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Abstract We explain an algorithm to calculate Arthur’s weighted orbital integral in terms of the number
of rational points on the fundamental domain of the associated affine Springer fiber. The strategy is to
count the number of rational points of the truncated affine Springer fibers in two ways: by the Arthur–
Kottwitz reduction and by the Harder–Narasimhan reduction. A comparison of results obtained from
these two approaches gives recurrence relations between the number of rational points on the fundamental
domains of the affine Springer fibers and Arthur’s weighted orbital integrals. As an example, we calculate
Arthur’s weighted orbital integrals for the groups GL2 and GL3.

Keywords: Weighted orbital integrals; Affine Springer fibers; Harder-Narasimhan reduction; Arthur-

Kottwitz reduction.

2020 Mathematics subject classification: Primary 22E67; 14M15

Secondary 11F85

1. Introduction

Let Fq be the finite field with q elements. Let F = Fq((ε)) be the field of Laurent series
with coefficients in Fq, O = Fq[[ε]] the ring of integers of F, and p= εFq[[ε]] the maximal

ideal of O. We fix an algebraic closure Fq of Fq and also a compatible separable algebraic

closure F of F. Let val : F
× →Q be the discrete valuation normalized by val(ε) = 1.

Let G be a connected split reductive algebraic group over Fq, and assume that

char(Fq) > |W |, W being the Weyl group of G. Let GF be the base change of G to
F. Let T be a maximal torus of GF . We make the assumption that the splitting field

of T is totally ramified over F. Let S ⊂ T be the maximal F -split subtorus of T, and

let M0 = ZGF
(S) be the centralizer of S in GF ; then M0 is a Levi subgroup of GF and

T is elliptic in M0. Given an algebraic group, we use the Gothic letter to denote its Lie

algebra.

Let γ ∈ t(F ) be a regular element, elliptic in m0(F ). Let L(M0) be the set of Levi

subgroups of G containing M0. For M ∈ L(M0), consider Arthur’s weighted orbital
integral

JM (γ) = JM
(
γ,1g(O)

)
=

∫
T (F )\G(F )

1g(O)

(
Ad(g)−1γ

)
vM (g)

dg

dt
, (1.1)
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1758 Z. Chen

where 1g(O) is the characteristic function of the lattice g(O) in g(F ), vM (g) is Arthur’s

weight factor, and dg and dt are Haar measures on G(F ) and T (F ), respectively. One

of our main results states that it can be expressed in terms of the number of rational
points of the fundamental domains FL

γ of the affine Springer fiber X L
γ , L ∈ L(M0). The

main idea is to count the number of rational points of the truncated affine Springer fibers

in two different ways: by the Arthur–Kottwitz reduction and by the Harder–Narasimhan
reduction.

Before entering into the details of our approach, we give examples of results that can

be obtained in this way. The calculations for the group G=GL2 are easy; the results are
summarized in Theorems 5.1 and 5.2. But for the group G = GL3, the calculations are

already quite nontrivial. There are three cases to deal with: the element γ can be split,

mixed, or elliptic. When γ is split, we can find a set of simple roots {α1,α2} in the root

system Φ(G,T ) of G with respect to T such that

val(α1(γ)) = val((α1+α2)(γ))≤ val(α2(γ)).

We call (n1,n2) = (val(α1(γ)),val(α2(γ))) the root valuation of γ.

Theorem 1.1. Let G=GL3 and T the maximal torus of diagonal matrices. Let γ ∈ t(O)

be a regular element with root valuation (n1,n2) ∈ N2, with n1 ≤ n2. Up to an explicit

volume factor, we have

JT (γ)
.
=

n1∑
i=1

i
(
q2i−1+ q2i−2

)
+

2n1+n2−1∑
i=n1+n2

(4n1+2n2−4i−3)qi+
(
n2
1+2n1n2

)
q2n1+n2 .

For α∈Φ(G,T ), let Mα be the unique Levi subgroup containing T with root system {±α};
then, up to an explicit volume factor,

JMα1
(γ) = JMα1+α2

(γ)
.
= (n1+n2)q

2n1+n2 − qn1+n2
(
1+ q+ · · ·+ qn1−1

)
− q2n1

(
1+ q+ · · ·+ qn2−1

)
and

JMα2
(γ)

.
= 2n1q

2n1+n2 −2qn1+n2
(
1+ q+ · · ·+ qn1−1

)
.

When γ is mixed – that is, T is isomorphic to F××ResE2/FE
×
2 , where E2 = Fq((ε

1
2 ))

is the unique totally ramified extension of F of degree 2 – it can be conjugate to a matrix

of the form

γ =

⎡⎣a b

bε

⎤⎦ . (1.2)

Let m= val(a) and n= val(b); then we have the following:

https://doi.org/10.1017/S1474748021000529 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000529


Truncated affine Springer fibers and Arthur’s weighted orbital integrals 1759

Theorem 1.2. Let G=GL3 and let γ be a matrix in the form of equation (1.2). When

val(a) =m≤ n, up to an explicit volume factor,

JM0
(γ)

.
= 2mq2m+n+

2m+n−1∑
j=m+n+1

2(j−m−n)qj −
2m−1∑
j=0

(⌊
j

2

⌋
+1

)
qj .

Similarly, when val(a) =m> n, up to an explicit volume factor,

JM0
(γ)

.
= (2n+1)q3n+1+

3n∑
j=2n+1

(2j−4n−1)qj −
2n∑
j=0

(⌊
j

2

⌋
+1

)
qj,

where �x� denotes the maximal integer less than or equal to x.

When γ is anisotropic, Arthur’s weighted orbital integral is just the orbital integral,

and the result was essentially obtained by Goresky, Kottwitz, and MacPherson [16]. See
Theorems 8.1 and 8.2 for the counting result.

Now we explain our approach to calculating Arthur’s weighted orbital integrals using

the geometry of the affine Springer fibers. For simplicity, we restrict to JM0
(γ). The affine

Springer fiber Xγ is the closed subscheme of the affine Grassmannian X =G(F )/G(O)

defined by the equation

Xγ =
{
g ∈G(F )/G(O) |Ad

(
g−1
)
γ ∈ g(O)

}
.

They can be used to geometrize Arthur’s weighted orbital integrals. The group T (F ) acts

on Xγ by left translation. For μ ∈X∗(S), we write εμ for μ(ε) ∈ S(F ). The map μ→ εμ

identifies X∗(S) with a subgroup of S(F ) ⊂ T (F ), which we denote by Λ. It acts freely

on Xγ , and the quotient Λ\Xγ is a projective scheme of finite type over Fq (see [17, §3]).
A simple reformulation shows that∫

T (F )\G(F )

1g(O)

(
Ad(g)−1γ

)
vM0

(g)
dg

dt
= c ·

∑
[g]∈Λ\Xγ(Fq)

vM0
(g),

where [g] denotes the point gG(O) ∈ X and c is a volume factor.

But this expression does not facilitate the calculations of Arthur’s weighted orbital

integral. We have to proceed in an indirect way. Let ξ ∈ aGM0
be a generic element (for

the definition of aGM0
, see §1.1). Chaudouard and Laumon [8] introduce a variant of the

weighted orbital integral

Jξ
M0

(γ) = Jξ
M0

(
γ,1g(O)

)
=

∫
T (F )\G(F )

1g(O)

(
Ad(g)−1γ

)
wξ

M0
(g)

dg

dt
, (1.3)

with a slightly different weight factor wξ
M0

(g). The two weight factors are closely related

to each other. When G is semisimple, Chaudouard and Laumon show that

JM0
(γ) = vol(aM0

/X∗(M0)) ·Jξ
M0

(γ).
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The variant Jξ
M0

(γ) has a better geometric interpretation. In fact, we can introduce a

notion of ξ-stability on the affine Springer fiber Xγ and show that

Jξ
M0

(γ) = voldt
(
T (F )1

)−1 ·
∣∣X ξ

γ (Fq)
∣∣ .

The advantage of this variant is clear: it is a plain count rather than a weighted count.

Moreover, we can use the Harder–Narasimhan reduction to get
∣∣X ξ

γ (Fq)
∣∣ recursively

from |Xγ (Fq)|, if only the latter is finite. Unfortunately this is not the case, as can be
seen from the fact that the free abelian group Λ acts freely on Xγ .

Let Π be a positive (G,M0)-orthogonal family. We can introduce a truncation Xγ(Π) to

overcome the finiteness issue. When Π is sufficiently regular, we can reduce the calculation
of the rational points on Xγ(Π) to that of the fundamental domains FL

γ , by the Arthur–

Kottwitz reduction. Recall that the fundamental domain Fγ is introduced in [11] to

play the role of an irreducible component of Xγ . (All the irreducible components of

Xγ are isomorphic, because T (F ) acts transitively on a dense open subscheme of it.)
The Arthur–Kottwitz reduction is a construction that decomposes Xγ(Π) into locally

closed subschemes, which are iterated affine fibrations over the fundamental domains FL
γ ,

L ∈ L(M0). The counting result is summarized in Corollary 3.7. In particular, it shows
that Xγ(Π) depends quasi-polynomially on the truncation parameter.

On the other hand, the Harder–Narasimhan reduction does not behave well on Xγ(Π).

In fact, near the boundary, the Harder–Narasimhan strata are generally not affine
fibrations over truncations of X L, ξL

γ . To overcome this difficulty, we cut Xγ(Π) into

two parts: the tail and the main body. Roughly speaking, the tail is the union of the

‘boundary irreducible components’ of Xγ(Π), and the main body is its complement.

The Harder–Narasimhan reduction works well on the main body, and we can use it to
count the number of rational points. The result is summarized in Theorem 4.8; it can be

expressed in terms of |X L,ξL

γ (Fq)|, L ∈ L(M0). Counting points on the tail proceeds by

the Arthur–Kottwitz reduction, and can be expressed in terms of |FL
γ (Fq)|s. But we are

not able to obtain an explicit expression; we get a recursion.

These two different approaches to counting rational points on Xγ(Π) give us a recursive

equation that involves the |FL
γ (Fq)|s and the |X L,ξL

γ (Fq)|s. Solving it, we can express

the latter in terms of the former. The problem of calculating JM0
(γ) is thus reduced to

counting points on Fγ .

