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Abstract

We construct finitely generated torsion-free solvable groups G that have infinite rank,
but such that all finitely generated torsion-free metabelian subquotients of G are virtu-
ally abelian. In particular all finitely generated metabelian subgroups of G are virtually
abelian. The existence of such groups shows that there is no “torsion-free version” of
P. Kropholler’s theorem, which characterises solvable groups of infinite rank via their
metabelian subquotients.

2020 Mathematics Subject Classification: 20F16 (Primary); 20E22, 20E15 (Secondary)

1. Introduction

A solvable group G has finite rank if there is k ≥ 1 such that all finitely generated (fg)
subgroups of G are generated by at most k elements. The class of groups of finite rank
is stable under the operations of taking subgroups and quotients, and hence under taking
subquotients. Recall that a group Q is a subquotient of G if there are subgroups K,H of G
with K � H and Q � H/K (the term “section” is also used, especially in the literature on
solvable groups). The simplest example of a fg solvable group of infinite rank is the wreath
product Cp �Z. The following celebrated theorem of P. Kropholler asserts that looking at the
metabelian subquotients of a fg solvable group G suffices to detect that G has infinite rank.

THEOREM ([Kro84]). If G is a fg solvable group of infinite rank, then G admits a
subquotient isomorphic to Cp �Z for some prime p.

One of the motivating questions of the present article is whether there exists a “torsion-
free version” of this theorem. More precisely, if G is a fg torsion-free solvable group of
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infinite rank, does G always admit a fg torsion-free metabelian subquotient of infinite rank
? We answer this question in the negative:

THEOREM 1·1. The group G below is a fg 3-step solvable group with the following
properties:

(1) G is torsion-free;

(2) G contains a normal subgroup that is free abelian of infinite rank;

(3) every finitely generated torsion-free metabelian subquotient of G is virtually abelian.

Even before considering subquotients, if G is a fg n-step solvable group (n ≥ 3) with a
given property P , it is natural to ask whether G admits fg metabelian subgroups that retain
P . Natural examples are provided by “P = not being virtually abelian”, or “P = not being
virtually nilpotent”. A positive answer to that kind of questions generally allows to reduce
the study of certain problems about fg solvable groups to fg metabelian groups, which are
generally much more tractable. When P is the property of having infinite rank, the following
consequence of Theorem 1·1 shows that the answer is negative. The existence of groups with
this property is also new.

COROLLARY 1·2. The group G is a fg torsion-free solvable group of infinite rank such
that every fg metabelian subgroup of G is virtually abelian.

Recall that a solvable group has finite torsion-free rank if it admits a series with abelian
quotients Gi/Gi+1 satisfying dimQ (Gi/Gi+1 ⊗Q) < ∞. Another natural question that arises
from P. Kropholler’s theorem is to ask whether every fg solvable group of infinite torsion-
free rank admits fg metabelian subquotients of infinite torsion-free rank. This was answered
in the negative by P. Kropholler, who constructed counter-examples in [Kro85]. Despite hav-
ing infinite torsion-free rank, these examples admit rather large subgroups containing torsion
elements. The study of the class of solvable groups admitting no metabelian subquotient of
infinite torsion-free rank is the subject of the recent work [JK20] of Jacoboni–Kropholler.
Theorem B in [JK20] shows these groups enjoy strong structural restrictions.

On the construction. Our family of groups from Theorem 1·1 is very much inspired by the
construction of solvable groups of P. Kropholler [Kro85], Brieussel [Bri15] and Brieussel–
Zheng [BZ21]. The constructions from [Bri15, BZ21] take as inputs several parameters,
including a sequence of groups �n = 〈sn, tn〉 coming with a specified pair of generators; and
produce solvable groups G such that on the one hand even if the groups �n are very small
(for instance finite or virtually abelian), the group G might be much larger; and on the other
hand good choices for the �n allow some control on the algebraic structure of G. It was
already observed in [JK20] that a construction close to [Bri15] yields solvable groups of
infinite torsion-free rank which do not admit metabelian subquotients of infinite torsion-free
rank (like the groups in [Kro85]). The construction has the property that in order to avoid
metabelian subquotients of infinite torsion-free rank, it is necessary that the groups �n have
torsion elements, and as a consequence the groups G from [Bri15] and [JK20] have torsion
elements. The delicate aspect of our construction is to ensure torsion-freeness of the group
G while keeping the other properties intact.
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2. Proofs
2·1. Torsion-free metabelian subquotients

The purpose of this paragraph is to prove Proposition 2·3 below, which will be used
to check item (3) in Theorem 1·1. That proposition follows from standard arguments. We
include proofs for completeness.

