical dimensionless
stiffness for these two conditions is the same. While the connection between the phase
angle and the resonance of the pitching foil is less obvious, we observe that, when the
reduced frequency k is large, the condition for resonance is the same as the condition when
the quadrature happens to the pitching foil, where the phase angle equals to ±π/2. This is
because, when k is large, both the resonance deduced stiffness from (2.19) and the phase
angle of ±π/2 deduced stiffness from (3.9) scale the same as (118R/15 + 109π/128)k2.
To check this statement, we show the phase angle of the foil as a function of S and k
both for R = 0.01 and R = 1 in figure 10. Figure 10(a,b) shows that, when the reduced
frequency k is large, the match is good between the resonance derived dimensionless
stiffness Sr and the phase angle of ±π/2 derived dimensionless stiffness Sp. When the
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reduced frequency k is small, there is certain discrepancy between Sr and Sp, and this
discrepancy is more evident when the mass ratio is small. This is because (3.9) can provide
the correct resonance dimensionless stiffness Sr only when R and k are sufficiently large.
Otherwise, it will bring a certain discrepancy to Sr, as has been shown in figure 3(b).
Besides this discrepancy, figure 10(a,b) shows that, when the stiffness S is larger than Sp,
the phase angle will be positive, and vice versa.

3.3. Thrust generation
The forward thrust of the pitching foil contains two parts; namely, the leading-edge suction
resulting from the flow singularity at the leading-edge point and the contribution from the
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pressure difference on the foil. Following Moore’s solution (Moore 2014), the leading-edge
suction induced thrust Ts can be calculated by contour integration as

Ts(t) = 1
4πρc3f 2Φ2[(3πGk − UFk)

2 cos2 2πt + (π − 3πFk − UGk)
2 sin2 2πt]. (3.10)

The pressure induced thrust Tp is given by

Tp(t) = 1
4πρc3f 2Φ2(3πUGk − U2Fk + 2π2) cos2 2πt. (3.11)

Thus, the time averaged forward thrust Tm and the fluctuation amplitude Ta of the forward
thrust of the pitching foil can be determined as

Tm = 1
8
π3ρc3f 2Φ2

[(
3Gk − 2

k
Fk

)2

+ 2
(

3
k

Gk − 2
k2 Fk + 1

)
+
(

1 − 3Fk − 2
k

Gk

)2
]
,

Ta = 1
8
π3ρc3f 2Φ2

[(
3Gk − 2

k
Fk

)2

+ 2
(

3
k

Gk − 2
k2 Fk + 1

)
−
(

1 − 3Fk − 2
k

Gk

)2
]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.12)
After being normalized by the force ρU2∞c/2, the coefficient of the mean thrust CTm and
its fluctuation amplitude CTa can be given as

CTm = 1
Υ

CTm0,

CTa = 1
Υ

CTa0,

⎫⎪⎬
⎪⎭ (3.13)

where the relation of (2.16) has been used. Here, CTm0 and CTa0 are the coefficient of the
mean thrust and its fluctuation amplitude of the rigid foil counterpart given by

CTm0 = πΦ2
0

4
[(3kGk − 2Fk)

2 + 2(3kGk − 2Fk + k2)+ (k − 3kFk − 2Gk)
2],

CTa0 = πΦ2
0

4
[(3kGk − 2Fk)

2 + 2(3kGk − 2Fk + k2)− (k − 3kFk − 2Gk)
2].

⎫⎪⎪⎬
⎪⎪⎭ (3.14)

Based on (3.13), the effect of the flexibility of the foil on the thrust generation is evident,
which is solely determined by the response parameter Υ that was introduced in (2.14).
While the value of Υ , which determines the normalized pitching amplitude, as a function
of the dimensionless stiffness S, the mass ratio R and the reduced frequency k has been
elucidated in detailed in § 3.1, here, we make a short summary for the thrust coefficients of
the rigid foil. As shown in figure 11, the mean thrust CTm0 will increase monotonically with
the reduced frequency k and a scaling between them can be easily obtained from (3.14)
as CTm0 ∼ 9πΦ2

0 k2/16, if we note that Fk ∼ 0.5 and Gk ∼ 0 when k → +∞. When the
reduced frequency k reduces to 0.635, the mean thrust changes from positive to negative,
meaning the drag to thrust (DTT) transition happens when k = 0.635. For the ratio of
the fluctuation amplitude to the mean thrust CTa0/CTm0, figure 11 shows that it increases
with the reduced frequency k and will approach a constant when the reduced frequency
k is sufficiently large; say larger than 3. The constant is 7/9, meaning the foil will always
encounter forward thrust when pitching in fluid.