The geometry of Fγ is simpler than that of X ξ
γ : Goresky, Kottwitz, and MacPherson

[14] have conjectured that the cohomology of Xγ is pure in the sense of Deligne. As we

have shown in [11], this is equivalent to the cohomological purity of Fγ . In fact, it is even

expected that Fγ admits a Hessenberg paving. (This notion was introduced by Goresky,
Kottwitz, and MacPherson [16].) On the contrary, X ξ

γ is generally not cohomologically

pure, as one can see in case G = SL2 or from the appearance of a minus sign in the

counting-points result of Theorems 6.6, 6.10, and 6.14. Although one can still look at the
quotient X ξ

γ /AM0
, where AM0

is the maximal F -split torus of the center of M0, it is clear

that the quotient no longer admits a torus action, and hence it has much less structure

to explore than Fγ .
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When the torus T splits, we make a conjecture on the Poincaré polynomial of Fγ

[12], assuming the cohomological purity of Fγ . This gives a conjectural expression for

|Fγ (Fq)|. We reproduce it here for the convenience of the reader. Following Chaudouard

and Laumon [7], under the purity assumption the cohomology of Fγ can be expressed
in terms of its 1-skeleton under the T -action. Indeed, the T -equivariant cohomology

H∗
T

(
Fγ,Q�

)
1 will then be a free H∗

T (pt,Q�)-algebra, and we have

H∗ (Fγ,Q�

)
=H∗

T

(
Fγ,Q�

)
⊗H∗

T (pt,Q�)
Q�. (1.4)

The torus T acts on Fγ with finitely many fixed points, but the 1-dimensional T -orbits

form a higher-dimensional variety which we denote by FT,1
γ . The bigger torus T̃ = T ×Gm,

where Gm is the rotational torus, acts on FT,1
γ with finitely many 1-dimensional T̃ -orbits;

let F T̃,1
γ be their union. Let F T̃

γ be the set of T̃ -fixed points on Fγ , and let

H∗
T̃

(
Fγ,Q�

)
:=H∗

T

(
Fγ,Q�

)
⊗H∗

T (pt,Q�)
H∗

T̃

(
pt,Q�

)
. (1.5)

Then the localization theorem of Goresky, Kottwitz, and MacPherson [13] implies an

exact sequence of equivariant cohomology

0→H∗
T̃

(
Fγ,Q�

)
→H∗

T̃

(
F T̃
γ ,Q�

)
→H∗

T̃

(
F T̃,1
γ ,F T̃

γ ;Q�

)
. (1.6)

Let Γ be the graph with vertices F T̃
γ and edges F T̃,1

γ . Two vertices are linked by an edge

if and only if they lie on the closure of the corresponding 1-dimensional T̃ -orbit. We call

it the moment graph of Fγ with respect to the action of T̃ . The foregoing result implies

that the information about the cohomology of Fγ is encoded in Γ. A direct calculation
of the cohomology via formulas (1.4), (1.5), and (1.6) turns out to be very hard, and we

look for a combinatorial way to get around it.

Let o be a total order among the vertices of the graph Γ; it will serve as the paving
order. We associate to it an acyclic oriented graph (Γ,o) such that the source of each

arrow is greater than its target with respect to o. For v ∈ Γ, denote by no
v the number of

arrows having source v.

Definition 1.1. The formal Betti number bo2i associated to the order o is defined as

bo2i = �{v ∈ Γ : no
v = i} .

We call

P o(t) =
∑
i

bo2it
2i

the formal Poincaré polynomial associated to the order o.

Definition 1.2. For P1(t),P2(t)∈Z[t], we say that P1(t)<P2(t) if the leading coefficient

of P2(t)−P1(t) is positive.

1Here we actually mean the geometric H∗
TFq

(Fγ,Fq
,Q�); to simplify the notation, we do not

specify the base change to Fq. A similar convention applies for the other cohomology groups.
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Conjecture 1.1. Let P (t) be the Poincaré polynomial of Fγ . Then

P (t) = min
o

{P o(t)},

where o runs through all the total orders among the vertices of Γ.

The conjecture can be thought of as a kind of Morse inequality ; it has been verified
in a lot of examples. For the group G = GL2 and γ = diag(γ1,γ2), with γ1,γ2 ∈ F and

val(γ1−γ2) = n ∈N, the moment graph of Fγ contains n+1 vertices, which are pairwise

connected by an edge. It is clear that the conjecture holds in this case. In general, the
moment graph of Fγ is easy to describe, and we have an algorithm to find an order o

which conjecturally should attain the minimum. Although we are not able to prove both

conjectures at the moment, they have been very helpful in constructing affine pavings of

Fγ in concrete examples.
Under the purity assumption, Conjecture 1.1 implies a point-counting result for

Fγ . Indeed, the formulas (1.4), (1.5), and (1.6) are Gal
(
Fq/Fq

)
-equivariant, and the

Frobenius endomorphism acts on H2i
T̃
(F T̃

γ ,Q�) by qi (the odd-degree cohomologies

vanish), and hence it acts on H∗ (Fγ,Q�

)
in the same way and so

|Fγ (Fq)|=min
o

{
P o(q1/2)

}
.

Together with the recurrence relation between
∣∣X ξ

γ (Fq)
∣∣ and |Fγ (Fq)|, it gives a

conjectural complete answer to the calculation of Arthur’s weighted orbital integrals in

the split case.

1.1. Notation

We fix a split maximal torus A of G over Fq. Without loss of generality, we suppose that

A ⊂M0. Let Φ = Φ(G,A) be the root system of G with respect to A and let W be the
Weyl group of G with respect to A. For any subgroup H of G which is stable under the

conjugation of A, we write Φ(H,A) for the roots appearing in Lie(H). We fix a Borel

subgroup B0 of G containing A. Let Δ = {α1, . . . ,αr} be the set of simple roots with
respect to B0 and let {�i}ri=1 be the corresponding fundamental weights. For an element

α ∈Δ, we have a unique maximal parabolic subgroup Pα of G containing B0 such that

Φ(NPα
,A)∩Δ = {α}, where NPα

is the unipotent radical of Pα. This gives a bijective

correspondence between the simple roots in Δ and the maximal parabolic subgroups of
G containing B0. Any semistandard maximal parabolic subgroup P of G is conjugate to

certain Pα by an element w ∈W ; when the element w�α does not depend on the choice

of w, we denote it by �P .
We use the (G,M) notation of Arthur. Let F(A) be the set of parabolic subgroups of

G containing A and let L(A) be the set of Levi subgroups of G containing A. For every

M ∈ L(A), we denote by P(M) the set of parabolic subgroups of G whose Levi factor
is M, by L(M) the set of Levi subgroups of G containing M, and by F(M) the set of

parabolic subgroups of G containing M. For P ∈ P(M), we denote by P− ∈ P(M) the

opposite of P with respect to M.
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Let X∗(M) = Hom(M,Gm) and X∗(M) = Hom(X∗(M),Z). Let a∗M =X∗(M)⊗R and

aM =X∗(M)⊗R. The restriction X∗(M)→X∗(A) induces an injection a∗M ↪→ a∗A. Let(
aMA

)∗
be the subspace of a∗A generated by Φ(M,A). We have the decomposition in direct

sums

a∗A =
(
aMA

)∗⊕a∗M .

The canonical pairing X∗(A)×X∗(A)→Z can be extended bilinearly to aA×a∗A →R.

For M ∈L(A), we can embed aM in aA as the orthogonal subspace to
(
aMA

)∗
. Let aMA ⊂ aA

be the subspace orthogonal to a∗M . We have the dual decomposition

aA = aM ⊕aMA .

Let πM,πM be the projections to the two factors. More generally, for L,M ∈F(A),M ⊂L,
we also have a decomposition

aGM = aGL ⊕aLM .

Let πM,L,π
L
M be the projections to the two factors. If the context is clear, we also simplify

them to πL,π
L.

We identify X∗(A) with A(F )/A(O) by sending χ to χ(ε). With this identification, the
canonical surjection A(F )→A(F )/A(O) can be viewed as

A(F )→X∗(A). (1.7)

We use ΛG to denote the quotient of X∗(A) by the coroot lattice of G (the subgroup of

X∗(A) generated by the coroots of A in G). It is independent of the choice of A; this is

the algebraic fundamental group introduced by Borovoi [6]. According to Kottwitz [18],
we have a canonical homomorphism

νG :G(F )→ ΛG, (1.8)

which is characterized by the following properties: it is trivial on the image of Gsc(F ) in

G(F ) (Gsc is the simply connected cover of the derived group of G), and its restriction

to A(F ) coincides with the composition of formula (1.7) with the projection of X∗(A) to
ΛG. Since the morphism (1.8) is trivial on G(O), it descends to a map

νG : X → ΛG,

whose fibers are the connected components of X . For μ ∈ ΛG, we denote the connected

component ν−1
G (μ) by X μ.

Finally, we suppose that γ ∈ t(O) satisfies γ ≡ 0 mod ε, to avoid unnecessary

complications.

2. (Weighted) orbital integrals and the affine Springer fibers

We recall briefly the geometrization of the (weighted) orbital integrals using the affine

Springer fibers. We fix a regular element γ ∈ t(O) as in the introduction. Let P0 =M0N0

be the unique element in P(M0) which contains B0.
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2.1. Orbital integrals

We begin by fixing the Haar measures. Let dg be the Haar measure on G(F ) normalized

by the condition voldg
(
G(O)

)
= 1. For the group T (F ), the definition is more involved,

as there is no natural O-structure on T. Let F ur = Fq((ε)); it is the completion of the

maximal unramified extension of F. Let σ be the Frobenius automorphism of both Fq/Fq

and F ur/F . We fix a separable algebraic closure F ur of F ur and let IF =Gal
(
F ur/F ur

)
–

this is the inertia subgroup of Γ = Gal
(
F/F

)
. According to Kottwitz [19, §7.6], we have

an exact sequence

1→ T (F ur)1 → T (F ur)
wT−−→X∗(T )IF → 1, (2.1)

which implies another exact sequence if we take the 〈σ〉-invariants:

1→ T (F )1 → T (F )
wT−−→ (X∗(T )IF )

〈σ〉 → 1, (2.2)

with T (F )1 := T (F ) ∩ T (F ur)1. We fix the Haar measure dt on T (F ) by setting
voldt

(
T (F )1

)
= 1. The group Λ is discrete and cocompact in T (F ). The volume of the

quotient Λ\T (F ) is calculated in [14, §15.3]:

voldt
(
Λ\T (F )

)
=

|coker[X∗(S)Γ →X∗(T )Γ]|
|ker[X∗(S)Γ →X∗(T )Γ]|

.

Consider the orbital integral

IGγ =

∫
T (F )\G(F )

1g(O)

(
Ad(g−1)γ

) dg
dt

. (2.3)

It can be interpreted as counting points on the affine Springer fiber:

Proposition 2.1 (Goresky, Kottwitz, MacPherson [14]).

IGγ =
|ker[X∗(S)Γ →X∗(T )Γ]|
|coker[X∗(S)Γ →X∗(T )Γ]|

· |Λ\(Xγ (Fq))| .

The T (F )-action on Xγ can be exploited to further simplify the computations. Let

X reg
γ be the open subscheme of Xγ consisting of the points [g] ∈Xγ such that the image

of Ad
(
g−1
)
γ under the reduction g(O)→ g is regular nilpotent.

Proposition 2.2 (Bezrukavnikov [5]). The group T (F ) acts transitively on X reg
γ .

Proposition 2.3 (Ngô [20, Proposition 3.10.1]). The open subscheme X reg
γ is dense in

Xγ .