Recall that the FC-center FC(G) of a group G is the subgroup of G consisting of elements
having a finite conjugacy class. A subgroup of G is termed FC-central if it is contained in the
FC-center of G. Recall also that a group is locally finite if all finitely generated subgroups
are finite.

In the sequel we denote by L the class of groups G that admit a normal subgroup L such
that L is locally finite and abelian, and G/L is cyclic. We note that the class L is stable under
passing to subgroups and under taking quotients.

LEMMA 2·1. Let G be a finitely generated group that is torsion-free. If G admits a finitely
generated abelian normal subgroup A such that A is FC-central in G and G/A is in L, then
G is virtually abelian.

Proof. Since A is finitely generated, its centraliser CG(A) has finite index in G. Hence upon
replacing G by a finite index subgroup, we can assume that A is central in G. Let N be a
normal subgroup of G containing A and t ∈ G such that G = N � 〈t〉 and N/A is abelian.
Since A is central in G, N is nilpotent. Since N is torsion-free, the quotient N/Z(N) of N
by its center is also torsion-free [Rob96, 5·2·19]. But here N/Z(N) must be locally finite,
so it follows that N/Z(N) is trivial. So we deduce that N is abelian. Now given x ∈ N, there
exists k ≥ 1 such that xk lies in the center of G. Hence xk = txkt−1 = (txt−1)k. But x and txt−1

commute since N is abelian, so [t, x]k = 1. Since G is torsion-free, we infer that x commutes
with t. Since x was arbitrary in N and G = N � 〈t〉, this shows that G is abelian.

We also denote by C the class of groups G such that G/FC(G) belongs to L.

PROPOSITION 2·2. Let G be a finitely generated group that belongs to C. If G is torsion-free
and metabelian, then G is virtually abelian.

Proof. Since fg metabelian groups satisfy the maximal condition on normal subgroups
[Hal54], the subgroup FC(G) is finitely generated. The group G being torsion-free, FC(G)
is also abelian [Rob96, 14·5·9]. Hence it follows that FC(G) is a finitely generated abelian
group, and Lemma 2·1 then implies that G is virtually abelian.

We deduce the following.

PROPOSITION 2·3. If G is a group in C, then every finitely generated torsion-free
metabelian subquotient of G is virtually abelian.

Proof. Let K be a fg torsion-free metabelian subquotient of G. The class C being stable
under taking subgroups and quotients, K belongs to C. The statement then follows from
Proposition 2·2.
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2·2. Notation

In the sequel we denote by Ck =Z/kZ= {0, . . . , k − 1}. Let D = 〈
a, b | a2 = b2 = 1

〉
be

the infinite dihedral group, and Z the infinite cyclic subgroup of D generated by ab, so that
D = Z � 〈a〉 = Z � 〈b〉. We denote by D’ the derived subgroup of D, which is the index two
subgroup of Z generated by (ab)2.

2·3. The groups

Choose two strictly increasing sequences (dn) and (kn) of positive integers such that d1 > 1
and kn ≥ 2dn. For n ≥ 1, let Hn = Dkn � Ckn , where the action of Ckn on Dkn is a cyclic
permutation of the factors.

Let � =Z× ∏
n Hn. We denote by π0:� →Z the projection from � to the first factor Z,

and for all n ≥ 1 πn : � → Hn is the projection from � to Hn.
We define two elements s, t ∈ � as follows:

(i) let σ0 be a generator of the first factor Z of �. For n ≥ 1, we denote by σn the element
of Hn that belongs to the normal subgroup Dkn of Hn, and that is defined by σn(1) = a,
σn(dn) = b, and σn(j) = id for every j ∈ {1, . . . , kn} such that j �= 1, dn. We denote by
s the element of � defined by π0(s) = σ0 and πn(s) = σn for all n ≥ 1;

(ii) t is the element of � defined by π0(t) = 0, and πn(t) is the generator 1 of Ckn for all
n ≥ 1.

