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A Semilinear Problem for the Heisenberg
Laplacian on Unbounded Domains

Sara Maad

Abstract. We study the semilinear equation

−∆Hu(η) + u(η) = f (η, u(η)), u ∈ S̊2

1
(Ω),

where Ω is an unbounded domain of the Heisenberg group H
N , N ≥ 1. The space S̊2

1
(Ω) is the

Heisenberg analogue of the Sobolev space W
1,2
0

(Ω). The function f : Ω × R → R is supposed to be

odd in u, continuous and satisfy some (superlinear but subcritical) growth conditions. The operator

∆H is the subelliptic Laplacian on the Heisenberg group. We give a condition on Ω which implies the

existence of infinitely many solutions of the above equation. In the proof we rewrite the equation as a

variational problem, and show that the corresponding functional satisfies the Palais–Smale condition.

This might be quite surprising since we deal with domains which are far from bounded. The technique

we use rests on a compactness argument and the maximum principle.

1 Introduction

Let H
N be the space R

N × R
N × R equipped with the group operation

η ◦ z = (α, β, τ ) ◦ (x, y, t) = (x + α, y + β, t + τ + 2(x · β − y · α)).

where · denotes the usual inner product in R
N . This operation endows H

N with the

structure of a Lie group. We define vector fields X1, . . . , XN , Y1, . . . , YN , and T by

X j =
∂

∂x j

+ 2y j
∂

∂t
,(1.1)

Y j =
∂

∂y j

− 2x j
∂

∂t
,(1.2)

T =
∂

∂t
.(1.3)

It is easy to check that these vector fields form a basis for the left-invariant vector

fields on H
N . The commutation relations are

[Xi ,Y j] = −4δi jT,

[Xi, X j] = [Yi ,Y j] = [Xi , T] = [Yi, T] = 0,
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and they imply that the Lie algebra of left-invariant vector fields is generated by X1,

. . . , XN , Y1, . . . , YN . This also means that these vector fields satisfy the Hörmander

condition of order 1 (see [6]).

The Heisenberg Laplacian is by definition

∆H =

N
∑

j=1

(X2
j + Y 2

j )

=

N
∑

j=1

( ∂2

∂x2
j

+
∂2

∂y2
j

+ 4y j
∂2

∂x j∂t
− 4x j

∂2

∂y j∂t
+ 4(x2

j + y2
j )

∂2

∂t2

)

,

and we use the notation ∇Hu for the 2N-vector

(X1u, . . . , XNu,Y1u, . . . ,YNu).

Let Ω ⊂ H
N be a domain (bounded or unbounded). The space S̊2

1(Ω) is defined

as the completion of C∞
0 (Ω) in the norm ‖u‖S2

1
given by

‖u‖2
S2

1
=

∫

RN

|u(η)|2 dη +

N
∑

j=1

∫

RN

(

|X ju(η)|2 + |Y ju(η)|2
)

dη.

The left and right Haar measures on H
N are the Lebesgue measure, and the integral

above is taken with respect to this measure. Let Q = 2N + 2 be the homogeneous

dimension of H
N and let 2∗ = 2Q/(Q − 2) = 2 + 2/N .

A model problem for those we are studying is

(1.4) −∆Hu + u = |u|p−2u, u ∈ S̊2
1(Ω),

where p ∈ (2, 2∗) and Ω is a domain in H
N . Here Ω can be bounded or unbounded,

but for Ω bounded, our main result can also be obtained by using the compactness of

the embedding of S̊2
1(Ω) into Lp(Ω). Thus, we are mainly interested in unbounded Ω.

Equation (1.4) has been studied by, among others, Garofalo and Lanconelli [5]

and Birindelli and Cutri [1].

The corresponding functional is given by

ϕ(u) =
1

2

∫

Ω

|u(η)|2 +
1

2

N
∑

j=1

∫

Ω

(

|X ju(η)|2 + |Y ju(η)|2
)

dη −
1

p

∫

Ω

|u(η)|p dη,

and the critical points of ϕ are exactly the weak solutions of (1.4).

In [8], the author studied a similar problem for the classical Laplacian on R
N ,

N ≥ 3, of which the following is a special case: Let Ω ⊂ R
N be a domain, and

consider the problem

−∆u + u = |u|q−2u u ∈ H1
0 (Ω),
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where q ∈ (2, 2N/(N − 2)). Then the notion of strongly asymptotically contrac-

tive domains was introduced, and it was shown that for such domains the preceding

equation has infinitely many solutions. In R
N , the main example of a strongly asymp-

totically contractive domain is a tubelike domain like, for example,

Ω = {(x, y) ∈ R
l × R

N−l ; |y| < g(x)},

where 1 ≤ l ≤ N − 1 and g ∈ C(R
l, R) is such that the limit g∞ = lim|x|→∞ g(x)

exists and g(x) > g∞ for all x ∈ R
l.