Consequently, all the irreducible components of Xγ are isomorphic to each other, and
they are parametrized by π0(T (F )). In particular, all the connected components of Xγ

are isomorphic and can be translated to each other under the T (F )-action. In calculating

the orbital integral (2.3), we can thus restrict to the central connected component of Xγ ,

which often simplifies calculations.
The calculation of IGγ can be reduced to that of IM0

γ ; it dates back at least to Harish-

Chandra that

IGγ = q
1
2val(det(ad(γ)|gF /m0,F )) · IM0

γ . (2.4)
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Geometrically, this is a reflection of the existence of an affine fibration fP : Xγ → X M0
γ

for each P ∈ P(M0). Recall that for Q= LNQ ∈ F(A), we have the retraction

fQ : X → X L,

which sends [g] = gK to [h] := hL(O), where g = nhk,n ∈NQ(F ),h ∈ L(F ),k ∈K, is the
Iwasawa decomposition. We want to point out that the retraction fQ is not a morphism

between ind-Fq-schemes, but its restriction to the inverse image of each connected

component of X L,

fQ : f−1
Q

(
X L,ν

)
→ X L,ν, ν ∈ ΛL,

is actually a morphism over Fq between ind-Fq-schemes. Moreover, these retractions

satisfy the obvious transitivity property.

Restricted to the affine Springer fibers, the retraction fQ sends Xγ to X L
γ . To see this,

for [g] ∈Xγ , let g = nhk be the Iwasawa decomposition as before. We can write g = hn′k,
with n′ = h−1nh ∈NQ(F ). Now that Ad

(
h−1

)
γ ∈ l(F ), we have

Ad
(
n′−1

)
Ad
(
h−1

)
γ =Ad

(
h−1

)
γ+n′′

for some n′′ ∈ nQ(F ). This implies that

Ad(h)−1γ ∈ [g(O)+nQ,F ]∩ l(F ) = l(O),

which means that fQ([g]) = [h] ∈ X L
γ .

Proposition 2.4 (Kazhdan and Lusztig [17, §5, Proposition 1]). For any ν ∈ ΛL, the

retraction

fQ : Xγ ∩f−1
Q

(
X L,ν

γ

)
→ X L,ν

γ

is an iterated affine fibration over Fq of relative dimension val(det(ad(γ) | nQ(F ))).

The reader can also consult [11, Proposition 3.2] for a proof.

2.2. Arthur’s weighted orbital integral

2.2.1. The weight factor vM . Set M ∈ L(M0). Roughly speaking, the weight factor
vM (g) is the volume of a polytope in aM generated by the point [g] ∈ X . Let HM :

M(F )→ aM be the unique map2 satisfying

χ(HM (m)) = val(χ(m)), ∀χ ∈X∗(M),m ∈M(F ).

Notice that it is a group homomorphism. Moreover, it is invariant under the right K -
action, so it induces a map from X M to aM , still denoted by HM . For P =MN ∈F(A),

let HP : X → aM be the composition

HP : X
fP−−→ X M HM−−→ aM .

2Our definition differs from the conventional one by a minus sign. But as we will see, it simplifies
computations.
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As shown in [7, Lemma 6.1], the map HM is constant on each connected component

of X M , so it has a factorization HM : X M νM−−→ ΛM → aM . A simple calculation of the

restriction of the map to X A ⊂X M shows that the map ΛM → aM is just the one induced
from the natural inclusion X∗(A) ↪→ aA =X∗(A)⊗R. Hence HP is also the composition

HP : X
fP−−→ X M νM−−→ ΛM → aM .

The map HP has the following remarkable property. There is a notion of adjacency

among the parabolic subgroups in P(M): two parabolic subgroups P1 = MN1,P2 =
MN2 ∈ P(M) are said to be adjacent if both of them are contained in a parabolic

subgroup Q = LNQ such that L ⊃ M and rk(L) = rk(M)+ 1. Given such an adjacent

pair, we define an element βP1,P2
∈ ΛM in the following way: consider the collection of

elements in ΛM obtained from coroots of A in n1∩n
−
2 . We define βP1,P2

to be the minimal

element in this collection – that is, all the other elements are positive integral multiples

of it. Note that βP2,P1
=−βP1,P2

, and if M = A, then βP1,P2
is the unique coroot which

is positive for P1 and negative for P2. We also denote its image in aM by βP1,P2
if no

confusion is caused.

Proposition 2.5 (Arthur [1, Lemma 3.6]). Let P1,P2 ∈ P(M) be two adjacent parabolic

subgroups. For any x ∈ X , we have

HP1
(x)−HP2

(x) = n(x,P1,P2) ·βP1,P2
,

with n(x,P1,P2) ∈ Z≥0.

The reader can consult [11, Proposition 2.1] for a proof. For any point x ∈X , we write

EcM (x) for the convex hull in aM of the HP (x),P ∈P(M). For any Q∈F(M), we denote

by EcQM (x) the face of EcM (x) whose vertices are HP (x),P ∈P(M),P ⊂Q. When M =A,
we omit the subscript A to simplify the notation.

To define the volume, we need to choose a Lebesgue measure on aGM . We fix a W -

invariant inner product 〈·,·〉 on the vector space aGA. Notice that a
M
A and aM are orthogonal

to each other with respect to the inner product for any M ∈ L(A). We fix a Lebesgue
measure on aGM normalized by the condition that the lattice generated by the orthonormal

bases in aGM has covolume 1.

The weight factor vM (g) is the volume of the projection πG
M

(
EcM (g)

)
⊂ aGM . We have to

pass to aGM because the polytope EcM (g) will lie in a hyperplane of aM if G has nontrivial

connected center. The weight factor vM (g) has the following invariance properties: it is

invariant under the right action of K – that is,

vM (gk) = vM (g), ∀k ∈K.

This is evident from the definition of vM (g). It is not so evident, but also true, that

vM (mg) = vM (g), ∀m ∈M(F ).

Indeed, for any P ∈P(M), we have fP (mg) =mfP (g). As HM is a group homomorphism,

this implies

HP (mg) =HM (m)+HP (g),
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so EcM (mg) is just the translation of EcM (g) by HM (m). In particular, they have the

same volume.

Similar to Proposition 2.1, we can interpret Arthur’s weighted orbital integral as∫
T (F )\G(F )

1g(O)

(
Ad(g)−1γ

)
vM (g)

dg

dt
=

|ker[X∗(S)Γ →X∗(T )Γ]|
|coker[X∗(S)Γ →X∗(T )Γ]|

∑
[g]∈Λ\(Xγ(Fq))

vM (g).

That is, it is a weighted count of the rational points on the affine Springer fiber. Notice

also that JG(γ) = IGγ , as vG(g) = 1 for all g ∈G(F ).

2.2.2. A variant. In their work on the weighted fundamental lemma [8], Chaudouard

and Laumon introduce a variant of the weighted orbital integral.

Assume that G is semisimple and let ξ ∈ aM be a generic element. For g ∈G(F ), they

introduce the weight factor

wξ
M (g) = |{λ ∈X∗(M) | λ+ ξ ∈ EcM (g)}| .

It is the number of integral points in the polytope EcM (g)− ξ. Similar to vM (g), the
weight factor wξ

M (g) is invariant under the right K -action and the left M(F )-action.

In particular, it descends to a function on X . Consider the following weighted orbital

integral:

Jξ
M (γ) =

∫
T (F )\G(F )

1g(O)

(
Ad(g)−1γ

)
wξ

M (g)
dg

dt
.

Remark 2.1. For a general reductive algebraic group G, ξ ∈ aGM , as G(F ) = M(F ) ·
Gder(F ), we can define the weight factor wξ

M uniquely by requiring it to be invariant under

the left M(F )-action and the right K -action, and that as a function on X its restriction

to X Gder coincide with the given definition for Gder. In other words, for generic ξ ∈ aGM ,

we define

wξ
M (g) =

∣∣{λ ∈X∗ (MGder
) | λ+ ξ ∈ πG

M (EcM (g))
}∣∣,

where MGder
=M ∩Gder. Notice that the weight factor vM satisfies these conditions as

well, and this justifies our definition in the general case.

The variant Jξ
M (γ) has a better geometric interpretation.

Lemma 2.6. Let T (F )1 = T (F )∩ker(HM0
). Then it is of finite volume and we have an

exact sequence

1→ T (F )1 → T (F )
HM0−−−→X∗(M0)→ 1.

Proof. The first assertion is due to the fact that T is anisotropic modulo the center of
M0. For the second assertion, only the surjectivity is nontrivial. Recall that we have the

exact sequence

1→ T (F )1 → T (F )
wT−−→ (X∗(T )IF )

〈σ〉 → 1,

and that the map wT is defined via a map vT : T (F ur)→ Hom
(
X∗(T )IF ,Z

)
, similar to

the definition of HM0
. Hence the morphism HM0

factors through wT , and the surjectivity
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results from those of wT and the homomorphism

(X∗(T )IF )
〈σ〉

=X∗(T )IF →Hom(X∗(M0),Z) =X∗(M0).

As a consequence, let T (F )1M = T (F )∩ ker(HM ) and let ΛHM = Λ∩ ker(HM ). Then

the quotient ΛHM \T (F )1M is of finite volume and we have an exact sequence

1→ T (F )1M → T (F )
HM−−→X∗(M)→ 1.

Proposition 2.7. We have the equality

Jξ
M (γ) = voldt

(
ΛHM \T (F )1M

)−1 ·
∣∣ΛHM \{[g] ∈ Xγ (Fq) | ξ ∈ EcM (g)}

∣∣ .
In particular,

Jξ
M0

(γ) = voldt
(
T (F )1

)−1 · |{[g] ∈ Xγ (Fq) | ξ ∈ EcM0
(g)}| .

Proof. Let 1M,g be the characteristic function of EcM (g). As

EcM (tg) = EcM (g)+HM (t), ∀t ∈ T (F ),g ∈G(F ),

we have ∑
t∈T (F )1M\T (F )

1M,tg(ξ) = |{λ ∈X∗(M) | ξ ∈ EcM (g)+λ}|

=wξ
M (g).

Now we can rewrite

Jξ
M (γ) =

∫
T (F )\G(F )

1g(O)

(
Ad(g)−1γ

)
wξ

M (g)
dg

dt

=

∫
T (F )\G(F )

1g(O)

(
Ad(g)−1γ

) ∑
t∈T (F )1M\T (F )

1M,tg(ξ)
dg

dt

=

∫
T (F )1M\G(F )

1g(O)

(
Ad(g)−1γ

)
1M,g(ξ)

dg

dt

= voldt
(
ΛHM \T (F )1M

)−1
∫
ΛHM \G(F )

1g(O)

(
Ad(g)−1γ

)
1M,g(ξ)dg

= voldt
(
ΛHM \T (F )1M

)−1 ·
∣∣ΛHM \{[g] ∈ Xγ (Fq) | ξ ∈ EcM (g)}

∣∣ .
In particular, Jξ

M (γ) is a plain count of a subset of Xγ (Fq). In §4.1, we will see that
the condition ξ ∈ EcM (g) behaves as a stability condition. (We believe that it is in fact a

stability condition in the sense of Mumford.) In particular, there is a Harder–Narasimhan-

type decomposition of Xγ associated with it.