Definition 2·4. We denote by G the subgroup of � generated by s and t.

The group G depends on (dn) and (kn), but to simplify we omit (dn) and (kn) from the
notation.

Notation 2·5. In the sequel for i ∈Z, we write si = tist−i.

LEMMA 2·6. The element s2 is central in G.

Proof. s2 belongs to the first factor Z of � since πn(s) has order 2 for all n ≥ 1.

LEMMA 2·7. For all i ≥ 0 the following hold:

(1) πn([s, si]) belongs to (D′)kn for all n ≥ 1;

(2) If n is such that dn − 1 = i then the dn-coordinate of πn([s, si]) is equal to (ba)2, and
all other coordinates of of πn([s, si]) are trivial;

(3) for all n such that dn − 1 > i, πn([s, si]) is trivial.

Proof. (1) is clear since πn(si) belongs to (D)kn for all n ≥ 1. When dn − 1 = i, the first
statement of (2) is a simple computation, and the second statement follows from the fact
that the supports of πn(s) and πn(si) intersect only at coordinate dn − 1 = i in view of the
inequality kn ≥ 2dn. (3) is the true for the same reason.

PROPOSITION 2·8. The subgroup FC(G) is free abelian of infinite rank, and Q = G/FC(G)
is isomorphic to C2 �Z.

Proof. Let R = ⊕
n≥1 (D′)kn . So R is the subgroup of

∏
n Hn consisting of elements having

all their coordinates in (D′)kn , and only a finite number of these coordinates are non-trivial.
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Set A = 〈σ 2
0 〉 ⊕ R. We claim that G contains A. Since πn(s) = σn has order two for all n ≥ 1

and π0(s2) = σ 2
0 , it is enough to see that R lies inside G, or equivalently that G contains (D′)kn

for all n ≥ 1. Since πn(t) permutes transitively the factors of Dkn , it is actually enough to see
that G contains the copy of D’ located at the dn-coordinate in Dkn . Arguing by induction on
n, we see that this follows from Lemma 2·7.

We note that A is normal in G, as it is actually normalised by the entire group �. We
shall now check that A lies in FC(G). Since s2 in central in G (Lemma 2·6), it is enough to
check that (D′)kn is FC-central in G for all n ≥ 1. For a fixed n ≥ 1, the subgroup Gn of G
consisting of elements g such that πn(g) ∈ (D′)kn is a finite index subgroup of G since D’ has
finite index in D and Ckn is finite. Moreover Gn commutes with (D′)kn because D’ is abelian,
so (D′)kn indeed lies in the FC-center of G.

We shall now verify that Q = G/A is isomorphic to C2 �Z. If we denote by si the image
of si in Q, then si has order two for all i, and it follows from Lemma 2·7 that [s, si] is
trivial for all i. This implies that the map from C2 �Z to Q that sends the Dirac function
at the identity to s and the generator of Z to t induces a surjective group homomorphism.
Moreover we easily see that no si belongs to the subgroup generated by the sj for j < i. This
implies that C2 �Z→ Q is an isomorphism. And since C2 �Z has trivial FC-center, we also
see that A = FC(G).

We deduce the following:

COROLLARY 2·9. Every finitely generated torsion-free metabelian subquotient of G is
virtually abelian.

Proof. This follows from Propositions 2·3 and 2·8.