In the present paper, we use similar methods to prove the existence of infinitely

many solutions of (1.4). We define strongly asymptotically contractive domains in

H
N , and prove that for such domains there are infinitely many solutions of (1.4), and

the corresponding functional ϕ has infinitely many critical values.

There is another paper which deals with more or less the same class of domains.

In a paper by Tintarev [11], there is a theorem similar to Theorem 2.5. The two

theorems are not independent; the proofs of both are based on an idea (in the case of

R
N ) from the author’s licentiate thesis [7], written under the supervision of Tintarev.

An improved version of this thesis is published as [8]. Tintarev does not make any

assumption that s f (s, η) ≥ 0 (see condition ( f2) in Section 2), and without this

condition, the solutions may change sign, and the maximum principle cannot be

applied. Because of this, Tintarev’s proof only works in the case of the ground state

solution, which is known to be of constant sign. In this paper, we show the theorem

for all values of ϕ.

It is interesting to see that there are many more domains which are strongly

asymptotically contractive in H
N than in R

2N+1. This fact depends on how the group

operation of H
N comes into the definition of strongly asymptotically contractive do-

mains. This will be seen in Section 2, where we also state the problem in full general-

ity.

In Section 3, we prove that ϕ satisfies the (P-S)c condition for every c > 0, and in

Section 4, we use a known minimax theorem to obtain an infinite sequence of critical

values of ϕ.

2 A Semilinear Elliptic Equation

We study a more general problem than equation (1.4). Consider

(2.1) −∆Hu + u = f (η, u), u ∈ S̊2
1(Ω)

where f : Ω × R → R is continuous and satisfies the conditions

( f1) there are constants 2 < p ≤ q < 2∗ and C > 0 such that for any η ∈ Ω and

s ∈ R,

| f (η, s)| ≤ C(|s|p−1 + |s|q−1),

( f2) there are constants µ > 2, ν > 2 and D > 0 such that for any η ∈ Ω and

s ∈ R
N \ {0},

s f (η, s) ≥ µF(η, s) ≡ µ

∫ s

0

f (η, σ) dσ > 0
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and

lim inf
s→0

F(η, s)

|s|ν
≥ D.

( f3) f is odd in s, i.e., for any η ∈ H
N and s ∈ R,

f (η, s) = − f (η,−s).

( f4) there exists a continuous function f∞ : R → R such that

lim
R→∞

sup
x∈Ω\BR(0)

s∈R

| f (x, s) − f∞(s)| = 0.

The functional on S̊2
1(Ω) corresponding to equation (2.1) is given by

(2.2) ϕ(u) =
1

2
‖u‖2

S2
1
−

∫

Ω

F(η, u(η)) dη,

and the critical points of ϕ are exactly the solutions of (2.1).

Definition 2.1 We will say that a domain Ω ⊂ H
N is strongly asymptotically contrac-

tive if Ω 6= H
N and for any sequence η j ∈ H

N such that |η j | → ∞, there exists a

subsequence η jl
such that either

(i) |
⋃∞

n=1

⋂∞
l=n(η jl

◦ Ω)| = 0, or

(ii) there exists a point η0 ∈ H
N such that for any R > 0 there exists an open set

MR ⋐ η0 ◦ Ω, a closed set Z of measure zero and an integer lR > 0 such that

(η jl
◦ Ω) ∩ BR(0) ⊂ MR ∪ Z

for any l ≥ lR.

The following two examples show that many domains satisfy this condition. The

condition of Example 2.2 was introduced by del Pino and Felmer [3], who studied a

semilinear problem on unbounded domains in R
N .

Example 2.2 Let Ω ⊂ H
N be a domain. For t ∈ R, let

Ωt = {(x, y) ∈ R
N × R

N ; (x, y, t) ∈ Ω}.

Suppose that

(i) there exist compact sets E, F ⊂ R
N ×R

N such that E ⊃ Ωt ⊃ F for every t ∈ R;

(ii) for any ǫ > 0 there exists R > 0 such that if |t| > R, then Ωt ⊂ F + Bǫ(0).