Remark 2.2. It is time to explain why we have imposed the assumption that T is

totally ramified over F. Without it, the Frobenius σ ∈ Gal
(
Fq/Fq

)
acts nontrivially on
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X∗(T )IF , and the morphism T (F )→X∗(M0) in Lemma 2.6 might fail to be surjective.

(Indeed, it does fail for T an unramified maximal torus in GLn.) As a consequence, the

interpretation of Jξ
M (γ) as in Proposition 2.7 no longer holds.

For completeness, we compute the volume factors in Proposition 2.7. We have the exact

sequence

1→ ΛHM → T (F )1M → Λ\T (F )
HM−−→X∗(M)/HM (Λ)→ 1.

Because Λ is of finite index in X∗(M0) and the morphism X∗(M0)→X∗(M) is surjective,

the quotient X∗(M)/HM (Λ) is finite, and so

voldt
(
ΛHM \T (F )1M

)
= voldt (Λ\T (F )) · |X∗(M)/HM (Λ)|−1

=
|coker[X∗(S)Γ →X∗(T )Γ]|

|ker[X∗(S)Γ →X∗(T )Γ]| · |X∗(M)/HM (X∗(S))|
. (2.5)

2.2.3. Comparison of weighted orbital integrals. The weight factors vM and wξ
M

are closely related, so we can compare the associated weighted orbital integrals.

Theorem 2.8 (Chaudouard and Laumon [8]). We have the equality

JM (γ) = vol(aM/X∗(M)) ·Jξ
M (γ).

Remark 2.3. For a general reductive algebraic group G, with the definition of wξ
M as

explained in Remark 2.1, the comparison theorem becomes

JM (γ) = vol
(
a
Gder

MGder

/
X∗ (MGder

)
)
·Jξ

M (γ),

as can be seen from the proof below.

Chaudouard and Laumon work over the ring of adèles, but their proof carries over

to the local setting. We reproduce their proof here, but to simplify the exposition, we

assume moreover that G is simply connected. The key is to rewrite the convex polytope

EcM (g) as alternating differences of translations of cones. We need some notation. For
P = MNP ∈ F(A), take a Borel subgroup B ∈ P(A) contained in P. Let ΔB be the

simple roots of Φ(G,A) with respect to B, and let ΔB,P =ΔB ∩Φ(NP ,A) and Δ∨
B,P be

the associated coroots. The restriction X∗(A)→X∗(AM ) induces a bijection from ΔB,P

to a subset of X∗(AM ) denoted ΔP . Similarly, the projection aA → aM induces a bijection

from Δ∨
B,P to a subset Δ∨

P . Obviously, the definition of ΔP and Δ∨
P is independent of

the choice of B. Moreover, they form bases of a∗M and aM , respectively. Let (�α)α∈ΔP
be

the basis of a∗M dual to Δ∨
P .

For a generic element λ ∈ a∗M , let

Δλ
P = {α ∈ΔP | 〈λ,α〉< 0},

and let ϕλ
P be the characteristic function of the cone{

a ∈ aM |�α(a)> 0, ∀α ∈Δλ
P ;�α(a)≤ 0, ∀α ∈ΔP \Δλ

P

}
.
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According to Arthur [3], the characteristic function of the convex polytope EcM (g) is

equal to the function

a ∈ aM �−→
∑

P∈P(M)

(−1)|Δ
λ
P |ϕλ

P (−HP (g)+a).

The proof is best illustrated by [4, Figure 11.1, p. 63]. It relies on the combinatorial

identity ∑
F⊂S

(−1)|F | =

{
1 if S = ∅,
0 otherwise,

for any finite set S. Now we can rewrite

wξ
M (g) =

∑
χ∈X∗(M)

∑
P∈P(M)

(−1)|Δ
λ
P |ϕλ

P (−HP (g)+χ+ ξ), (2.6)

vM (g) =

∫
aM

∑
P∈P(M)

(−1)|Δ
λ
P |ϕλ

P (−HP (g)+a)da. (2.7)

We introduce an extra exponential factor to treat the infinite sum in equation (2.6):

SP (λ) =
∑

χ∈X∗(M)

ϕλ
P (−HP (g)+χ+ ξ)e〈λ,χ〉.

The series converges absolutely for generic λ, and hence

wξ
M (g) = lim

λ→0

∑
P∈P(M)

(−1)|Δ
λ
P |SP (λ),

where the limit is taken for generic λ ∈ a∗M .

We can calculate SP (λ) explicitly. Let ξ = [ξ]P +{ξ}P , with [ξ]P ∈X∗(M) and {ξ}P =∑
α∈ΔP

rαα
∨ for some 0< rα < 1. After a simple change of variables, we get

SP (λ) = e〈λ,HP (g)−[ξ]P 〉
∑

χ∈X∗(M)

ϕλ
P (χ+{ξ}P )e〈λ,χ〉

= e〈λ,HP (g)−[ξ]P 〉
∑

(mα)α∈ΔP

e〈λ,
∑

αmαα∨〉,

where (mα)α∈ΔP
runs over the integers satisfying mα ≥ 0 for α ∈Δλ

P and mα ≤ −1 for

α ∈ΔP \Δλ
P . The geometric series can be calculated to be

SP (λ) = (−1)|Δ
λ
P |e〈λ,HP (g)−[ξ]P 〉

∏
α∈ΔP

1

e〈λ,α∨〉−1
.

Let cP (λ) =
∏

α∈ΔP

(
e〈λ,α

∨〉 −1
)
. Taking everything together, we get

wξ
M (g) = lim

λ→0

∑
P∈P(M)

cP (λ)
−1e〈λ,HP (g)−[ξ]P 〉. (2.8)
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Similarly, we can rewrite equation (2.7) as

vM (g) = lim
λ→0

∫
aM

∑
P∈P(M)

(−1)|Δ
λ
P |ϕλ

P (−HP (g)+a)e〈λ,a〉da

= lim
λ→0

∑
P∈P(M)

(−1)|Δ
λ
P |
∫
aM

ϕλ
P (−HP (g)+a)e〈λ,a〉da

= lim
λ→0

∑
P∈P(M)

e〈λ,HP (g)〉 ·vol(aM/X∗(M))
∏

α∈ΔP

〈λ,α∨〉−1
.

Letting dP (λ) = vol(aM/X∗(M))
−1∏

α∈ΔP
〈λ,α∨〉, we get

vM (g) = lim
λ→0

∑
P∈P(M)

dP (λ)
−1 ·e〈λ,HP (g)〉. (2.9)

To deal with limits of the form in equations (2.8) and (2.9) systematically, we need
Arthur’s notion of a (G,M)-family [2]. It is a family of smooth functions (rP (λ))P∈P(M)

on a∗M which satisfy, for any adjacent parabolic subgroups (P,P ′), the property that

rP (λ) = rP ′(λ) for any λ on the hyperplane defined by the unique coroot in Δ∨
P ∩(−Δ∨

P ′).

For any such family, we define

rM (λ) =
∑

P∈P(M)

dP (λ)
−1rP (λ),

for generic λ ∈ a∗M . Arthur has shown in [2] that the function extends smoothly over all

a∗M . Let

rM = lim
λ→0

rM (λ).

It generalizes equation (2.9). Indeed, the functions

vP (λ,g) = e〈λ,HP (g)〉, P ∈ P(M),

form a (G,M)-family, and the resulting vM (g) is exactly Arthur’s weight factor. From
this point of view, we call rM the volume of the (G,M)-family (rP (λ))P∈P(M).

Notice that the summands in equations (2.8) and (2.9) differ by a factor

wP (λ,ξ) =
dP (λ)

cP (λ)
e−〈λ,[ξ]P 〉,

and that they form a (G,M)-family. Letting wP (λ,g,ξ) = vP (λ,g)wP (λ,ξ), P ∈ P(M),
they form a (G,M)-family and equation (2.8) can be rewritten as

wξ
M (g) = wM (g,ξ). (2.10)

In other words, we have expressed the lattice point-counting weight factor wξ
M (g) as the

volume of the product of two (G,M)-families.
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We need a result of Arthur on the volume of the product of two (G,M)-families. Let

{rP (λ)}P∈P(M) and {sP (λ)}P∈P(M) be two (G,M)-families. For Q= LNQ ∈ F(M), let

rQR(λ) = rRNQ
(λ), ∀R ∈ PL(M).

It is easy to see that rQR(λ), R ∈ PL(M), form an (L,M)-family. The function rQM (λ)

and the volume rQM are defined in a similar way. From the (G,M)-family {sP (λ)}P∈P(M),

Arthur has defined a smooth function s′Q(λ) on a∗Q. The definition is quite involved, and

we refer the reader to [2, §6]. Let s′Q = s′Q(0).

Lemma 2.9 (Arthur [2, Lemma 6.3 and Corollary 6.4]). Let {rP (λ)}P∈P(M) and

{sP (λ)}P∈P(M) be two (G,M)-families, and let r ·s be their product. Then for any λ∈ a∗M ,
we have

(r · s)M (λ) =
∑

Q∈F(M)

rQM (λ)s′Q(λ).

In particular,

sM (λ) =
∑

P∈P(M)

s′P (λ).

In our situation, this implies

wξ
M (g) =

(
v(g) ·w(ξ)

)
(0) =

∑
Q∈F(M)

vQM (g)w′
Q(ξ) (2.11)

and

wM (ξ) =
∑

P∈P(M)

w′
P (ξ). (2.12)

Similar results hold for Levi subgroups L containing M :

wξL
L (g) =

∑
R∈F(L)

vRL(g)w
′
R(ξL), (2.13)

wL(ξL) =
∑

Q∈P(L)

w′
Q(ξL), (2.14)

with w′
R(ξL) deduced from the (G,L)-family

wQ(λ,ξL) =
dQ(λ)

cQ(λ)
e−〈λ,[ξL]Q〉, ∀Q ∈ P(L).

Setting g = e ∈G in equation (2.13), and noting that

vRL(e) =

{
1 if R ∈ P(L),

0 otherwise,
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we get

wξL
L (e) =

∑
Q∈P(L)

w′
Q(ξL) = wL(ξL), (2.15)

where the second equality is just equation (2.14).

Lemma 2.10.∑
Q∈P(L)

w′
Q(ξ) =

vol(aL/X∗(L))

vol(aM/X∗(M))
·wξL

L (e) =

{
vol(aM/X∗(M))

−1
if L=G,

0 otherwise.