2·4. Torsion-freeness

The construction of the group G above is a variation of Brieussel’s construction in
[Bri15], which involves three sequence (�n), (dn) and (kn), and the groups Hn = Dkn

�n
� Ckn ,

where D�n are finite dihedral groups. This also leads to FC-central extensions of C2 �Z, but
with the property that FC(G) is locally finite (and hence torsion). With the hope to avoid
the appearance of torsion, in our definition the finite dihedral groups have been replaced by
the infinite dihedral group D, and the extra factor Z has been added in order to make the
generator s of infinite order. But at this point torsion-freeness of the group G is very much
not guaranteed. Observe that the projection of G to each factor Hn contains many elements
of finite order (for instance πn(si) ∈ Hn is an involution for every n and every i). One might
expect that by taking appropriate commutators of such elements (so as to arrange in partic-
ular the projection to the factor Z to be trivial), it should be easy to find elements of finite
order in G. And indeed for most choices of the sequences (dn), (kn), the group G will contain
many elements of finite order. Perhaps surprisingly, it turns out that for the specific choice
dn = n + 1, the group G is torsion-free. The aim of this paragraph is to prove this assertion.

Definition 2·10. We denote ϕa : D → C2 the epimorphism such that ϕa(a) = 1 and
ϕa(b) = 0 (here and below we use additive notation for C2 = {0, 1}, so that 1 denotes its
generator). Similarly we denote ϕb : D → C2 the epimorphism such that ϕb(b) = 1 and
ϕb(a) = 0.
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Thus ϕa(g) is given by the parity of the number of a’s in any word representing g, and
similarly for ϕb(g). We will use the following easy lemma.

LEMMA 2·11. Let γ ∈ D be such that ϕa(γ ) = ϕb(γ ) = 1. Then γ has infinite order.

Proof. Let ϕ : D → C2 × C2 be given by ϕ = (ϕa, ϕb). Recall that an element g ∈ D has
order 2 if and only if it is conjugate either to a or to b, thus ϕ(g) ∈ {(1, 0), (0, 1)}. Thus the
condition ϕ(γ ) = (1, 1) tells at once that γ is not trivial (since ϕ(γ ) is not-trivial) and not an
involution, and therefore has infinite order.

PROPOSITION 2·12. Suppose that dn = n + 1 for all n ≥ 1. Then the group G is torsion-free.

Proof. We retain the above notation, so that A = FC(G) and Q = G/A. Given g ∈ G non-
trivial, we show that g has infinite order. Write g as a word in s±1, t±1 and, by a standard
argument, replace this word by an equivalent word in the free group generated by s, t to
write g as

g = sε1
i1

· · · sεk
ik

tm,

with ij, εi, m ∈Z. Note that an expression of g of the form above is far from being unique (in
particular, there might be repetitions in the indexes ij).

If m �= 0, then the projection of g to Q has infinite order, and thus so does g. Therefore we
can assume that m = 0. Similarly we note that if

∑k
j=1 εj �= 0, then π0(g) ∈Z is non-trivial,

and thus again g has infinite order. Therefore we can suppose that g has the form

g = sε1
i1

· · · sεk
ik

, εj ∈Z,
∑

j

εj = 0. (1)

For every � ∈Z let α(�) ∈ C2 be given by

α(�) =
∑

j : ij=�

εj (mod 2).

Note that the projection of g to G/A � C2 �Z coincides with the configuration α ∈ ⊕ZC2.
If the latter is the trivial configuration, we have g ∈ A, and thus g has infinite order by
Proposition 2·8. Therefore we can assume that this is not the case, so that there exists some
� such that α(�) = 1. On the other hand by definition of α we have

∑
j∈Z

α(j) =
k∑

i=1

εk = 0 (mod 2),

so we deduce that the set

E = {� ∈Z : α(�) = 1}
is non-empty and has even cardinality. Thus |E| ≥ 2. Let m and M be respectively the small-
est and largest element of E. Upon conjugating g by t−m, we can suppose that m = 0, while
M > 0. To show that g has infinite order, we will show that the projection πM(g) ∈ HM has
infinite order. To this end note that for every i ∈Z the element πM(si) belongs to the normal
subgroup DkM of HM , and is equal to the element ri ∈ DkM given by
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ri(x) =

⎧⎪⎨
⎪⎩

a if x = i + 1 (mod kM)

b if x = M + i + 1 (mod kM)

e otherwise.

(2)

From (1) it follows that πM(g) is equal to the element f ∈ DkM given by

f = rε1
i1

· · · rεk
ik

.