Then Ω is strongly asymptotically contractive.
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Proof Let η j = (α j , β j , τ j) be a sequence in H
N such that |η j | → ∞. If there exists

a subsequence η jl
such that |α jl

|2 + |β jl
|2 → ∞ as l → ∞, then it is easy to see that

for R > 0 fixed, there exists lR ∈ N such that

(η jl
◦ Ω) ∩ BR(0) = ∅

for any l ≥ lR.

Thus, we may assume that α j and β j are bounded. By restricting ourselves to a

subsequence, we may assume that α j → α0, β j → β0 and |τ j | → ∞ as j → ∞.

Let η0 = (α0, β0, 0), and let ǫ > 0 and R > 0 be given. Then for j large, the set

(η j ◦Ω)∩ BR(0) = {(x + α j , y + β j , t + τ j + 2(x · β j − y ·α j) ; (x, y, t) ∈ Ω}∩ BR(0)

is contained in an ǫ/2-neighborhood of

{(x, y, t + τ j) ∈ H
N ; (x, y, t) ∈ (η0 ◦ Ω)} ∩ BR(0),

so that for j large,

(η j ◦ Ω) ∩ BR(0) ⊂
(

(

(α0, β0) + F + Bǫ(0)
)

× R

)

∩ BR(0).

Thus, if ǫ > 0 is small enough, we can put

MR =

(

(

(α0, β0) + F + Bǫ(0)
)

× R

)

∩ BR(0),

and we are done.

Example 2.3 Let Ω ⊂ H
N be a domain such that there exist constants C > 0 and

r < 1 with

Ω ⊂ {(x, y, t) ∈ H
N ; |t| ≤ C(1 + |x|r + |y|r)}.

Then Ω is strongly asymptotically contractive.

Proof Let η j = (α j , β j , τ j) be a sequence in H
N such that |η j | → ∞. Note that

(η j ◦ Ω) = {(x + α j , y + β j , t + τ j + 2(x · β j − y · α j)) ; (x, y, t) ∈ Ω}

= {(x, y, t + τ j + 2(x · β j − y · α j) ; (x − α j , y − β j , t) ∈ Ω}

⊂ {(x, y, t + τ j + 2(x · β j − y · α j) ; |t| < C(1 + |x − α j |
r + |y − β j |

r)}.

Hence, if (x, y, t) ∈ (η j ◦ Ω) ∩ BR(0), then |x| < R, |y| < R, and

|t + τ j + 2(x · β j − y · α j)| < R.

If |α j | + |β j | 6= 0, we let

γ j =
τ j

√

|α j |2 + |β j |2
.
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We get two different situations depending on whether the sequence γ j is bounded or

unbounded.

We consider first the case when γ j is unbounded. Let R > 0 be arbitrary. Then

(2.3)
|τ j + 2(x · β j − y · α j)|

√

|α j |2 + |β j |2
≤

R + C(1 + (R + |α j |)
r + (R + |β j |)

r)
√

|α j |2 + |β j |2
.

Since the right-hand side of this inequality is bounded whereas the left-hand side is

unbounded, we have a contradiction. Consequently, there is a subsequence η jl
such

that

(η jl
◦ Ω) ∩ BR(0) = ∅,

and so Definition 2.1(ii) is satisfied for this sequence.

The case when |α j |
2 + |β j |

2 ≡ 0 on a subsequence is similar. We just have to

replace equation (2.3) by

|τ j + 2(x · β j − y · α j)| ≤ R + C(1 + (R + |α j |)
r + (R + |β j |)

r),

and argue in the same way as before.

If γ j is bounded, we may extract a subsequence and assume that γ j → γ0. We

put α j = (α1
j , α

2
j , . . . , α

N
j ) and β j = (β1

j , β
2
j , . . . , β

N
j ). After a rotation of the x

and y coordinates we may also assume that α1
j → +∞ while lim j→∞ α2

j = · · · =

lim j→∞ αN
j = 0, and that lim j→∞ β1

j = · · · = lim j→∞ βN
j = 0.

Let R > 0, and let ǫ > 0 be given. For j large, the domain (η j ◦ Ω) ∩ BR(0) lies

between the two hypersurfaces

η j ◦ H+ = {(x, y, τ j + (C + ǫ)(1 + |x − α j |
r + |y|r) − 2α1

j y1) ; x, y ∈ R
N}

and

η j ◦ H− = {(x, y, τ j − (C + ǫ)(1 + |x − α j |
r + |y|r) − 2α1

j y1) ; x, y ∈ R
N}.