Proof. Recall that given a (G,M)-family {sP (λ)}P∈P(M), we can define a (G,L)-family

by setting

sQ(λ) = sP (λ), ∀λ ∈ a∗L ⊂ a∗M,

for any P ∈ P(M), P ⊂Q. Moreover, the function s′Q(λ) deduced from the (G,M)-family

{sP (λ)}P∈P(M) is the same as that from the (G,L)-family {sQ(λ)}Q∈P(L), by [2, formula

6.3]. In this way, we get the (G,L)-family {wQ(λ,ξ)}Q∈P(L) and the equality∑
Q∈P(L)

w′
Q(ξ) = wL(ξ) = lim

λ→0

∑
Q∈P(L)

dQ(λ)
−1 · dP (λ)

cP (λ)
·e−〈λ,[ξ]P 〉,

by the second assertion of Lemma 2.9, where for each Q ∈ P(L) we take P ∈ P(M),
P ⊂Q, and the limit is taken for λ ∈ a∗L generic. Now that

dP (λ)

cP (λ)
=

vol(aL/X∗(L))

vol(aM/X∗(M))
· dQ(λ)
cQ(λ)

and 〈λ,[ξ]P 〉= 〈λ,[ξL]Q〉 for any λ ∈ a∗L, we get∑
Q∈P(L)

w′
Q(ξ) =

vol(aL/X∗(L))

vol(aM/X∗(M))
·wL(ξL) =

vol(aL/X∗(L))

vol(aM/X∗(M))
·wξL

L (e),

where the last equality follows from equation (2.15).

By equation (2.11), we can rewrite Jξ
M (γ) as

Jξ
M (γ) =

∫
T (F )\G(F )

1g(O)

(
Ad(g)−1γ

)
wξ

M (g)
dg

dt

=

∫
T (F )\G(F )

1g(O)

(
Ad(g)−1γ

)⎡⎣ ∑
Q∈F(M)

vQM (g)w′
Q(ξ)

⎤⎦ dg

dt
.

As vQM is also left T (F )-invariant, we can define

JQ
M (γ) =

∫
T (F )\G(F )

1g(O)

(
Ad(g)−1γ

)
vQM (g)

dg

dt
.

Let Q= LNQ be the standard Levi decomposition. Let dl be the Haar measure on L(F )

normalized by voldl(L(O)) = 1 and let dn be the Haar measure on NQ(F ) normalized by
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voldn (NQ(O)) = 1. Using Iwasawa decomposition, we can rewrite JQ
M (γ) as

JQ
M (γ) =

∫
T (F )\L(F )

∫
NQ(F )

∫
K

1g(O)

(
Ad(nlk)−1γ

)
vQM (nlk)dk ·dn · dl

dt

=

∫
T (F )\L(F )

∫
NQ(F )

∫
K

1g(O)

(
Ad(nl)−1γ

)
vQM (l)dk ·dn · dl

dt

=

∫
T (F )\L(F )

[∫
NQ(F )

∫
K

1g(O)

(
Ad(nl)−1γ

)
dk ·dn

]
vLM (l)

dl

dt
, (2.16)

where in the second and third lines we have used the equalities vQM (nlk) = vQM (l) and

vQM (l) = vLM (l) respectively, which follow directly from definitions. Notice that∫
NQ(F )

∫
K

1g(O)

(
Ad(nl)−1γ

)
dk ·dn=

∣∣{[nl] ∈NQ(F )lK/K |Ad(nl)−1γ ∈ g(O)
}∣∣

=
∣∣∣(f−1

Q ([l])∩Xγ

)
(Fq)

∣∣∣
= qval(det(adγ|nQ,F )) ·1l(O)

(
Ad(l)−1γ

)
,

where the last equality follows from Proposition 2.4. Continuing the calculation of

equation (2.16), we get

JQ
M (γ) = qval(det(adγ|nQ,F )) ·

∫
T (F )\L(F )

1l(O)

(
Ad(l)−1γ

)
vLM (l)

dl

dt

= qval(det(adγ|nQ,F )) ·JL
M (γ).

Combining all the foregoing calculations, we get

Jξ
M (γ) =

∑
L∈L(M)

∑
Q∈P(L)

JQ
M (γ) ·w′

Q(ξ) =
∑

L∈L(M)

∑
Q∈P(L)

qval(det(adγ|nQ,F ))JL
M (γ) ·w′

Q(ξ)

=
∑

L∈L(M)

q
1
2val(det(adγ|gF /lF ))JL

M (γ)
∑

Q∈P(L)

w′
Q(ξ)

= vol(aM/X∗(M))
−1 ·JM (γ),

where the last equality follows from Lemma 2.10. This finishes the proof of Theorem 2.8.

3. Counting points by Arthur–Kottwitz reduction

From now on, we will assume that Gder is simply connected. The general case can be

reduced to this one by focusing on each connected component. This extra assumption

gives some technical convenience – for example, M0,der will be simply connected, ΛM0
will

be torsion-free, and we get an inclusion ΛM0
↪→ aM0

. Moreover, we have X∗(M0) = ΛM0
,

according to [8, Lemma 11.6.1].

FixM ∈L(M0) and let Π be a sufficiently regular positive (G,M)-orthogonal family. We
count the number of points on ΛHM \X ν0

γ (Π), ν0 ∈ ΛG. Generalizing our previous work

[11], we show that it can be reduced to counting points on the intermediate fundamental

domains FL,M
γ , L ∈ L(M), and the counting result depends quasi-polynomially on the
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truncation parameter. Moreover, counting points on ΛHM \FL,M
γ can be further reduced

to counting points on the fundamental domains FM ′

γ for some M ′ ∈ L(M0) ‘transversal’

to M.

3.1. Truncations on the affine Grassmannian

Recall the following definition of Arthur [1], which is a formalization of the orthogonal

properties in Proposition 2.5:

Definition 3.1. A family Π= (λP )P∈P(M) of elements in aGM is called a positive (G,M)-

orthogonal family if it satisfies

λP1
−λP2

= nP1,P2
·πG

M (βP1,P2
), with nP1,P2

∈R≥0,

for any two adjacent parabolic subgroups P1,P2 ∈ P(M).

Given such a positive (G,M)-orthogonal family, we will denote again by Π the convex
hull of the λP s. For Q= LNQ ∈ F(M), parallel to EcQM (x), we denote by ΠQ the face of

Π whose vertices are λP , P ∈ P(M),P ⊂Q. With the projection πL
M , it can be seen as a

positive (L,M)-orthogonal family. This sets up a bijection between the set F(M) and the

set of the faces of Π. Moreover, we denote by λQ or λQ(Π) the element πM,L (λP ′) for any
P ′ ∈P(M),P ′ ⊂Q. One can show that (λQ(Π))Q∈P(L) forms a positive (G,L)-orthogonal

family. Later on, we also use the notation (λw̄)w̄∈W/WM
for (λw̄·P )w̄∈W/WM

, and we use

the notation λw(Π) or λw·P (Π) to indicate the vertex of Π indexed by w ·P .
Following Chaudouard and Laumon [7], we define the truncated affine Grassmannian

X (Π) to be

X (Π) =
{
x ∈ X | πG

M (EcM (x))⊂Π
}
.

We want to point out that its connected components are also parametrized by ΛG,
but they are not isomorphic in general. However, there is periodicity in the connected

components: let Gad be the adjoint group of G and let cG : ΛG → ΛGad be the projection

induced by the natural projection T → T/ZG. For ν,ν
′ ∈ ΛG, we have

X ν(Π) = X ν′
(Π), if cG(ν) = cG(ν

′),

because they can be translated to each other by elements in ZG(F ).
For a regular element γ ∈ t(O), we can truncate the affine Springer fiber Xγ similarly

by defining

Xγ(Π) = Xγ ∩X (Π),

and the same observation on the connected components of X (Π) holds also for Xγ(Π).

3.2. The intermediate fundamental domain

We generalize our construction of the fundamental domain Fγ in [11].3

3In [11], we confused Λ, ΛM0
, and π0(T (F )). With our current notation, there are morphisms

Λ → ΛM0
and Λ → π0(T (F )). Generally, they are not isomorphic. In particular, Fγ is
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Let P1 =MN1 and P2 =MN2 ∈ P(M) be two adjacent parabolic subgroups. Let mα

be the unique positive integer such that the image of α∨ in ΛM is equal to mα ·βP1,P2
,

and let

n(γ,P1,P2) =
∑

α∈Φ(N1,TF )∩Φ(N−
2 ,TF )

val(α(γ)) ·mα.

It can be verified that n(γ,P1,P2) is an integer.

Proposition 3.1 (Goresky-Kottwitz-MacPherson, [15]). Set x ∈ Xγ .

(1) For any two adjacent parabolic subgroups P1,P2 ∈ P(M), we have

n(x,P1,P2)≤ n(γ,P1,P2).

(2) The point x is regular in Xγ if and only if the following two conditions hold:

(a) The point fP (x) is regular in X M
γ for all P ∈ P(M).

(b) For any two adjacent parabolic subgroups P1,P2 in P(M), one has

n(x,P1,P2) = n(γ,P1,P2).

Notice that although Goresky, Kottwitz, and MacPherson work over the field F =C((ε)),

their proof works for any field F = k((ε)) with char(k)> |W |. Their result motivates our
definition:

Definition 3.2. Take a regular point x0 ∈ X reg
γ . Let

FG,M
γ = {x ∈ Xγ | EcM (x)⊂ EcM (x0), νG(x) = νG(x0)} .

We call it an intermediate fundamental domain of Xγ with respect to M.

We should have used the notation FG,M
γ,x0

to indicate the dependence on x0, but they
are isomorphic to each other for any choice of the regular point x0. Indeed, for any two

regular points x1,x2, we can find t ∈ T (F ) such that x1 = t · x2. Now that EcM (tx) =

EcM (x)+HM (t), ∀x ∈ X , the intermediate fundamental domain given by x1 is just the
translation by t of that given by x2. Notice that for M =M0, we recover the fundamental

domain Fγ . For simplicity, we assume that νG(x0) = 0.

Unlike the fundamental domain, the intermediate FG,M
γ is no longer of finite type for

M �M0. Nonetheless, we have the following:

not a fundamental domain for the Λ-action – that is, Xγ �=
⋃

λ∈Λλ · Fγ . Moreover, the
group π0(T (F )) may have a complicated torsion subgroup, which implies that Fγ may have
complicated irreducible components as well, contrary to our expectation there. Actually, there
should be a bijection between π0 (Fγ) and π0

(
FM0
γ

)
, and both are isomorphic to π0(T (F ))tor.

Nevertheless, other results of [11] hold if we assume that Gder is simply connected, and the
general case can be reduced to that one. This extra assumption is to make sure that for any
Levi subgroup M ∈ L(M0) we have ΛM being torsion-free and we get an inclusion ΛM ↪→ aM ;
they hold, as Mder is simply connected. Moreover, we have X∗(M) = ΛM , according to [8,
Lemma 11.6.1].
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Proposition 3.2. The free discrete abelian group ΛHM acts freely on FG,M
γ , and the

quotient ΛHM \FG,M
γ is of finite type.