For foil pitching in a ‘real’ fluid, the viscosity of the fluid will inevitably introduce offset
drag to the foil, which reduces its forward thrust. While some of the theoretical models
included a constant offset drag coefficient to the foil (Floryan et al. 2017; Fernandez-Feria
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mean thrust CTa0/CTm0 for a rigid foil as a function of reduced frequency k. The amplitude of the driving
pitching angle is set to be 1.

& Alaminos-Quesada 2021), here, we introduce a projected frontal area related offset drag
coefficient to the foil, which resembles a bluff body moving in fluid (Floryan, Van Buren
& Smits 2018; Van Buren, Floryan & Smits 2019). So, the offset drag coefficient Cd can
be given as

Cd = ξΦ = 1√
Υ
ξΦ0, (3.15)

where ξ is constant. For a rigid foil, the offset drag coefficient is given by Cd0 = ξΦ0.
Based on their experimental investigation, Van Buren et al. fitted a value of 0.48 for the
constant ξ (Van Buren et al. 2019). From the thrust given in (3.13) and the offset drag
given in (3.15), the net thrust CTn of the foil can be given as

CTn = CTm − Cd = 1
Υ

CTm0 − 1√
Υ
ξΦ0. (3.16)

Thus, the effect of the flexibility of the foil on the net thrust is evident, as it not only
contributes to the thrust generation, but also changes the offset drag on the foil.

For the net thrust, figure 12 shows its value as a function of the dimensionless stiffness
S and the reduced frequency k while under mass ratios of R = 0.01 and R = 1, where the
driving pitching amplitude is set to be 2◦. It clearly shows that including the viscosity
induced offset drag can reduce the thrust dramatically, especially for the DTT transition
condition. For rigid foil, the DTT transition happens when the reduced frequency k is
0.635. For the flexible foil, the DTT transition will not only require that the reduced
frequency k is obviously larger than 0.635, it also requires that the dimensionless stiffness
S is larger than certain values. The coincidence of the net thrust generation and the
resonance happening for the pitching foil is also evident, as shown in figure 12. This is
because, as (3.16) shows, the net thrust happens to the peak pitching amplitude condition,
which is the same as the condition when resonance happens.

When comparing the thrust from the flexible foil with that of the rigid one, figure 13(a,c)
shows the result without offset drag and figure 13(b,d) shows the result with offset drag.
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If the offset drag is not included, as figure 13(a,c) shows, the thrust ratio between the
flexible foil and the rigid counterpart shows the same trends as that of the finalized pitching
amplitude, as figure 6 shows. This is because the effect of the flexibility on the pitching
amplitude and on the thrust generation has the same scaling parameter Υ but with different
power. The power for pitching amplitude is −1/2, as (2.14) gives, whereas the power for
thrust generation is −1, as (3.13) gives. These varying powers explains that, compared
with the pitching amplitude, the peak value for thrust will become more centred at the
resonance condition. If focusing on gain more thrust from the flexible foil than from its
rigid counterpart, figures 13(a) and 13(c) demonstrate that the mass ratio R will show its
effect. For a mass ratio of R = 0.01, figure 13(a) shows that, to gain more thrust from the
flexible foil, the dimensionless stiffness S of the foil should be larger than a critical value
given by Sem and the reduced frequency k should lie in a bounded region, as has been
found for the equal pitching amplitude condition. However, for a mass ratio of R = 1, the
reduced frequency of the lower boundary kl for equal pitching amplitude is 0.35, as shown
in figure 6(b), which is below the reduced frequency for the DTT transition of 0.635. Thus,
this makes the lower reduced frequency boundary shift from kl to the DTT transition, as
figure 13(c) shows.

When the offset drag is included, as figure 13(b,d) shows, the thrust region, which
corresponds to the condition that the thrusts for the rigid and for the flexible foil are both
positive, will shrink to a larger extent than the inviscid condition. On the one hand, the
minimum dimensionless stiffness is required compared with the inviscid condition. This
is consistent with the net thrust for a flexible foil, as shown in figure 12. On the other hand,
the minimum reduced frequency moves from 0.635 to approximately 3, indicating a higher
driving frequency is required. This change originates from the offset drag, which shifts the
reduced frequency for DTT transition from 0.635 to approximately 3. While including the
offset drag will shrink the net thrust region to a large extent, the peak thrust ratio evolution
as a function of the stiffness S and the reduced frequency k is not changed; that is, the peak
thrust ratio happens at the same time when resonance happens.
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(c) mass ratio R of 1 without drag and (d) mass ratio R of 1 with drag. The red solid lines correspond to the
resonance frequency. The driving pitching amplitude is set to be 2◦. The regions with drag either from the
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3.4. Power and propulsion efficiency
The input power to the foil is balanced by the negative power done by the pressure on the
foil (Moore 2014), which can be given as

P(t) = −c2

4

∫ 1

−1
p(x, t)

∂H
∂t

dx. (3.17)

Inserting (2.1) and (2.2), (3.17) can be solved as

P(t) = π4ρf 3c4Φ2
[

3k + 3kFk + 2Gk

8k2 (1 − cos 4πt)+ 9k2 + 6kGk − 4Fk

32k2 sin 4πt
]
.