Let (x, y, t) ∈ (η j ◦ Ω) ∩ BR(0). Then the distance of (x, y, t) to the hyperplane

y1 = γ0/2 can be estimated by

|y1 − γ0/2| ≤

∣

∣

∣

∣

C + ǫ

2α1
j

(1 + |x − α j |
r + |y|r) +

R

2α1
j

∣

∣

∣

∣

≤
(C + ǫ)(1 + |R + α j |

r + Rr) + R

2α1
j

→ 0

as j → ∞.

This shows that for each n ≥ 1,

∞
⋂

j=n

(η j ◦ Ω) ⊂ {(x, y, t) ∈ H
N ; y1 = 0},
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which leads to
∣

∣

∣

∞
⋃

n=1

∞
⋂

j=n

(η j ◦ Ω)
∣

∣

∣
= 0,

so that Definition 2.1(ii) is fulfilled for this sequence.

With the guidance of these examples, it is easy to find other examples of strongly

asymptotically contractive domains. We could, for example, consider unions of in-

tersecting domains of the above types. We conclude with an example of a domain

which is not strongly asymptotically contractive. This shows that we cannot improve

Example 2.3 by allowing r = 1.

Example 2.4 The domain given by

Ω = {(x, y, t) ∈ H
N ; |t| ≤ 1 + |x| + |y|}

is not strongly asymptotically contractive.

Proof Let η j = (α j , 0, 0), where α j = (α1
j , 0, . . . , 0) and |α j | → ∞. A similar

calculation as in Example 2.3 shows that

∞
⋃

n=1

∞
⋂

j=n

(η j ◦ Ω) ⊃ {(x, y, t) ∈ H
N ; |y1| < 1/2}.

It is also easy to see that Definition 2.1(ii) cannot hold for this η j .

Now we are ready to state our main result.

Theorem 2.5 Suppose that Ω ⊂ H
N is a strongly asymptotically contractive domain

and let f : Ω × R → R be continuous and satisfy ( f1), ( f2), ( f3) and ( f4). Then

equation (2.1) has infinitely many distinct solutions u ∈ S̊2
1(Ω).

3 The P-Sc Condition

The proof of the following lemma is the same as the proof of [8, Lemma 8], and so

we merely state the result here.

Lemma 3.1 Let ϕ be given by (2.2), where f ∈ C(Ω × R, R) satisfies condition ( f2).

Let u j be a P-Sc-sequence for ϕ, i.e., a sequence such that

(i) ϕ(u j) → c,

(ii) ϕ ′(u j ) → 0.

Then c ≥ 0. Moreover, ‖u j‖S2
1

is bounded, and

lim sup
j→∞

‖u j‖
2
S2

1
≤

c
1
2
− 1

µ

.
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We also need the following lemma from Schindler and Tintarev [9, 12]:

Lemma 3.2 Let u j be a bounded sequence in S2
1(H

N ). Then there exist w(0), w(1), w(2),

. . . , ∈ S2
1(H

N ), r j ∈ S2
1(H

N ) and η(n)
j ∈ H

N , j, n ∈ N such that on a renumbered

subsequence,

(i) τη(n)

j
u j ⇀ w(n),

(ii) u j = w(0) +
∑∞

1 τ
(η(n)

j )−1 w(n) + r j , where r j → 0 in Lp(H
N ), p ∈ (2, 2∗),

(iii) d(0, η(n)
j ) → ∞ if n ≥ 1,

(iv)
∑∞

0 ‖w(n)‖2
S2

1

≤ lim j→∞ ‖u j‖
2
S2

1

(v)
∑∞

0 ‖w(n)‖
p
Lp = lim j→∞ ‖u j‖

p
Lp , for all p ∈ (2, 2∗).

Lemma 3.3 Let Ω ⊂ H
N be a strongly asymptotically contractive domain, and let ϕ be

given by (2.2), where f ∈ C(Ω × R, R) satisfies conditions ( f1), ( f2), ( f3) and ( f4).

Then ϕ satisfies the P-Sc condition for any c > 0.

Proof Let c > 0, and let u j ∈ S̊2
1(Ω) be a P-Sc sequence for ϕ. By Lemma 3.1, the

sequence u j is bounded. Hence Lemma 3.2 is applicable, and so

u j = w(0) +

∞
∑

n=1

τ
(η(n)

j )−1 w(n) + r j ,

where r j ∈ Lp(H
N ), η(n)

j ∈ H
N , d(η(n)

j , 0) → ∞ and w(n) ∈ S2
1(H

N ) are as in

Lemma 3.2.