Proof. Recall that ΛHM = Λ∩ ker(HM ) by definition, and hence it preserves FG,M
γ

because left translation by m ∈ ker(HM ) does not change the polytope EcM (x), due

to the property

HP (mx) =HM (m)+HP (x), ∀m ∈M(F ), x ∈ X , P ∈ P(M).

For the finiteness issue, let ΛHM

M0
⊂ ΛM0

be the kernel of the natural projection ΛM0
→

ΛM . By definition, we have

π−1
M0,M

(EcM (x0)) =
⋃

ν∈Λ
HM
M0

(ν+EcM0
(x0)),

which implies that

FG,M
γ =

⋃
ν∈Λ

HM
M0

X 0
γ (ν+EcM0

(x0)) .

Now that Λ ∼=X∗(S) and X∗(S) ↪→ ΛM0
is of finite index, the quotient ΛHM \ΛHM

M0
is of

finite cardinality. Hence the quotient ΛHM \FG,M
γ is dominated by the union of finitely

many translations of Fγ under the natural projection FG,M
γ → ΛHM \FG,M

γ . As Fγ is of
finite type, so is the quotient ΛHM \FG,M

γ .

A similar proof applies to the following:

Proposition 3.3. Let Π be a regular positive (G,M)-orthogonal family. For any ν ∈ΛG,
the free discrete abelian group ΛHM acts freely on X ν

γ (Π), and the quotient ΛHM \X ν
γ (Π)

is of finite type. In particular, ∣∣(ΛHM
∖
X ν

γ (Π)
)
(Fq)

∣∣<∞.

Remark 3.1. In the definition of the (weighted) orbital integral, we are concerned more

about analogues of ΛHM \
(
X ν

γ (Π)(Fq)
)
, but notice that there is bijection between(

ΛHM
∖
X ν

γ (Π)
)
(Fq) and ΛHM \

(
X ν

γ (Π)(Fq)
)
,

because ΛHM acts freely on X ν
γ (Π) and the Galois group Gal

(
Fq/Fq

)
acts trivially on

ΛHM . We will decompose the scheme ΛHM \X ν
γ (Π) in different ways, and the bijection

given here implies that we can deduce equality of rational points over Fq from the
decomposition of schemes.

In the following, we simplify the notation EcM (x0) to ΣG,M
γ . For ν ∈ ΛG, let

FG,M,ν
γ := X ν

γ

(
ΣG,M

γ

)
.

As we have explained before, it depends only on the class cG(ν) ∈ΛGad . For M =M0, we

simplify ΣG,M0
γ to Σγ and FG,M0,ν

γ to F ν
γ .
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RB−

RP −

RP

RB

D0

Figure 1. Partition of aGA for GL3.

3.3. The Arthur–Kottwitz reduction

Recall that we can reduce the geometry of Xγ to that of its fundamental domain by

the Arthur–Kottwitz reduction [11]. The construction can be generalized to our current

setting.
Let Q0 be the unique parabolic subgroup in P(M) which contains P0. Let ς ∈ aGM be

such that α(ς) is positive but almost equal to 0 for any α ∈ΔQ0
. Let DM = (λP )P∈P(M)

be the (G,M)-orthogonal family given by

λP =HP (x0)+w · ς, (3.1)

where w ∈W is any element satisfying P = w ·Q0. For Q = LNQ ∈ F(M), define RG,M
Q

to be the subset of aGM satisfying the conditions

πL
M (a)⊂DQ

M,

α(πM,L(a))≥ α(πM,L (λQ)), ∀α ∈ΔQ.

This gives us a partition which dates back at least to Arthur [3]:

aGM =
⋃

Q∈F(M)

RG,M
Q . (3.2)

It induces a disjoint partition of ΛM via the map ΛM → aGM , as we have perturbed

(HP (x0))P∈P(M) with ς. Figure 1 gives an illustration of the partition for the group GL3

and M0 = T =A.

Similar to [11, Lemma 3.1], we have the following result due to Proposition 3.1:

Lemma 3.4. For any x ∈ Xγ , there exists a unique Q ∈ F(M) such that

πG
M

(
EcQM (x)

)
⊂RG,M

Q .

The referee has suggested an equivalent form of the lemma, which is much easier

to understand and to prove: let aGM =
⋃

Q∈F(M)R
′
Q be the partition attached to the
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positive (G,M)-orthogonal family (HP (x0)−HP (x)+w · ς)P∈P(M), then the statement is

equivalent to the existence of a unique Q∈F(M) such that 0∈R′
Q. Here the positiveness

of the (G,M)-orthogonal family is due to Proposition 3.1. Let

SG,M
Q :=

{
x ∈ Xγ | πG

M

(
EcQM (x)

)
⊂RG,M

Q

}
.

We thus get a disjoint partition

Xγ = Xγ(DM )∪
⋃

Q∈F(M)
Q �=G

SG,M
Q . (3.3)

For each parabolic subgroup Q= LNQ ∈ F(M), consider the restriction of the retraction

fQ : X → X L to SG,M
Q ; its image is SG,M

Q ∩X L
γ . Recall that the connected components

of X L
γ are fibers of the map νL :X L

γ →ΛL. For ν ∈ΛL, let X L,ν
γ be its fiber at ν. Letting

SG,M,ν
Q = SG,M

Q ∩f−1
Q

(
X L,ν

γ

)
,

we have

SG,M,ν
Q ∩X L,ν

γ = X L,ν
γ

(
DQ

M

)
.

Proposition 3.5. The strata SG,M,ν
Q are locally closed subschemes of Xγ , and the

retraction fQ : SG,M,ν
Q →X L,ν

γ

(
DQ

M

)
is an iterated affine fibration over Fq of dimension

val(det(ad(γ | nQ,F ))) .

Indeed, by the bound on EcM (x) given by Proposition 3.1, we get

SG,M,ν
Q = Xγ ∩f−1

Q

(
X L,ν

γ

(
DQ

M

))
.

It is an iterated affine fibration over X L,ν
γ

(
DQ

M

)
by Proposition 2.4.

The decomposition (3.3) can thus be refined to

Xγ = Xγ(DM )∪
⋃

Q=LNQ∈F(M)
Q �=G

⋃
ν∈ΛL∩πL(RG,M

Q )

SG,M,ν
Q , (3.4)

where we have loosely used ΛL∩πL

(
RG,M

Q

)
to mean elements in ΛL whose projection to

aGL lies in πL

(
RG,M

Q

)
. Similar notations will be used later on. The decomposition (3.4)

will also be called the Arthur–Kottwitz reduction. Notice that the stratum SG,M,ν
Q is an

iterated affine fibration over X L,ν
γ

(
DQ

M

)
= FL,M,ν

γ , and the latter is related to FL,M
γ

again by the Arthur–Kottwitz reduction, similar to what is explained in [11, Lemma 3.4].

As in [11], the existence of Arthur–Kottwitz reduction implies the following:

Corollary 3.6. For any γ ∈ t(O), suppose that FL,M
γ is cohomologically pure for any

proper Levi subgroup L ∈L(M). Then Xγ is cohomologically pure if and only if FG,M
γ is.
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We can restrict the Arthur–Kottwitz reduction to the truncated affine Springer fibers.
A positive (G,M)-orthogonal family Π = (μP )P∈P(M) is said to be regular with respect

to DM if μP ∈RG,M
P , ∀P ∈P(M). In this case, each SG,M,ν

Q is either contained in X ν
γ (Π)

or disjoint from it. So we have

Xγ(Π) = Xγ(DM )∪
⋃

Q=LNQ∈F(M)
Q �=G

⋃
ν∈ΛL∩πL(RG,M

Q )
∩πL(Π)

SG,M,ν
Q . (3.5)

The reduction can be further restricted to each connected component of Xγ(Π):

X ν0
γ (Π) = X ν0

γ (DM )∪
⋃

Q=LNQ∈F(M)
Q �=G

⋃
ν∈Λ

ν0
L ∩πL(RG,M

Q )
∩πL(Π)

SG,M,ν
Q . (3.6)

As we have explained, left translation by elements in ker(HM ) does not change the

polytope EcM (x), and hence the group ΛHM acts on each item of equation (3.6). Now

that we have finiteness results – Propositions 3.2 and 3.3, combined with Proposition 3.5
and the periodicity of FL,M,ν

γ in ν ∈ ΛL – equation (3.6) implies equality of counting

points:

Corollary 3.7. We have the equality∣∣(ΛHM
∖
X ν0

γ (Π)
)
(Fq)

∣∣= ∣∣(ΛHM
∖
FG,M,ν0
γ

)
(Fq)

∣∣+ ∑
Q=LNQ∈F(M)

Q �=G

∑
μ∈Λ

Lad

qval(det(adγ|nQ,F ))

·
∣∣(ΛHM

∖
FL,M,μ
γ

)
(Fq)

∣∣ · ∣∣∣Λν0

L ∩πL

(
RG,M

Q

)
∩πL(Π)∩ c−1

L (μ)
∣∣∣ .

Notice that the term
∣∣∣Λν0

L ∩πL

(
RG,M

Q

)
∩πL(Π)∩ c−1

L (μ)
∣∣∣ counts the number of lattice

points in a polytope. Well-known techniques from toric geometry tells us that the counting
result depends quasi-polynomially on the size of the polytope.

Remark 3.2. As the foregoing constructions rely ultimately on the bound of EcM (x)

given by Proposition 3.1, they continue to work if we replace ΣG,M
γ from the beginning

by any integral positive (G,M)-orthogonal family Σ which satisfies

λP1
(Σ)−λP2

(Σ) = nP1,P2
·βP1,P2

, with nP1,P2
≥ n(γ,P1,P2), (3.7)

for any two adjacent parabolic subgroups P1,P2 ∈ P(M). The resulting decomposition
will also be called the Arthur–Kottwitz reduction.

3.4. Counting points on the intermediate fundamental domains

Although the intermediate fundamental domains FG,M
γ look like something new, it

turns out that counting points of ΛHM \FG,M
γ can be reduced to counting points of the

fundamental domains.
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As explained in the proof of Proposition 3.2, we have

π−1
M0,M

(
ΣG,M

γ

)
=

⋃
ν∈Λ

HM
M0

(ν+Σγ)

and

FG,M
γ =

⋃
ν∈Λ

HM
M0

X 0
γ (ν+Σγ) .

Let PM
0 = P0 ∩M , and let β∨

1 , . . . ,β
∨
r′ ∈ ΛHM

M0
be a basis of aMM0

which is positive with

respect to PM
0 . For μ1,μ2 ∈ΛHM

M0
, we say that μ1 �PM

0
μ2 if μ2−μ1 is a linear combination

of β∨
i s with positive coefficients. This defines a partial order �PM

0
on ΛHM

M0
. For μ ∈ΛHM

M0
,

define

ΛHM

M0,�μ :=
{
ν ∈ ΛHM

M0
| ν �PM

0
μ
}

and ΠG,M
γ,�μ :=

⋃
ν∈Λ

HM
M0,�μ

(ν+Σγ) .