(3.18)
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Thus, after normalizing by the power ρU3∞c/2, the time averaged power coefficient and
its fluctuation amplitude can be given by

CPm = 1
Υ

CPm0,

CPa = 1
Υ

CPa0,

⎫⎪⎬
⎪⎭ (3.19)

where CPm0 and CPa0 are the mean power coefficient and the fluctuation amplitude of the
rigid counterpart given by

CPm0 = πΦ2
0

4
(3k2 + 3k2Fk + 2kGk),

CPa0 = πΦ2
0

4
(3k2 + 3k2Fk + 2kGk)

√
1 + 1

16

(
9k2 + 6kGk − 4Fk

3k + 3kFk + 2Gk

)2

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.20)

Equation (3.19) shows that, like the thrust given in (3.13), the effect of the flexibility of
the foil on the power is solely determined by Υ when compared with the rigid counterpart.
For a rigid foil, as shown in figure 14, the mean power will increase monotonically with
the reduced frequency k and a scaling between them can be easily obtained as CPm0 ∼
9πΦ2

0 k2/8, if considering Fk ∼ 0.5 and Gk ∼ 0 when k → +∞. The ratio between the
fluctuation amplitude of the power to its mean value will decrease first and then increase
with increasing reduced frequency k; that is, a global minimum for CPa0/CPm0 exists,
which happens at k = 0.562 and the minimum ratio is 1. When the reduced frequency k is
larger than approximately 3, CPa0/CPm0 will scale with the reduced frequency k linearly.
These results indicate that the foil will exchange kinetic energy intensively with the fluid
environment, especially when the pitching frequency is high.

Based on the input power given in (3.19) and the thrust without drag given in (3.13), the
‘prefect’ propulsive efficiency η0 can be given as

η0 = CTm

CPm
= CTm0

CPm0
. (3.21)
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It clearly shows that there is no effect of the flexibility of the foil on the ‘prefect’ propulsive
efficiency, as the contributions of the flexibility of the foil to the thrust and that to the power
are identical, and fully cancel, as has been observed by previous investigations (Floryan
& Rowley 2018; Fernandez-Feria & Alaminos-Quesada 2021). It can be easily checked
that η0 = 0.5 when k → +∞. However, while the offset drag encountered by the foil is
unavoidable, we use the net thrust given in (3.16) to determine the propulsive efficiency
with drag, which can be given as

η = CTn

CPm
= η0 −

√
Υ

CD0

CPm0
. (3.22)

Based on (3.22), the propulsive efficiency with drag for a rigid foil ηr can be given by

ηr = η0 − CD0

CPm0
. (3.23)

Both (3.22) and (3.23) show that including the offset drag will always reduce the
propulsive efficiency. The difference between η and ηr characterizes the efficiency
increment 	η as a result of the flexibility of the foil, which can be given as

	η = η − ηr = (1 −
√
Υ )

CD0

CPm0
. (3.24)

Equation (3.24) shows that, whether a foil with flexibility can gain propulsive efficiency is
purely determined by whether the flexibility of the foil can enlarge the pitching amplitude
or not, which has been well clarified by (3.1) and the results shown in figures 5–8. If the
flexibility of the foil can increase the pitching amplitude (Υ < 1), which happens when the
dimensionless stiffness S is larger than the critical value of Sem and the reduced frequency k
lies in the bounded region, it will increase the propulsive efficiency too. On the other side,
the flexibility will decrease the propulsive efficiency. Equation (3.24) also shows that, no
matter the flexibility of the foil, the maximum value for 	η is bounded by CD0/CPm0,
under which the propulsive efficiency η approaches η0.

To evaluate the effect of flexibility on the propulsive efficiency, we show the propulsive
efficiency increment 	η as a function of the reduced frequency k and the dimensionless
stiffness S in figure 15. For a low mass ratio of R = 0.01 and relatively high mass ratio of
R = 1, figure 15(a,b) shows that the efficiency increment 	η can be positive only when
the dimensionless stiffness S is larger than a certain value and the reduced frequency k lies
in certain ranges. This is equivalent to Υ = 1, as (3.24) shows. While the requirement of
Υ = 1 is consistent with the condition when equal pitching amplitude happens between
the flexible foil and the rigid counterpart, as has been determined in § 3.1, a difference
between them still exists. In fact, to ensure a positive efficiency increment 	η, the lower
boundary for the reduced frequency k needs to shift from a mass ratio R related value
given in (3.5) to the constant of approximately 3. When concerning the maximum 	η

obtainable, both figure 15(a,b) shows that it is coincident with resonance while the reduced
frequency k needs to be relatively small. This is because 	η will be regulated not only by
the flexibility-controlled parameter of Υ , but also by the reduced frequency k through
CPm0. Lower reduced frequency k helps to obtain a higher 	η through reducing the value
of CPm0, as shown in figure 14. By comparing figure 15(a,b), the effect of the mass ratio
R on the efficiency increment 	η is evident, where a larger mass ratio R contributes to a
higher efficiency increment 	η.

