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Holomorphic 2-Forms and Vanishing
Theorems for Gromov–Witten Invariants

Junho Lee

Abstract. On a compact Kähler manifold X with a holomorphic 2-form α, there is an almost complex

structure associated with α. We show how this implies vanishing theorems for the Gromov–Witten

invariants of X. This extends the approach used by Parker and the author for Kähler surfaces to higher

dimensions.

Let X be a Kähler surface with a non-zero holomorphic 2-form α. Then α is a

section of the canonical bundle and its zero locus Zα, with multiplicity, is a canonical
divisor. We showed in [L] that the real 2-form Re(α) determines a (non-integrable)

almost complex structure Jα that has the following remarkable “Image Localization

Property”: if a Jα-holomorphic map f : C → X represents a non-zero (1, 1) class, then

f is in fact holomorphic and its image lies in Zα. As shown in [LP], this property

together with Gromov Convergence Theorem leads to the following theorem.

Theorem 1 ([LP]) Let X be a Kähler surface with a non-zero holomorphic 2-form

α. Then, any class A with non-trivial Gromov–Witten invariant GWg,k(X, A) is rep-

resented by a stable holomorphic map f : C → X whose image lies in the canonical

divisor Zα.

This paper extends Theorem 1 to higher dimensions. The principle is the same:

perturbing the Kähler structure to a non-integrable almost complex structure Jα
forces the holomorphic maps to satisfy certain geometric conditions determined by

α. This gives constraints on the Gromov–Witten invariants.

Specifically, let X be a compact Kähler manifold with a non-zero holomorphic 2-
form α. Then the real part of α defines an endomorphism Kα of TX and an almost

complex structure Jα, just as in the surface case (see (2.1) and (2.2)). These geometric

structures lead, naturally and easily, to our main theorem.

Theorem 2 Let X be a compact Kähler manifold with a non-zero holomorphic 2-form

α. Then any class A with non-trivial Gromov–Witten invariant GWg,k(X, A) is repre-

sented by a stable holomorphic map f : C → X satisfying the equation Kαd f = 0.

This theorem follows from Theorem 3.1 which is more suitable for applications.

It generalizes Theorem 1 since, when X is a surface, the kernel of the endomorphism

Kα is trivial on X \ Zα (see Example 3.5). The equation Kαd f = 0 is a geometric
fact about holomorphic maps that directly implies numerous vanishing results about

Gromov–Witten invariants (see Section 3).
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Section 1 briefly describes Gromov–Witten invariants and states a vanishing prin-
ciple for them. Section 2 contains the definition of the almost complex structures Jα
and some of the consequences of that definition. In Section 3 we apply a stronger
version of Theorem 2, which directly follows from properties of Jα, to show various

vanishing results for Gromov–Witten invariants.

1 Gromov–Witten Invariants

The aim of this section is to give a brief description of the Gromov–Witten invariants
and to set up notations for them. Let (X, ω) be a compact symplectic 2n-dimensional

manifold with an ω-tamed almost complex structure J, i.e., ω(u, Ju) > 0. A J-
holomorphic map f : (C, j) → X from a (connected) marked nodal curve is stable

if its automorphism group is finite (cf. [HZ]). Denote by Mg,k(X, A, J) the moduli

space of stable J-holomorphic maps from marked nodal curves of (arithmetic) genus
g with k marked points that represent the homology class A ∈ H2(X). This moduli

space carries a (virtual) fundamental homology class of real dimension

(1.1) 2[ c1(TX) · A + (n − 3)(1 − g) + k]

(cf. [LT]) whose push-forward under the map st× ev: Mg,k(X, A, J) → Mg,k × Xk

defined by stabilization and evaluation at the marked points is the Gromov–Witten

invariant

(1.2) GWg,k(X, A) ∈ H∗(Mg,k × Xk; Q).

This is equivalent to the collection of “GW numbers” GWg,k(X, A)(µ; γ1, . . . , γk) ob-
tained by evaluating the homology class (1.2) on the cohomology classes Poincaré

dual to µ ∈ H∗(Mg,k) and γ j ∈ H∗(X) whose total degree is the dimension (1.1).

Standard cobordism arguments then show that these are independent of the choice
of J, and depend only on the deformation class of the symplectic form ω.

Our subsequent discussions are based on the following vanishing principle for
GW invariants.