Since Ω is strongly asymptotically contractive, one of the two conditions of Defi-

nition 2.1 is satisfied. We will show that in either case, w(n)
= 0 for all n ≥ 1.

Let n ≥ 1. If |
⋃∞

n=1

⋂∞
j=n(η(n)

j ◦Ω)| = 0, then since weak convergence implies a.e.

convergence on a subsequence, w(n)
= 0 almost everywhere.

If the second case holds, for any n ≥ 1 there exists a subsequence η(n)
jl

and a point

η(n)
0 ∈ H

N such that for any R > 0 there exists an open set M(n)
R ⋐ η(n)

0 ◦ Ω, a closed

set Z(n) of measure zero and an integer lR > 0 such that for any R > 0 and any l > lR,

(η(n)
jl

◦ Ω) ∩ BR(0) ⊂ M(n)
R ∪ Z(n).

By extracting a subsequence, we can assume that this relation holds for any j ≥ jR.

We have

(3.1) supp w(n)∩BR(0) ⊂

∞
⋃

j= jR

(η(n)
j ◦ Ω)∩BR(0) ⊂ M

(n)

R ∪Z(n)
⋐ (η(n)

0 ◦Ω)∪Z(n),

and so

supp w(n) ⊂ η(n)
0 ◦ Ω

modulo a set of measure zero.
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Let w̃(n)
= τη(n)

0
w(n) and let η̃(n)

j = η(n)
j ◦ η(n)

0 .

Note that by (3.1), there exists an open set U ⊂ Ω such that w̃(n) ≡ 0 in U . This is

important since we will use the strong maximum principle to conclude that w̃(n) ≡ 0

in Ω.

Let v ∈ C∞
0 (Ω) be arbitrary. Then

∫

Ω

(

∇Hw̃(n)(z) · ∇Hv(z) + w̃(n)(z)v(z)
)

dz

= lim
j→∞

∫

Ω

(

∇H(τη̃(n)

j
u j)(z) · ∇Hv(z) + τη̃(n)

j
u j(z)v(z)

)

dz

= lim
j→∞

∫

η̃(n)

j ◦Ω

f
(

(η̃(n)
j )−1 ◦ z, τη̃(n)

j
u j(z)

)

v(z) dz

= lim
j→∞

∫

η̃(n)

j ◦Ω

f (
(

η̃(n)
j )−1 ◦ z, w̃(n)(z)

)

v(z) dz

=

∫

Ω

f∞(w̃(n)(z))v(z) dz.

Hence w̃(n) is a solution of

−∆Hu + u = f∞(u), u ∈ S̊2
1(Ω).

Note that f∞ satisfies conditions ( f1) and ( f2). By the Lp estimates (see [4, Theorem

9.4]) w̃(n) is continuous in Ω. Let Ω+, Ω− and Ω0 be subsets of Ω defined by

Ω+ = {η ∈ Ω ; w̃(n)(η) > 0},

Ω− = {η ∈ Ω ; w̃(n)(η) < 0},

Ω0 = {η ∈ Ω ; w̃(n)(η) = 0}.

By our previous discussion, Ω0 has a nonempty interior.

We claim that w̃(n) ≡ 0 in Ω. We argue by contradiction, and assume that either

Ω+ or Ω− is nonempty. If Ω+ is nonempty, then it has a component Ω̃+ such that

∂Ω+ ∩∂Ω
◦
0 6= ∅. By the strong maximum principle (see [2, Corollary 3.1]), w(n) ≡ 0

in (Ω̃+ ∪ Ω0)◦. Hence Ω̃+ = ∅. In a similar manner we see that Ω− cannot have a

component whose boundary intersect the boundary of ∂Ω0. Thus Ω+ = Ω− = ∅

and w̃(n) ≡ 0 in Ω.

Let p and q be as in condition ( f1). The above argument shows that u j → w(0) in

Lp(H
N )∩Lq(H

N ), and since u j ∈ S̊2
1(Ω) ⊂ Lp(Ω)∩Lq(Ω), u j → w(0) in Lp(Ω)∩Lq(Ω).