We wish to show that the coordinate in f (M + 1) ∈ D is an element of infinite order of D by
applying Lemma 2·11. To this end, note that ϕb(f (M + 1)) is determined by the parity of the
number of bs that appear in the expression

f (M + 1) = rε1
i1

(M + 1) · · · rεk
ik

(M + 1).

By (2), we have rj(M + 1) = b if and only if ij ∈ kMZ. Thus

ϕb(f (M + 1)) =
∑

j : ij∈kMZ

εj =
∑

�∈kMZ

α(�) (mod 2).

Now recall that 0 and M are respectively the minimum and maximum values of � ∈Z such
that α(�) = 1 (mod 2). Since kM > 2M + 1 > M, it follows that in the previous sum there is
exactly one term equal to 1 (mod 2), namely α(0). Therefore ϕb(f (M + 1)) = 1. A similar
reasoning shows that

ϕa(f (M + 1)) =
∑

j : ij∈kMZ+M

εj =
∑

�∈kMZ+M

α(�) (mod 2),

and again, in the last sum there is exactly one term equal to 1 (mod 2) namely, α(M).
Thus ϕa(f (M + 1)) = 1. By Lemma 2·11, f (M + 1) has infinite order. Therefore so does
f = πM(g), and so does g.

2·5. Conclusion

The proof of Theorem 1·1 is now complete, as it follows from Proposition 2·12,
Proposition 2·8 and Corollary 2·9.

Remark 2·13. By letting the sequence (kn) vary, one can obtain a continuum of isomorphism
classes of groups satisfying Theorem 1·1. Here is a sketch of the proof. The conjugation
action of G on its FC-center A = FC(G) defines a linear representation on the Q-vector
space V = A ⊗Q, which, by the argument in Proposition 2·8, decomposes as a sum of finite
dimensional representations V =Q⊕ (

⊕
n Vn), with Vn = (D′)kn ⊗Q. Assuming that all kn

are prime numbers, one verifies that the representation Vn is irreducible. So by Schur’s
lemma it follows that (kn) is exactly the sequence of dimensions of irreducible finite dimen-
sional subrepresentations of V of dimension at least 2. In particular the sequence (kn) can be
reconstructed from G abstractly.

Remark 2·14. The fact that the group G has infinite rank is witnessed by the existence of
a (sub)quotient isomorphic to C2 �Z. It would be interesting to have a construction, for an
arbitrary prime p, of a group G as in Theorem 1·1 which admits Cp �Z as a subquotient. We
thank the referee for pointing out this question.
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2·6. Final comments.

Our initial motivation for wondering about the existence of (non-virtually abelian) fg
torsion-free solvable groups with every fg metabelian subgroup virtually abelian, grew out
from the work [LBMB22]. There we prove that if G is a fg torsion-free metabelian group,
then the growth of every faithful action of G (as defined in [LBMB22]) is at least quadratic,
provided G is not virtually abelian. We also conjecture that the same holds for torsion-
free solvable groups. Since the desired property passes to overgroups, the metabelian case
automatically implies that the conjecture holds for the solvable groups that contain a fg
metabelian subgroup that is not virtually abelian. The examples presented in this note show
that this does not include all torsion-free solvable groups.

Finally we mention that another motivation for a better understanding of the class of
torsion-free solvable groups comes from the study of random walks and isoperimetry. Pittet
and Saloff–Coste showed that on any torsion-free solvable group of finite rank which is
not virtually nilpotent, the return probability of the simple random walk has the slow-

est possible decay for a group of exponential growth, namely exp ( − n
1
3 ) [PSC03]. They

conjectured that, conversely, this decay should characterise groups of finite rank among
torsion-free solvable groups [SC04]. This conjecture is naturally related to the theory sur-
rounding Kropholler’s theorem and its possible generalisations, as the return probability
does not decrease when passing to subquotients. But the groups constructed here seem
unlikely to be counterexamples to the conjecture.

Acknowledgments. We are very grateful to Peter Kropholler for decisive discussions
regarding this problem, and for his comments on a preliminary version of this work. We
thank Jérémie Brieussel and Tianyi Zheng for a conversation on the return probability on
the groups constructed here.
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