Proposition 1.1 Fix a compact symplectic manifold (X, ω). Suppose

GWg,k(X, A)(µ; γ1, . . . , γk) 6= 0.

Then, for any ω-tamed almost complex structure J and for any geometric representatives

M ⊂ Mg,k and Γ j ⊂ X of classes µ ∈ H∗(Mg,k) and γ j ∈ H∗(X) there exists a stable

J-holomorphic map f : (C, x1, . . . , xk) → X representing class A with st(C) ∈ M and

f (x j) ∈ Γ j .

The proof is straightforward (cf. [LP]). For convenience, we will assemble all GW
invariants for a class A into a single invariant by introducing a variable λ to keep track

of the genus. The GW series of (X, ω) for a class A is then the formal power series

GWA(X) =

∑

g,k

1

k!
GWg,k(X, A)λg .
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2 The Almost Complex Structures Jα

Let (X, ω) be a compact symplectic manifold with an ω-compatible almost complex

structure J, namely 〈u, v〉 = ω(u, Jv) is a Riemannian metric. A 2-form α is then
called J-anti-invariant if α( Ju, Jv) = −α(u, v). As observed in [L], each J-anti-

invariant 2-form α induces an almost complex structure

(2.1) Jα = (Id + JKα)−1 J(Id + JKα)

where Kα is an endomorphism of TX defined by the equation

(2.2) 〈u, Kαv〉 = α(u, v).

Such endomorphisms Kα are skew-adjoint and anti-commute with J. It follows that

Id + JKα is invertible and hence (2.1) is well-defined. A simple computation then
shows that for any C1 map f : (C, j) → X,

(2.3) ∂ Jα f = 0 ⇐⇒ ∂ J f = Kα∂ J f j,

where

∂ J f =
1
2
(d f + Jd f ), ∂ J f =

1
2
(d f − Jd f j).

Equation (2.3) implies that every J-holomorphic map f satisfying Kαd f = 0 is also

Jα-holomorphic. One can also show that if f is Jα-holomorphic then

(2.4)

∫

C

|∂ J f |2 =

∫

C

|Kα∂ J f |2 =

∫

C

f ∗(α)

(cf. [L]). This integral vanishes when α is closed and α(A) = 0 where A is the class

represented by f . In this case, the given Jα-holomorphic map f is J-holomorphic

(∂ J f = 0) and satisfies Kαd f = Kα∂ J f = 0. Therefore, when α is closed and
α(A) = 0, a map f representing the class A is Jα-holomorphic if and only if f

is J-holomorphic and satisfies the equation Kαd f = 0. Combined with Proposi-
tion 1.1, these observations lead to the following proposition.

Proposition 2.1 Let (X, ω) be a compact symplectic manifold with an ω-compatible J

and with a closed J-anti-invariant 2-form α. Then, for any class A with GWg,k(X, A) 6=

0 we have Mg,k(X, A, Jα) = { f ∈ Mg,k(X, A, J) | Kαd f = 0}. Furthermore, this

space is not empty.

Proof By the above discussion, it suffices to show that α(A) = 0 and Mg,k(X, A, Jα)
6= ∅. Proposition 1.1 shows that there is a J-holomorphic map h : (D, j) → X

representing the class A. Fix a point p ∈ D and choose an orthonormal basis {e1, e2 =

je1} of TpD. Then, h∗α(e1, e2) = α(h∗e1, h∗ je1) = α(h∗e1, Jh∗e1). Since α is J-anti-
invariant, this vanishes and hence α(A) =

∫

D
h∗(α) = 0. On the other hand, for any

sufficiently small t > 0 the almost complex structure Jtα is ω-tamed since ω-tamed is
an open condition. Proposition 1.1 then asserts that there exists a Jtα-holomorphic

map f representing the class A. By (2.4) and the fact Ktα = tKα, this map f is

J-holomorphic and satisfies Kαd f = 0. Thus, f is also Jα-holomorphic by (2.3).
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Below, we will show some basic properties of the zero locus Zα of α and ker Kα,
which will be frequently used in subsequent arguments. One can use J to decompose

Ω
2(X) ⊗ C as

Ω
2(X) ⊗ C = Ω

2,0
J (X) ⊕ Ω

1,1
J (X) ⊕ Ω

0,2
J (X).

Every J-anti-invariant 2-form α can then be written as α = β + β for some β ∈
Ω

2,0
J (X). The next lemma simply follows from the definitions and the properties

of Kα.