979 A5-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
28

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1028


F. Du and J. Wu

102

101

100

102 103

102

101

100

101 101 102 103

Dimensionless stiffness S Dimensionless stiffness S

R
ed

u
ce

d
 f

re
q
u
en

cy
 k

�
η

R = 0.01 R = 1

0

0.2
0.2

0.1

0.3

0

0.1

0.4

0.3

0.2

0.1

–0.1

–0.2

–0.3

–0.4

–0.5

0

0.4

0.3

0.2

0.1

–0.1

–0.2

–0.3

–0.4

–0.5

0

(a) (b)

Figure 15. Propulsive efficiency increments 	η as a function of reduced frequency k and dimensionless
stiffness S for mass ratios of (a) R = 0.01 and (b) R = 1. The driving pitching amplitude is set to be 2◦.
The solid red lines correspond to the resonance frequency. The drag regions have been whited out.

4. Concluding remarks

This study proposed an analytical solution to the flow–structure interaction of a tethered
flexible foil pitching in a uniform inviscid stream, which is realized by tracking the
averaged deformation angle of the foil other than the deflection over the entire body. This
method transfers the infinite degrees of freedom problem to a single degree of freedom
problem, where the pitching angle turns out to be the only variable, which is regulated by
the driving motion at the leading edge and deflection of the foil caused by the inertial force
and the fluid pressure. As the pressure is determined by a flat foil with the same pitching
angle as the flexible one, this will bring inconsistency between the real pressure and the
approximated one. This inconsistency is minor as the pressure is mainly contributed by
the pitching angle, where the contribution of the camber of the flexible foil is small
when the deflection is small, which is the prerequisite of the analytical solution. Besides,
based on the deflection mode used in this study, our theory only recovers the first-order
response of the foil, which seems coincident with the theory proposed by Fernandez-Feria
& Alaminos-Quesada (2021). Although with this shortcoming, the analytical solution can
nicely capture the response that happens at the first-order vibration mode, which is suitable
for flyers and swimmers with oscillatory propulsion (Smits 2019). Even for undulatory
swimming, the maximum possible thrust coefficient is always achieved by the flexible foil
operating at or near the first resonance mode (Floryan & Rowley 2018), which signifies
that the usage of the current theory to estimate the performance of the flexible pitching
foil is reasonable.

The theoretical model developed in this study is based on linear inviscid theory
and Euler–Bernoulli beam theory, with the former one determining the non-steady
aerodynamical loading on the foil and the last one determining the deformation of
the foil. Thus, the suitability of the theoretical model is determined by the responding
pitching amplitude and the deformation angle of the foil. Recent work (Sanmiguel-Rojas
& Fernandez-Feria 2021) shows that the linear inviscid theory could provide meaningful
results if the pitching amplitude is no larger than 0.1, which sets the upper limit to the
finalized pitching amplitude. For the deformation angle, the Euler–Bernoulli beam theory
could provide meaningful results to its value up to 0.3 (Yang, van der Drift & French 2022).
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Analytical results for pitching flexible foil

As the upper limit for the deformation angle is obviously larger than the upper limit for
the pitching amplitude, the suitability of the theoretical model is mainly determined by the
condition that the pitching amplitude is small such that the linear inviscid theory holds. If
this condition cannot be satisfied, flow separation and other high-order effects may emerge,
which make the formulated model fail to forecast the response parameter, as shown in
figure 4 for the condition when resonance happens. While the analytical formulation for
the fundamental frequency of the flexible foil is only 0.6 % smaller than its exact value,
demonstrating the accuracy of our analytical modelling of the vibration of the foil (Du,
Yao & Wu 2023), efforts should be paid to elaborating the aerodynamical force loading on
the foil when the pitching amplitude is large.