Then ΠG,M
γ,�μ is a semi-infinite polytope in aGM0

and ΛHM

M0,�μ is the integral points in it.

Similar definitions hold for ΛHM

M0,≺μ and ΠG,M
γ,≺μ. But notice that ΠG,M

γ,≺μ is not a semi-

infinite polytope: it is the union of finitely many semi-infinite polytopes of the form

ΠG,M
γ,�μ′ , μ′ ∈ ΛHM

M0
. Define

FG,M
γ,�μ := X 0

γ

(
ΠG,M

γ,�μ

)
=

⋃
ν∈Λ

HM
M0,�μ

X 0
γ (ν+Σγ)

and similarly

FG,M
γ,≺μ :=

⋃
ν∈Λ

HM
M0,≺μ

X 0
γ (ν+Σγ) .

It is the union of finitely many FG,M
γ,�μ′ , μ′ ∈ ΛHM

M0
. Define

FG,M
γ,μ := FG,M

γ,�μ

∖
FG,M
γ,≺μ.

Being a difference of closed subschemes, FG,M
γ,μ is locally closed in X 0

γ . As F
G,M
γ,�μ is semi-

infinite unions of translations of the fundamental domains, they are all isomorphic, and
similarly for FG,M

γ,≺μ. Hence FG,M
γ,μ are all isomorphic. Moreover,

FG,M
γ,�μ =

⊔
ν∈Λ

HM
M0,�μ

FG,M
γ,ν

by induction, and

FG,M
γ = lim

μ→∞
FG,M
γ,�μ =

⊔
ν∈Λ

HM
M0

FG,M
γ,ν .

From all these we conclude the following:
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Proposition 3.8. FG,M
γ,μ is isomorphic to each other for all μ ∈ ΛHM

M0
. In particular,∣∣(ΛHM

∖
FG,M
γ

)
(Fq)

∣∣= ∣∣∣ΛHM

∖
ΛHM

M0

∣∣∣ · ∣∣FG,M
γ,μ (Fq)

∣∣ .
Counting points on FG,M

γ,μ can be reduced to the fundamental domains via a process

similar to the Arthur–Kottwitz reduction. To begin with, notice that ΠG,M
γ,�μ is bounded

only in directions that are positive with respect to PM
0 . Indeed, its vertices are indexed by

P ∈ P(M0) satisfying P ∩M = PM
0 , and its faces by Q ∈ F(M0) such that Q∩M ⊃ PM

0 .
Then we define a semi-infinite polytope ΠG,M

γ,�μ− which is a translation of ΠG,M
γ,�μ: let Δ

M

be the set of simple roots in Φ(M,A) with respect to B0 ∩M , and let ΔM
PM

0
= ΔM ∩

Φ
(
NPM

0
,A
)
, with NPM

0
the unipotent radical of PM

0 . For α ∈ ΔM
PM

0
, let {ω∨

α} be the

corresponding fundamental coweights. Let

μ− = μ−π2

(∑
α∈ΔM

PM
0

ω∨
α

)
, (3.8)

where π2 is the projection to the second factor in the orthogonal decomposition aGA =

a
M0

A ⊕ aMM0
⊕ aGM . Then ΠG,M

γ,�μ− is a translation of ΠG,M
γ,�μ by the same vector. Now let

ς ∈ aGM0
be a generic element such that α(ς) is positive but almost equal to 0 for any

α ∈ΔP0
. We perturb the semi-infinite polytope ΠG,M

γ,�μ− to a similar one Π′, with vertices

λP (Π
′) = λP

(
ΠG,M

γ,�μ−

)
+w · ς, ∀P ∈ P(M0), P ∩M = PM

0 ,

where w ∈ W is any element satisfying P = w · P0. Both ΠG,M
γ,�μ and Π′ can be seen

as limits of positive (G,M0)-orthogonal families containing Σγ , hence we can apply an

analogue of the Arthur–Kottwitz reduction to get a decomposition of the complement

X 0
γ

(
ΠG,M

γ,�μ

)∖
X 0

γ (Π
′). For Q= LNQ ∈ F(M0) satisfying Q∩M ⊃ PM

0 , define RΠ′,Q to

be the subset of aGM0
satisfying conditions

πL
M0

(a)⊂Π′Q,

α(πM0,L(a))≥ α(πM0,L (λQ(Π
′))), ∀α ∈ΔQ.

This gives us a partition

aGM0
=Π′∪

⋃
Q∈F(M0),Q �=G

Q∩M⊃PM
0

RΠ′,Q. (3.9)

It induces a disjoint partition of ΛM0
. For G = GL3, γ split, and M = Mα12

, we get

Figure 2.

Running the same construction as in §3.3, for Q= LNQ ∈ F(M0), Q �=G and Q∩M ⊃
PM
0 , define

SΠ′,Q :=
{
x ∈ Xγ | πG

M0

(
EcQM0

(x)
)
⊂RΠ′,Q

}
,
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Π′

RΠ′,B0

Figure 2. Arthur–Kottwitz reduction for ΠG,M
γ,�μ.

and let

Sν
Π′,Q = SΠ′,Q∩f−1

Q

(
X L,ν

γ

)
, ∀ν ∈ ΛL.

We get a disjoint partition

X 0
γ

(
ΠG,M

γ,�μ

)
= X 0

γ (Π
′)∪

⋃
Q∈F(M0),Q �=G

Q∩M⊃PM
0

⋃
ν∈Λ0

L∩πL(RΠ′,Q)
∩πL(ΠG,M

γ,�μ)

Sν
Π′,Q. (3.10)

The strata Sν
Π′,Q are locally closed subschemes of Xγ , and the retraction fQ : Sν

Π′,Q →
X L,ν

γ (Π
′Q) is an iterated affine fibration over Fq of dimension val(det(ad(γ | nQ,F ))) .

Proposition 3.9. We have the equality

FG,M
γ,μ =

⋃
Q∈F(M0),Q �=G

Q∩M=PM
0

⋃
ν∈Λ0

L∩πL(RΠ′,Q)
∩πL(ΠG,M

γ,�μ)

Sν
Π′,Q.

Moreover, the index set Λ0
L ∩πL (RΠ′,Q)∩πL

(
ΠG,M

γ,�μ

)
consists of at most one element,

and is nonempty if and only if Q is not contained in any Q′ ∈ F(M).

Proof. For the first assertion, by construction, the points x ∈ FG,M
γ, μ are characterized by

the property

EcQM0
(x)⊂ (μ+Σγ)

Q

for some Q ∈ F(M0), Q �=G,Q∩M = PM
0 . Since this is also the property characterizing

points on the right-hand side of the equality, we get the equality as claimed. The second

assertion follows from the observation that Π′ is a slight expansion of ΠG,M
γ,�μ− , and hence
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the regions RΠ′,Q, Q contained in some maximal parabolic subgroup in F(M), contain

no elements in Λ0
L∩πL

(
ΠG,M

γ,�μ

)
.

If the index set Λ0
L∩πL (RΠ′,Q)∩πL

(
ΠG,M

γ,�μ

)
is nonempty, we denote by νQ the unique

element in it. Let μQ ∈ Λ0
L be the unique element such that α(μQ) = 1 for all α ∈ΔQ;

then we have

X L,νQ
γ

(
Π

′Q
)
∼= FL,μQ

γ .

Combining with the fact that

fQ : S
νQ

Π′,Q → X L,νQ
γ

(
Π

′Q
)

is an iterated affine fibration, we get the following:

Corollary 3.10. For M ∈ L(M0), M �=M0, we have the equality∣∣FG,M
γ,μ (Fq)

∣∣= ∑
Q=LNQ∈F(M0),Q �=G

satisfying (∗)

q
1
2val(det(adγ|gF /lF )) ·

∣∣FL,μQ
γ (Fq)

∣∣,
where (∗) refers to the condition that Q∩M = PM

0 and Q�Q′,∀Q′ ∈ F(M).

Notice that the equation does not involve the fundamental domain Fγ . Together with

Corollary 3.7 and Proposition 3.8, we get an expression of
∣∣(ΛHM

∖
X ν0

γ (Π)
)
(Fq)

∣∣ in
terms of

∣∣∣FL,μQ
γ (Fq)

∣∣∣, L ∈L(M0),L �=G. Recalling that counting points on F
L,μQ
γ can be

reduced to counting points on FL′

γ , L′ ∈L(M0),L
′ ⊂L, by the Arthur–Kottwitz reduction

we get an expression of
∣∣(ΛHM

∖
X ν0

γ (Π)
)
(Fq)

∣∣ in terms of
∣∣∣FL′

γ (Fq)
∣∣∣, L′ ∈ L(M0).

4. Counting points by Harder–Narasimhan reduction

The number of points
∣∣(ΛHM

∖
X ν0

γ (Π)
)
(Fq)

∣∣, ν0 ∈ΛG, can also be counted by the Harder–
Narasimhan reduction. Comparison with results from the last section gives us a recursive

relation between Arthur’s weighted orbital integrals and the number of rational points

on the fundamental domains.

4.1. Harder–Narasimhan reduction on the affine Springer fibers

We have introduced a notion of ξ-stability on the affine Grassmannian and constructed

the associated Harder–Narasimhan reduction in [10]. In this section, we generalize it to a

broader setup. The following lemma is an analogue of [8, Proposition 5.6.1]. Let S be an
affine Fq-scheme and set x ∈ X (S). For every point s ∈ S, let xs ∈ X (k(s)) be the base

change of x to the residue field k(s) of S at s. Let Cx be the map on S which sends every

point s ∈ S to the convex polytope Ec(xs).

Lemma 4.1. Suppose that S is noetherian. The map Cx from S to the set of convex

polytopes in aGA ordered by inclusion is lower semicontinuous. In other words, for any
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convex polytope Ξ, the set

{s ∈ S | Cx(s)⊃ Ξ}

is open.

Proof. To begin with, we show that Cx is constructible and takes only finitely many

values. Passing to the irreducible components of S, we can suppose that S is irreducible.
Let η be the generic point of S, and let gη ∈ G

(
k(η)((ε))

)
be a representative of xη. For

B =AN ∈ P(A), we have the Iwasawa decomposition

gη = nηaηkη,

where nη ∈N
(
k(η)((ε))

)
, aη ∈A

(
k(η)((ε))

)
, and kη ∈G

(
k(η)[[ε]]

)
. Because η is the generic

point and the map νA : X A → X∗(A) is essentially the valuation map, there exists an

open subscheme U of S such that HB(xs) = νA (aη) for any x ∈ U . As Ec(xs) is the
convex hull of HB(xs), B ∈ P(A), the map Cx takes the constant value Ec(xη) on the

intersection of all such open subschemes U. This proves the constructibility of Cx. By
noetherian induction, the map Cx takes only finitely many values.