Lemma 2.2 Let dim X = 2n, and α and β be as above. Then,

(i) α and β have the same zero locus,

(ii) if n is odd then αn
= 0, and if n = 2m then αn

= cβm ∧ β
m

where c =
(

n
m

)

,

(iii) the (real) dimension of ker Kα is at most 2n − 4 at every point in X \ Zα,

(iv) u ∈ ker Kα if and only if α(u, w) = 0 for any w. Thus, ker Kα is trivial if and only

if α is non-degenerate.

A foliation F of dimension m on n-dimensional manifold M is a decomposition

F = (Li)i∈I of M into pairwise disjoint connected subsets Li , which are called leaves

of the foliation F, with the following property: for each p ∈ M there exists a foliation
chart ϕ : U → W1 × W2, where W1 and W2 are open disks in Rm and Rn−m respec-

tively, such that for each point q ∈ W2 the preimage ϕ−1(W1 × {q}) is a connected

component of U ∩ Li for some leaf Li . We refer to [CN] and [Ho] for more details
on foliations.

Lemma 2.3 Let (X, ω) be a six-dimensional symplectic manifold with ω-compatible

J. If α is a closed J-anti-invariant 2-form, then ker Kα gives a foliation on X \ Zα of

(real) dimension two whose leaves are all J-invariant.

Proof Since Kα is anti-commutative with J, Lemma 2.2(ii),(iii) implies that on X\Zα

the dimension of ker Kα is two. On the other hand, dα(u, v, w) = 0 gives

Lu(α(v, w))−Lv(α(u, w))+Lw(α(u, v))−α([u, v], w)+α([u, w], v)−α([v, w], u) = 0,

where L denotes the Lie derivative. This and Lemma 2.2(iv) imply that if u, v ∈
ker Kα then [u, v] ∈ ker Kα. Therefore, by Frobenius’ Theorem ker Kα gives a foli-
ation on X \ Zα of dimension two. Since Kα is anti-commute with J, every leaf is

J-invariant.

3 Vanishing Results

Let (X, J) be a compact Kähler manifold with a non-zero holomorphic 2-form α. By

the Hodge Theorem α is closed and hence its real part Re(α) is also closed. Moreover,

the real 2-form Re(α) is J-anti-invariant and its zero locus is Zα by Lemma 2.2(i).
Throughout this section, we will denote by Kα the endomorphism of TX defined by

Re(α) as in (2.2).
A holomorphic 2-form α is called non-degenerate if Re(α) is non-degenerate, or

equivalently ker Kα is trivial. The next theorem directly follows from Proposition 1.1

and Proposition 2.1.
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Theorem 3.1 Fix a compact Kähler manifold X with a non-zero holomorphic 2-form

α. If for a non-zero class A

GWg,k(X, A)(µ; γ1, . . . , γk) 6= 0,

then for any geometric representatives M ⊂ Mg,k and Γ j ⊂ X of classes µ ∈ H∗(Mg,k)
and γ j ∈ H∗(X) there exists a stable holomorphic map f : (C, x1, . . . , xk) → X rep-

resenting the class A with st(C) ∈ M and f (x j) ∈ Γ j and satisfying the equation

Kα d f = 0. Consequently, if α is non-degenerate on an open set U ⊂ X then the image

of f lies in X \U .

Using this theorem, one can obtain various vanishing results about GW invariants.

Example 3.2 Given a compact hyperkähler manifold X of (complex) dimension

2m, there exists a holomorphic symplectic 2-form α, i.e., αm is nowhere vanishing
(cf. [BDL]). The 2-form α is non-degenerate on X and hence Theorem 3.1 implies

that the series GWA(X) vanishes unless A = 0.

Example 3.3 Let X = E1 × · · · × En where each Ei is an elliptic curve and n ≥ 2.
For i 6= j, denote by αi j the pull-back 2-form π∗

i (λi) ∧ π∗

j (λ j) where πi : X → Ei is

the i-th projection and λi is a nowhere vanishing holomorphic 1-form on Ei . Now

suppose GWA(X) 6= 0. Theorem 3.1 then shows that there is a holomorphic map
f : C → X representing the class A with Kαi j

d f = 0. Since αi j has no zeros and

ker Kαi j
consists of vectors tangent to fibers of the projection πi × π j : X → Ei × E j ,

we have (πi × π j )∗d f = 0 for each i 6= j. This implies A = 0. The same arguments

also apply to show that when X = X1 × · · · × Xn where each Xi is a hyperkähler

manifold or a complex torus of (complex) dimension at least two the series GWA(X)
vanishes unless A = 0.