The analytical solution obtained in this study is different from the method provided
by Alaminos-Quesada and Fernandez-Feria, where their approximation is made by
assuming the deflection of the foil follows a quartic function over the chord coordinate
(Fernandez-Feria & Alaminos-Quesada 2021). While a quartic deflection implies the
force drawing on the foil is constant over the chordwise direction, this surely brings a
discrepancy to the flow pressure and the inertial force drawing on the foil, as both of them
are highly nonlinear in general (see (2.2) and (2.5), respectively). Besides this difference,
our analytical expression is more concise than the solution provided by Fernandez-Feria
& Alaminos-Quesada (2021), which makes the analysis of this flow–structure interaction
clearer and more concise than before. In fact, as a result of the lengthy form of the
analytical expression provided by Alaminos-Quesada and Fernandez-Feria, few analytical
results can be provided for the response of the pitching foil with flexibility, such
as the resonance condition for a wider parameter range, the critical condition for
pitching amplitude amplification. Thus, compared with these previous theoretical models
(Alben 2008; Floryan & Rowley 2018; Fernandez-Feria & Alaminos-Quesada 2021), our
theoretical formulation brings a simple analytical form to the response parameter, which
describes the finalized pitching motion nicely. With this simple response parameter, three
critical conditions in analytical forms have been developed, most of them for the first time.
These three critical conditions are: (i) resonance condition for a wide parameter range, (ii)
equal pitching amplitude between the flexible foil and the rigid counterpart and (iii) the
phase angle transition between π/2 and −π/2. For the first time, we theoretically reveal
that, when the reduced frequency is large, the critical dimensionless stiffness for resonance
is the same as that when quadrature condition between the driving pitching motion and
finalized pitching motion happens, both of which are two times the critical dimensionless
stiffness when equal pitching amplitude happens.

To utilize the proposed analytical model and the corresponding three critical conditions,
we give a guideline briefly here. Firstly, these three critical parameters, namely the mass
ratio R, the dimensionless stiffness S and the reduced frequency k should be determined,
as introduced in § 2 and given in the nomenclature table (table 1). For the resonance
condition, the critical condition can be determined from the numerical solution of (2.14),
where the approximate analytical result can be determined by (2.19) or (2.20) if the
mass ratio and the dimensionless stiffness are large. For the equal pitching amplitude
condition, the critical condition can be determined from numerical solution of (3.1).
Based on the mass ratio and reduced frequency, a critical dimensionless stiffness can be
estimated from (3.3). If this critical dimensionless stiffness is smaller than the operation
dimensionless stiffness, the critical reduced frequency given by (3.5) and (3.7) and the
operational one should be checked. If the operational reduced frequency lies between
them, the pitching amplitude will increase when compared with the driving one. For the
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phase angle transition condition, the critical condition can be determined from (3.9) solely.
Among these critical conditions, this study pays a lot attention to the critical condition
when the flexible foil has the same pitching amplitude as that of the rigid counterpart,
which represents not only the pitching amplitude response, but also the thrust and
propulsive efficiency performance. The analytical relation for this critical condition shows
that the dimensionless stiffness should be larger than a critical value, above which, the
reduced frequency lies between a certain region, where the mass ratio determines the
critical dimensionless stiffness and the reduced frequency boundaries.

When evaluating the performance of the pitching foil, we follow the result from Garrick
(1936) for the thrust and the power consumption when the foil is rigid and the flow is
inviscid. Based on our theory, the flexibility will change the pitching amplitude and the
thrust generation by the same response function; amplifying the pitching amplitude more
accompanies increasing thrust. This is consistent with previous reports that flexibility
located at the leading edge contributed the most to thrust generation if the other parameters
are the same (Moore 2015; Floryan & Rowley 2020), for which the amplification to the
pitching amplitude is largest. For a foil pitching in inviscid fluid flow, as amplifying
the thrust generation scales exactly the same as amplifying the energy consumption, this
makes the propulsive efficiency irrelevant with the flexibility of the foil. This is consistent
with the previous theoretical investigation, where a large number of Chebyshev terms
are used to uncover the connection between the resonance and the propulsive efficiency
(Floryan & Rowley 2018). While the thrust and the propulsive efficiency determined by
Garrick (1936) has been updated by Fernandez-Feria (2016) through vortical impulse
theory, this will not change the contribution of the flexibility of the foil to the propulsive
efficiency, although the exact thrust and the power consumption should be updated. For
thrust generation and propulsive performance, we have included a pitching amplitude
controlled bluff body type offset drag to the foil, which is more reasonable when compared
with the constant drag coefficient used by previous researchers. Including this offset drag
term makes the propulsive efficiency localized to the resonance condition while shifting
the reduced frequency to the lower side. This is consistent with the observation that
the propulsive efficiency is always localized to a certain St parameter region (Taylor,
Nudds & Thomas 2003), whereas the previous theories forecast the coincidence between
the maximum propulsive efficiency and the resonance condition for the whole reduced
frequency range (Floryan & Rowley 2018; Fernandez-Feria & Alaminos-Quesada 2021).