Hence f (η, u j) → f (η, w(0)) in Lp/(p−1)(Ω) + Lq/(q−1)(Ω). Let f = f1 + f2, where

f1 ∈ Lp/(p−1)(Ω) and f2 ∈ Lq/(q−1)(Ω). Observe that

‖u j − w(0)‖2
S2

1
= 〈ϕ ′(u j) − ϕ ′(w(0)), u j − w(0)〉

+

∫

Ω

(

f (z, u j (z)) − f (z, w(0)(z))
)

(u j(z) − w(0)(z)) dz.
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Obviously

〈ϕ ′(u j ) − ϕ ′(w(0)), u j − w(0)〉 → 0,

and by the Hölder inequality,

∣

∣

∣

∣

∫

Ω

(

f (z, u j) − f (z, w(0))

)

(u j − w(0)) dz

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Ω

(

f1(z, u j ) − f1(z, w(0))

)

(u j − w(0)) dz

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω

(

f2(z, u j ) − f2(z, w(0))

)

(u j − w(0)) dz

∣

∣

∣

∣

≤

(
∫

Ω

∣

∣ f1(z, u j ) − f1(z, w(0))
∣

∣

p/(p−1)
dz

) (p−1)/p(∫

Ω

∣

∣u j − w(0)
∣

∣

p
dz

) 1/p

+

(
∫

Ω

∣

∣ f2(z, u j ) − f2(z, w(0))
∣

∣

q/(q−1)
dz

) (q−1)/q(∫

Ω

∣

∣u j − w(0)
∣

∣

q
dz

) 1/q

.

Thus u j → w(0) in S̊2
1(Ω), and so the P-Sc condition holds.

4 Infinitely Many Solutions

To obtain an infinite sequence of critical values of ϕ, we use the following result, see

Struwe [10] for a proof.

Theorem 4.1 Suppose that V is an infinite dimensional Banach space and suppose that

ϕ ∈ C1(V, R) satisfies P-Sc for every c > 0, ϕ(u) = ϕ(−u) for all u, and assume the

following conditions:

(i) There exist α > 0 and ρ > 0 such that if ‖u‖ = ρ and u ∈ V , then ϕ(u) ≥ α.

(ii) For any finite dimensional subspace W ⊂ V , there exists R = R(W ) such that

ϕ(u) ≤ 0 for u ∈ W , ‖u‖ ≥ R.

Then ϕ possesses an unbounded sequence of critical values.

Proof of Theorem 2.5 We apply Theorem 4.1 with V = S̊2
1(Ω). By Lemma 3.3, ϕ

satisfies the P-Sc condition for every c > 0. Thus the assertion follows if we show that

conditions (i) and (ii) of Theorem 4.1 are satisfied.

Integrating ( f1), there is a constant C1 such that for all η ∈ Ω and s ∈ R,

|F(η, s)| ≤ C1(|s|p + |s|q).

By the Folland–Stein embedding theorem, we then have the estimate

ϕ(u) ≥
1

2
‖u‖2

S2
1
−C1

∫

Ω

(|u(η)|p + |u(η)|q) dη

≥
1

2
‖u‖2

S2
1
−C2‖u‖

p

S2
1

−C2‖u‖
q

S2
1

.
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Let ‖u‖ = ρ, where ρ > 0 is free for the moment. Then

ϕ(u) ≥
1

2
ρ2 −C2ρ

p −C2ρ
q.

Now we choose ρ > 0 such that it satisfies the equation

ρ −C2 pρp−1 −C2qρq−1
= 0.

Since the left-hand side of this equation is positive for small values of ρ and negative

for large ρ, by the intermediate value theorem there is a solution. Then

C2ρ
p

=
1

p
ρ2 −C2

q

p
ρq,

and so for ‖u‖ = ρ,

ϕ(u) ≥
( 1

2
−

1

p

)

ρ2 + C2

( q

p
− 1

)

ρq ≥
( 1

2
−

1

p

)

ρ2.

This shows that condition (i) is satisfied with α = (1/2 − 1/p)ρ2.

By ( f2), there is a constant C3 > 0 such that for every x ∈ Ω and s ∈ R, |F(η, s)| ≥
C3|s|

µ1 , where µ1 = min(µ, ν). Indeed, let ǫ > 0 be given. By integration of the first

identity of ( f2), we have for |s| > ǫ and η ∈ Ω,

F(η, s) ≥
F(η, ǫ)

ǫµ
|s|µ.

Letting ǫ → 0 and using the second identity of ( f2), the claim follows. Let W be a

finite dimensional subspace of S̊2
1(Ω). Since all norms are equivalent on W and since

ϕ(u) ≤
1

2
‖u‖2

S2
1
−C3‖u‖µ1

Lµ1 ,

(ii) follows.
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