Remark 3.4 There are well-known proofs for the above two examples (cf. [BL]).

For instance, if X is a compact hyperkähler manifold, then every Kähler structure J

in the twistor family is deformation equivalent to − J through Kähler structures (cf.
[BDL]). This directly implies GWA(X) = 0 unless A = 0. The product formula of

[B] for GW invariants applies to give the same vanishing results as in Example 3.3.

The following example appears in [LP].

Example 3.5 ([LP]) Let X be a Kähler surface with a non-zero holomorphic 2-form
α. Then, α is non-degenerate on X \Zα by Lemma 2.2(iii),(iv). Note that since α is a

section of the canonical bundle the zero locus Zα is a support of a canonical divisor.

Theorem 3.1 thus shows that for any non-zero class A and for any genus g,

(3.1) GWg,k(X, A)( · ; γ, . . . ) = 0,

where γ lies in Hi(X) for i = 0, 1. On the other hand, if X is a minimal surface
of general type, then every canonical divisor is connected (cf. [BHPV]). We further

assume that the zero locus Zα is a smooth (reduced) canonical divisor. Then, any
holomorphic map f whose image lies in Zα represents a (non-negative) multiple

of the canonical class K . Therefore, Theorem 3.1 implies that the series GWA(X)

vanishes unless A = mK for some non-negative integer m.
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The following example extends both the vanishing result (3.1) and Theorem 1 of
the introduction to Kähler manifolds of even complex dimension. It is an immediate

consequence of Theorem 3.1.

Example 3.6 Fix a compact Kähler manifold X of complex dimension 2m with a

holomorphic 2-form α. If αm is not identically zero, then the zero locus Zm of αm,
with multiplicities, is a canonical divisor of X and α is non-degenerate on X \ Zm.

Theorem 3.1 implies that:

(i) if GWg,k(X, A) 6= 0 for a non-zero class A, then A is represented by a stable
holomorphic map f : C → X whose image lies in the canonical divisor Zm, and

(ii) for any non-zero class A and for any genus g we have GWg,k(X, A)( · ; γ, . . . ) = 0

where γ lies in Hi(X) for i = 0, 1.

Compact Kähler Threefolds Let X be a compact Kähler threefold with a non-zero

holomorphic 2-form α. It then follows from Lemma 2.3 that ker Kα induces a folia-
tion on X \ Zα of (real) dimension two. We will denote this foliation by Fα.

Lemma 3.7 Fix a compact Kähler threefold X with a non-zero holomorphic 2-form α.

If a (non-constant) stable holomorphic map f : C → X satisfies the equation Kαd f = 0,

then the image of each irreducible component of C either lies in Zα or lies in one leaf of

the foliation Fα on X \ Zα union finitely many points of Zα.

Consequently, if α has no zeros then the image of f lies in one leaf of the foliation Fα

on X.

Proof Collapse all irreducible components of C whose image is a point. The re-

sulting map still has the same image f (C), so we can assume that the image of each
irreducible component is not a point. Fix an irreducible component Ci of C and sup-

pose f (Ci) is not contained in Zα. Then the intersection f (Ci) ∩ Zα is finite since

f is holomorphic and Zα is an analytic subvariety. Denote by Di the set of critical
points of f in Ci . This set Di is finite and hence Ci \ (Di ∪ f −1(Zα)) is open and

connected. Therefore, the equation Kαd f = 0 asserts that f (Ci \ Di) \ Zα ⊂ Li for

some leaf Li of the foliation Fα on X \ Zα. It then remains to show that for each
p ∈ Di either f (p) ∈ Zα or f (p) ∈ Li . Suppose f (p) does not lie in Zα. Let (U , ϕ)

be a foliation chart around f (p), namely U ⊂ X \ Zα is a neighborhood of f (p)
and ϕ(U ) = W1 × W2 ⊂ R2 × R4, where W1 and W2 are open disks in R2 and R4

respectively, such that for each point t ∈ W2 the pre-image ϕ−1(W1 × {t}) is a con-

nected component of U ∩Lt for some leaf Lt of Fα. Then for any small neighborhood
V ⊂ Ci of p there exists a point ti ∈ W2 such that ϕ ◦ f (V \ {p}) ⊂ W1 × {ti}.