With the analytical formulation for the finalized pitching amplitude, the analogy
between the flow–structure system and the damped resonant system becomes clear. For
a damped resonant system, the mass term and the stiffness term define the natural
frequency, where the damping parameter is set independently, which characterizes the
dissipate intensity or the energy transmission ability from the driving source to the
damping dissipation. For the flow–structure system, the mass ratio will not only contribute
to the vibrate dynamics of the foil, but also act as the damping factor to the foil, and
thus determines the energy transfer ability from the pitching foil to the flow. We remark
that elucidating the analogy between the flow–structure system and the damped resonant
system will help to unveil the mechanism of the tightly coupled system with new features,
which deserves further investigation. Finally, we remark that the method proposed in
this study can be easily generalized to other foil situations, such as foils with distributed
mass and stiffness. Furthermore, other types of motion, such as heaving and the coupling
between heaving and pitching, can be readily included in the current theory. As with the
simple analytical expressions provided for the response of the foil with flexibility, the
evaluation of the performance of the foils with these variations can be easily elucidated.
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Figure 16. Schematic of cantilever beam and its chord position. The solid line is the position of the beam with
deformation and the dotted line is its chord position. The dashed line is used to approximate the inertial force
encountered by the beam.

Thus, future work is directed to the extension of the current method to foils with these
variations.
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Appendix A. Vibration of cantilever beam with prescribed external loading and base
excitations

In this appendix, we determine the vibration of a cantilever beam with prescribed external
loading and excitation of both pitching and heaving. To avoid possible misunderstanding
for notations, a new coordinate system is defined in figure 16, where the origin of the
cantilever is set at the left end. Firstly, we list the governing equation to the vibration of
the beam as follows:

B
∂4w
∂x4 + ml

∂2w
∂t2

= f (x, t), (A1)

where f (x, t) is the applied loading on the beam, w is the deflection of the beam. To solve
(A1) analytically, the inertial force is correlated with the effective deflection of the beam,
as mentioned in the main text of § 2.2. With the coordinate system defined in figure 16, the
inertial force fi on the beam can be given from (2.5) as

fi = −ml
∂2w
∂t2

∼= −ml

[
1
2

(
x + x2

c

)
θ̈d + xθ̈0 + Ḧ

]
, (A2)

where θ0 is the driving pitching motion and H is the driving heaving motion, as shown
in figure 16. Keeping in mind that no normalization is done to the length scale in this
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appendix. With inertial force fi, the deflection of the beam can be determined by

B
d4w
dx4 = f (x, t)− ml

[
1
2

(
x + x2

c

)
θ̈d + xθ̈0 + Ḧ

]
. (A3)

The boundary conditions of the beam are given by

B
∂3w
∂x3 = 0 x = c,

B
∂2w
∂x2 = 0 x = c,

∂w
∂x

= θ0(t) x = 0,

w = H(t) x = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A4)

Based on the deflection of the beam, the average deformation angle of the beam can be
given by

θd =
∫ c

0

∂w
∂x

dx = w(c, t)− w(0, t)
c

. (A5)

Now, the unknown spatial-temporal function of w(x, t) has turned out to be a temporal
function of θd, which turns the continuous system of the beam into the vibration problem
with a single degree of freedom.

In the following, we determine the response of the cantilever with the prescribed external
loading as

f (x, t) = −kwwd − kv
∂wd

∂t
, (A6)

where wd is the displacement of the beam compared with its initial flat state, kw is the
foundation elastic coefficient and kv is the viscosity coefficient. Using the approximation
for the deformation of the beam given in (A3), the total applied force q, that is the applied
force and the inertial force, can be given as

q = −kw

2

(
x + x2

c

)
θd − kv

2

(
x + x2

c

)
θ̇d − ml

(
1
2

(
x + x2

c

)
θ̈d + xθ̈0 + Ḧ

)
. (A7)

Here, H(t) = H0 eiωt is the heaving excitation of the beam, H0 is the heaving amplitude,
ω is the angular velocity, i = √−1 is the imaginary unit and the real part should be used.
The driving pitching motion is given by θ0(t) = Ψ0 eiωt, with Ψ0 the pitching amplitude.

To determine the response of the beam, the deflection of the beam needed to be
determined from (A3) firstly, together with the boundary conditions given in (A4). The
corresponding average deformation angle can be readily given from (A5), which now turns
into

θ̈d + k̄vθ̇d + (k̄w + ω2
0)θd = 66

59
ω2(Ψ0 + Ψh) eiωt, (A8)

where k̄v = kv/ml, k̄w = kw/ml, ω0 =
√

720B/59mlc4. Here, Ψh is the angle set by the
heaving excitation as

Ψh = 15H0

11c
. (A9)
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Analytical results for pitching flexible foil

To obtain the stable vibration solution to (A8), the form of θd = Ψ ei(ωt−ψ) is assumed.
Inserting it into (A8) gives its average deformation angle amplitude and phase angle as

Ψ = 66
59
ω2

√√√√ Ψ 2
0 + Ψ 2

h

(k̄w + ω2
0 − ω2)

2 + ω2k̄2
v

, (A10)

ψ = atan
ωk̄v

k̄w + ω2
0 − ω2

. (A11)

Based on the average deformation angle and the diving pitching motion, the corresponding
pitching motion θ can be given by

θ = θ0 + θd = (Ψ0 + Ψ e−iψ) eiωt, (A12)

from which the pitching amplitude ΨP can be determined

ΨP =
√
Ψ 2 + Ψ 2

0 + 2ΨΨ0 cosψ. (A13)

Thus, the vibration of the cantilever beam is fully resolved.
In the following, we verify the analytical formulation for the response of the cantilever

beam through finite element method (FEM) simulations. To determine the forced vibration
of the cantilever beam, we use the commercially available ABAQUS software through
an explicit procedure (Du & Wu 2023). A plane linear beam element (B21) is used
to discretize the rectangle beam. The user subroutine VDLOAD is used to apply extra
dynamical loading on the beam. A time convergence study is conducted to ensure that
the duration time in the simulation is long enough that the vibration of the beam enters
its steady state. The beam has a square section of 0.01 m × 0.01 m and span of c = 1 m.
The Young’s modulus is set to E = 1 GPa and the density is set to ρ = 1000 kg m−3. The
foundation elastic coefficient kw is set to 9.091 Pa and the viscosity coefficient kv is set to
0.9544 Pa s. Below, we show the results from analytical solutions, together with the FEM
simulations.

In figure 17, we make a comparison of the average deformation angle and the
morphology of the cantilever beam in a period between the analytical formulation and the
FEM simulations. It shows that the analytical formulation matches nicely with the FEM
simulations. The largest deviation between theoretical model and FEM simulation is only
approximately 2 %, which happens when the deformation angle reaches its amplitude. This
justifies that the analytical model can nicely recover the deformation and the morphology
of the cantilever beam.

In figure 18 we compare the normalized pitching amplitude from the theoretical model
and FEM simulations as a function of the excitation ratioΨ0/Ψh and the reduced frequency
ω/ω0. It shows that the normalized pitching amplitude of the cantilever increases
monotonically with increasing the excitation ratio Ψ0/Ψh, whereas there is a peak to the
normalized pitching amplitude when the reduced frequency ω/ω0 changes. The match is
nice between the theoretical model and the FEM simulation both for small values ofΨ0/Ψh
and ω/ω0. Although the theoretical model will underestimate the peak pitching amplitude
by approximately 7 %, it can nicely capture the reduced resonance frequency, which is
approximately 1.39. However, when ω/ω0 is larger than 2, a significant discrepancy exists
between theory and FEM simulations. This is because the analytical formulation proposed
above only tackles the first-order response, whereas a higher-order response will be excited
when ω/ω0 is well above 1.
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Figure 17. Average deformation angle of cantilever (a) and its morphologies (b) in a period. The driving
heaving amplitude is 0.01 m and the driving pitching amplitude is 0.01 rad, with a driving frequency of
2 Hz. The solid lines are corresponding to the analytical formulation and the scatter data correspond to FEM
simulations. Different colours in (b) correspond to equally spaced time points in a period.
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Figure 18. The normalized pitching amplitude as a function of the excitation ratio Ψ0/Ψh (a) and the reduced
frequency ω/ω0 (b). The solid lines correspond to the analytical formulation and the scatter data correspond
to FEM simulations. The heaving amplitude is set to be 0.01 m. The driving frequency for (a) is 1.52 Hz while
under various pitching amplitudes. The pitching amplitude for (b) is 0.01364 rad while under various driving
frequencies.

Based on the above comparison of the theoretical model and the FEM simulations, it
clearly shows that the analytical formation can nicely recover the vibration of the cantilever
beam with external loading and base excitations. In fact, we have extended this formulation
to the vibration of a non-homogeneous beam and verified its accuracy in our recent work
(Du et al. 2023).

Appendix B. Deflection of the foil

From (2.6), the deflection of the foil can be determined by including the boundary
conditions; that is, the fixed end at the leading edge and the free end at the trailing end.
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Analytical results for pitching flexible foil

Within the framework of small deformation, the total deflection of the foil can be
determined by adding the contributions of these force terms together. For the first force
term of the right side given in (2.2), the deflection can be given

w1

C1
=
(

3
4

x + 29
24

)
atan

(
x

x − 1

√
1 − x
1 + x

)

−
(

1
6

x3 − 1
2

x2 + 1
2

x + 8
3

)
atan

√
1 − x
1 + x

+
(

1
2

x2 + 1
4

x + 3
16

)

× asin

√
x + 1

2
+
(

1
48

x3 + 5
18

x2 + 19
96

x + 31
72

)√
1 − x2

− π

4
x2 + π

8
x + 43π

48
, (B1)

where

C1 = πρf 2c2Φc3U
16B

[
i(1 − 3Ck)− UCk

π

]
ei2πt = 3kΦ

2S

[
i(1 − 3Ck)− 2

k
Ck

]
ei2πt.