Consequently, we have ϕ ◦ f (p) ∈ W1 × {ti}. Since the pre-image ϕ−1(W1 × {ti})

is a connected component of U ∩ Li , we have f (p) ∈ Li .

Example 3.8 Fix a surface of general type S with a holomorphic 2-form γ whose

zero locus is a smooth canonical divisor D. Let π : X = P(TS) → S be the projective
bundle with a pull-back 2-form α = π∗γ. The zero locus Zα is then the ruled surface

π−1(D) → D and every leaf of the foliation Fα on X \ π−1(D) is a fiber of π : X → S.
Thus, Theorem 3.1 and Lemma 3.7 together imply that GWA(X) = 0 unless A =

aD0 + bF for some integers a and b, where D0 is the section class of the ruled surface

π−1(D) and F is the fiber class of X.
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Now, suppose X is a compact threefold with a holomorphic 2-form α without
zeros. The foliation Fα is then a foliation on the whole X. In fact, Fα is a holomorphic

foliation; in holomorphic local coordinates, the foliation Fα is given locally by the
holomorphic vector field

Y = f23
∂

∂z1
− f13

∂
∂z2

+ f12
∂

∂z3
,

where α = f12 dz1 ∧ dz2 + f13 dz1 ∧ dz3 + f23 dz2 ∧ dz3. After a suitable change of

local coordinates, we can write Y =
∂

∂z1
. Such local coordinates give the required

holomorphic foliation chart.

Corollary 3.9 Let X be a compact Kähler threefold with a holomorphic 2-form α
without zeros. Suppose X is not a P1-bundle over a K3 or an abelian surface. Then for

any non-zero class A the invariant

(3.2) GWg,k(X, A)( · ; γ, . . . )

vanishes if the genus g is 0 or if one constraint γ lies in Hi(X) for 0 ≤ i ≤ 3.

Proof Assume that for some A 6= 0 the invariant (3.2) is not zero with either g = 0

or γ ∈ Hi(X) for 0 ≤ i ≤ 3. We will show that X is a P1-bundle over a K3 or an
abelian surface. Since every leaf of Fα is a smooth connected holomorphic curve,

by Theorem 3.1 and Lemma 3.7 there exists a stable holomorphic map f : C → X

representing the non-zero class A with f (C) = L for some leaf L of Fα. The leaf L

is thus compact and A = m[L] for some integer m ≥ 1. If the genus g is 0 then

obviously L = P1.

On the other hand, if γ lies in Hi(X) for 0 ≤ i ≤ 3 and the invariant (3.2) is
non-zero, then the formal dimension (1.1) of the moduli space Mg,0(X, A) is strictly

positive, so c1(X) · A ≥ 2. But by Theorem 2 of [Le], the normal bundle N to L

satisfies c1(N) = 0, so

2 ≤ c1(X)A = mc1(X)[L] = m(c1(L) + c1(N))[L] = mc1(L).

Hence c1(L) = 2 and therefore L = P1 in this case also.

Now, by the proof of Corollary 2.8 of [H], the fact that one leaf L of Fα is a ra-

tional curve P1 implies that every leaf of Fα is rational. It follows that the leaf space
S = X/Fα is a (smooth) compact Kähler surface and the quotient map π : X → S is

holomorphic. Consequently, X is a P1-bundle over S and α descends to a holomor-
phic 2-form γ on S with π∗γ = α. Since the holomorphic 2-form γ has no zeros,

c1(S) = 0 and hence S is a K3 or an abelian surface (cf. [BHPV]).

Remark 3.10 Let X be a projective threefold with a holomorphic 2-form α. Sup-

pose that for some non-zero class A the invariant GWg,k(X, A)( · ; γ, . . . ) with the

constraint γ ∈ Hi(X) for 0 ≤ i ≤ 3 does not vanish. Then the canonical divisor
KX is not nef by a dimension count. In this case, there is a contraction π : X → S

of an extremal ray such that X is a P1-bundle over a surface S and α descends to a
holomorphic 2-form γ on S with π∗γ = α (see Section 3 of [CP]). Consequently, if

α has isolated zeros then S is a K3 or an abelian surface and, in fact, α has no zeros.

This observation motivated Corollary 3.9.
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