(B2)
For the second force term of the right side given in (2.2), the deflection can be given by

w2

C2
= 1

48

(
1
15
(6x4 + 83x2 + 16)

√
1 − x2 + x(4x2 + 3) asin x

)
− π

24
x3 + 9π

32
x + π

6
,

(B3)
where

C2 = 2πρf 2c2Φc3(π − iU)
8B

ei2πt = 3kΦ(k − 2i)
S

ei2πt. (B4)

For the last force term of the right side given in (2.2), the deflection can be given by

w3

C3
= − 1

24

[
1
60

x(81 + 28x2 − 4x4)
√

1−x2 + 1
4
(6x2 + 1) asin x

]
+ π

32
x2 + π

8
x + 11π

192
,

(B5)
where

C3 = π2ρf 2c2Φc3

8B
ei2πt = 3k2Φ

2S
ei2πt. (B6)

For the force term given in (2.5), the deflection can be given

w4

C4
= −

(
1
2

C(1)x + 1
4

C(2)x

)
θ̈d − C(1)x θ̈0, (B7)

where C4 = mlc4/16B,

C(1)x = 1
120

x5 + 1
24

x4 − 1
4

x3 + 5
12

x2 + 41
24

x + 121
120

, (B8)

and

C(2)x = 1
360

x6 + 1
60

x5 + 1
24

x4 − 7
18

x3 + 17
24

x2 + 161
60

x + 187
120

. (B9)

Based on the deflection given by (B1)–(B7), the total deflection of the foil can be
determined.
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Appendix C. Nomenclature table

Symbols Meaning

ak, bk parameters determining the response parameter Υ
c chord of the foil
f pitching frequency
i imaginary unit
k reduced frequency
k0 resonance frequency without fluid force
km resonance frequency for equal pitching amplitude

condition at Sem
kr resonance frequency
kl, ku lower and upper boundary frequencies for equal pitching

amplitude condition
ml line density of the foil
p aerodynamical pressure on the foil
t dimensionless time measured by pitching period T
w,w1,2,3,4 dimensionless deflection of the foil
x, y Cartesian coordinates
A1,A2,A3 dimensionless parameters
B bending stiffness of the foil
C1,2,3,4 coefficients for foil deflection
Cd coefficient of offset drag for flexible foil
Cd0 coefficient of offset drag for rigid foil
Ck Theodorsen function
CPa power fluctuation amplitude coefficient of flexible foil
CPa0 power fluctuation amplitude coefficient of rigid foil
CPm mean power coefficient of flexible foil
CPm0 mean power coefficient of rigid foil
CTa thrust fluctuation amplitude coefficient of flexible foil
CTa0 thrust fluctuation amplitude coefficient of rigid foil
CTm mean thrust coefficient of flexible foil
CTm0 mean thrust coefficient of rigid foil
Fk,Gk the real and image part of Theodorsen function
H( j)

i Hankel’s function of the jth kind with order i
P input power to the foil
R mass ratio between foil and fluid
S dimensionless stiffness
St Strouhal number
Se dimensionless stiffness for equal pitching amplitude

condition
Sem minimum dimensionless stiffness for equal pitching

amplitude condition
Sp critical dimensionless stiffness determines the phase angle

of ±π/2
Sr resonance dimensionless stiffness
Ta thrust fluctuation amplitude
Tm mean thrust
Tp thrust caused by pressure
Ts thrust caused by leading-edge suction
U dimensionless free-stream velocity
U∞ free-stream velocity
β0, β1 parameters for linear inviscid flow solution

Table 1. For caption see on next page.
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Analytical results for pitching flexible foil

Symbols Meaning

θ finalized pitching motion
θ0 driving pitching motion
θd average deformation angle of the foil
η propulsive efficiency of flexible foil with offset drag
η0 propulsive efficiency of foil without offset drag
ηr propulsive efficiency of rigid foil with offset drag
	η propulsive efficiency increment
ϑ phase angle between the driving and the finalized pitching

motion
	 discriminant
ρ density of fluid
ξ constant for coefficient of offset drag
Φ finalized pitching amplitude
Φ0 driving pitching amplitude
Φr finalized pitching amplitude at resonance
Υ response parameter
Υe response parameter for equal pitching amplitude
H dimensionless vertical displacement of the foil

Table 1. List of symbols.
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