To finish the proof, we only need to show that the map Cx decreases under specialization.
In other words, let S be the spectrum of a discrete valuation ring and let s be its special

point and η its generic point. Then

Ec(xs)⊂ Ec(xη) .

This is equivalent to the assertion that

fB(xs)≺B fB (xη), ∀B ∈ P(A), (4.1)

where ≺B is the order on X∗(A) such that μ1 ≺B μ2 if and only if μ2−μ1 is a positive

linear combination of positive coroots with respect to B.

Let μ= fB (xη) ∈X∗(A). By definition, we have

xη ∈ UB((ε))ε
μG[[ε]]/G[[ε]],

where UB is the unipotent radical of B. So

xs ∈ xη ⊂ UB((ε))εμG[[ε]]/G[[ε]] =
⋃

λ∈X∗(A)
λ≺Bμ

UB((ε))ε
λG[[ε]]/G[[ε]],

which implies the relation (4.1).

Definition 4.1. Let ξ ∈ aGM be a generic element. A point x ∈ X is said to be ξ-stable

if the polytope πG
(
EcM (x)

)
contains ξ.

As EcM (x) = πM (Ec(x)), the subset

X ξ =
{
x ∈ X | ξ ∈ πG(EcM (x))

}
is an open sub-ind-Fq-scheme of X by Lemma 4.1. This being shown, all the other

constructions of [10] generalize.
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Remark 4.1. When M = A, we recover the ξ-stability of [10]. In that work, we prove

that the notion of ξ-stability coincides with the notion of stability for a twisted action

of A on X . We believe that this holds also in the current setting, with the torus AM

playing the role of A. If this holds, we can conclude that the quotient X ξ/AM exists as

an ind-Fq-scheme.

Harder–Narasimhan reduction works as well in this setting. For Q= LNQ ∈ F(M), let
ΦQ(G,L) be the image of Φ(NQ,A) in

(
aGL

)∗
. For any point a ∈ aGL , we define a cone in

aGL ,

DQ(a) =
{
y ∈ aGL | α(y−a)≥ 0, ∀α ∈ ΦQ(G,L)

}
.

Definition 4.2. For any geometric point x ∈ X , we define a semicylinder CQ(x) in aGM
by

CQ(x) = πL,−1
M

(
EcLM (fQ(x))

)
∩π−1

M,L (DQ (HQ(x))) .

By definition, we get a partition

aGM = πG(EcM (x))∪
⋃

Q∈F(M)
Q �=G

CQ(x),

for which the interior of any two parts does not intersect. The picture is similar to Figure 1.
Hence for any x /∈ X ξ, there exists a unique parabolic subgroup Q ∈ F(M) such that

ξ ∈CQ(x), as ξ is generic. In this case, fQ(x) ∈X L is ξL-stable, where ξL = πL
M (ξ) ∈ aLM .

Let

XQ = {x ∈ X | ξ ∈ CQ(x)}.

We have the decomposition of the affine Grassmannian

X = X ξ �
⊔

Q∈F(M)
Q �=G

XQ. (4.2)

For Q ∈ P(L), let Q− be the parabolic subgroup opposite to Q with respect to L. Let

Λξ
L,Q =

(
πG
L

)−1 (
DQ−(ξL)

)
∩ΛL, we have the disjoint partition

ΛL =
⊔

Q∈P(L)

Λξ
L,Q.

For λ ∈ ΛL, let X L,λ,ξL = X L,ξL ∩X L,λ. The stratum XQ can be further decomposed

into NQ((ε))-orbits

XQ =
⊔

λ∈Λξ
L,Q

NQ((ε))X
L,λ,ξL .

Each orbit is locally closed in X , and they are infinite-dimensional homogeneous

affine fibrations on X L,λ,ξL under the retraction fQ. The foregoing discussions can be

summarized as follows:
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Theorem 4.2. The affine Grassmannian can be decomposed as

X = X ξ �
⊔

Q=LNQ∈F(M)
Q �=G

⊔
λ∈Λξ

L,Q

NQ((ε))X
L,λ,ξL .

Each stratum NQ((ε))X L,λ,ξL is an infinite-dimensional homogeneous affine fibration

over X L,λ,ξL .

Now that γ ∈m(F ), we can restrict these constructions to Xγ . Let X ξ
γ =Xγ∩X ξ; it is

an open subscheme of Xγ . As T (F )
HM−−→X∗(M) is surjective, the connected components

of X ξ
γ can be translated to each other by elements of T (F ). Moreover, for different choices

of generic element ξ, ξ′ ∈ aGM , the corresponding X ξ
γ ,X

ξ′

γ can be translated to each other
by elements of T (F ). Hence X ξ

γ does not depend on the choice of ξ.

The Harder–Narasimhan reduction restricts to

Xγ = X ξ
γ �

⊔
Q=LNQ∈F(M)

Q �=G

⊔
λ∈Λξ

L,Q

(
Xγ ∩NQ((ε))X

L,λ,ξL

γ

)
. (4.3)

By Proposition 2.4, the retraction

fQ : Xγ ∩NQ((ε))X
L,λ,ξL

γ → X L,λ,ξL

γ

is an iterated affine fibration over Fq of relative dimension val(det(ad(γ) | nQ(F ))) .

Coming back to the weighted orbital integrals, with the definition for general reductive

algebraic groups as explained in Remark 2.1, Proposition 2.7 can be reformulated as
follows:

Proposition 4.3. Let ξ ∈ aGM be a generic element. Then

Jξ
M (γ) = voldt

(
ΛHM

∖
T (F )1M

)−1 ·
∣∣ΛHM

∖((
X Gder ∩X ξ

γ

)
(Fq)

)∣∣ .
In particular, let ξ0 ∈ aGM0

be a generic element. Then

Jξ0
M0

(γ) = voldt
(
T (F )1

)−1 ·
∣∣(X Gder ∩X ξ

γ

)
(Fq)

∣∣ .
Proof. When G is semisimple, the proposition is a reformulation of Proposition 2.7. The

complexity arises when G has nontrivial connected center.

As T is totally ramified over F, with the exact sequence (2.2) we see that the morphism
T (F )

νG−−→ ΛG is surjective, hence G(F ) = T (F )Gder(F ), and so

Jξ
M (γ) =

∫
T (F )\G(F )

1g(O)

(
Ad(g)−1γ

)
wξ

M (g)
dg

dt

=

∫
TGder

(F )\Gder(F )

1g(O)

(
Ad(g)−1γ

)
wξ

MGder
(g)

dg

dt
,

with TGder
= T ∩Gder and MGder

=M ∩Gder. Following calculations in Proposition 2.7, we

get a result similar to what we claim, with ΛHM replaced by Λ∩Gder(F )∩ker
(
HMGder

)
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and T (F )1M replaced by TGder
(F )1MGder

. Noting that ker(HM ) = Mder(F ) ·M(O) by [7,

Lemma 6.1], we have

Λ∩Gder(F )∩ker
(
HMGder

)
= Λ∩ker(HM ) = ΛHM

and

TGder
(F )1MGder

= T (F )∩Gder(F )∩ker
(
HMGder

)
= T (F )∩ker(HM ) = T (F )1M,

and the proposition is proved.

The volume factors have been calculated in equation (2.5).

4.2. Harder–Narasimhan reduction for the truncated affine Springer fibers

In contrast to the Arthur–Kottwitz reduction, the Harder–Narasimhan reduction does

not work well on the truncated affine Springer fiber Xγ(Π). We need to cut it into two

parts, the tail and the main body. The Harder–Narasimhan reduction works well on the
main body, and we can handle the tail with the Arthur–Kottwitz reduction.

For Q ∈ F(M), Q �= G, we define the positive (G,M)-orthogonal family EQ(Π),

which as a polytope is the union of the translations πG
(
ΣG,M

γ +λ
)
, λ ∈ ΛM , such that

πG
(
ΣG,M

γ +λ
)Q ⊂ΠQ. Let

tXγ(Π) =
⋃

Q∈F(M)
Q �=G

Xγ (EQ(Π)), mXγ(Π) = Xγ(Π)\tXγ(Π).

We call them the tail and the main body of Xγ(Π), and they are respectively closed and
open subschemes of Xγ(Π). Figure 3 gives an example of EQ(Π) for the group G=GL3

when M =A.

Before proceeding, we make precise the condition of Π being sufficiently regular. We

would like it to satisfy the following conditions:

(1) Π is Σγ-regular.

(2) For all P,Q ∈ F(M), EP (Π)∩EQ(Π) = EP∩Q(Π).

(3) The complement Π\
⋃

Q∈F(M)
Q �=G

EQ(Π) is a polytope associated to a positive (G,M)-

orthogonal family; let Π0 be a slight shrinking of it (the definition is similar

to equation (3.1), with plus sign replaced by a minus). We require that Π0 be
sufficiently large: for all Q = LNQ ∈ F(M), the face ΠQ

0 contains the translations

of ΣQ
γ in aLM which have ξL as one of their vertices.

Remark 4.2. As Π0 is convex, condition (3) implies that for any ν ∈Λξ
L,Q∩πL(Π0), the

intersection Π0∩π−1
M0,L

(ν) contains translations of ΣQ
γ in the hyperplane π−1

M0,L
(ν) which

have ξL as one of their vertices. By the definition of ξ-stability, this implies

X L,ν,ξL

γ ⊂ X L,ν
γ

(
Π0∩π−1

M0,L
(ν)
)
, ∀ν ∈ Λξ

L,Q∩πL(Π0).

Actually, this is the reason to impose condition (3).
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EB0(Π)EP1(Π)

EP2(Π)

Σγ

Figure 3. EQ(II) for GL3 when M0 = A.

4.2.1. The main body. By definition, a Harder–Narasimhan stratum

NQ((ε))X
L,ν,ξL

γ ∩Xγ, ν ∈ Λξ
L,Q,

intersects nontrivially with Xγ(Π) if and only if ν ∈ Λξ
L,Q∩πL(Π). So, after restriction,

the Harder–Narasimhan reduction becomes

Xγ(Π) = X ξ
γ �

⊔
Q=LNQ∈F(M)

Q �=G

⊔
λ∈Λξ

L,Q∩πL(Π)

(
Xγ(Π)∩NQ((ε))X

L,λ,ξL

γ

)
.

The problem is that the retraction

fQ : Xγ(Π)∩NQ((ε))X
L,λ,ξL

γ → X L,λ,ξL

γ

is not necessarily an iterated affine fibration. This problem disappears on the main body
mXγ(Π). We begin by analyzing the polytope Ec(x), x ∈ Xγ(Π).

Lemma 4.4. For x ∈ Xγ(Π), suppose that

πG(EcM (x))⊂
⋃

Q∈F(M)
Q �=G

EQ(Π).

Then πG(EcM (x))⊂ EQ(Π) for some Q ∈ F(M), Q �=G.

Proof. By Proposition 3.1, it is enough to prove the lemma for x ∈ X reg
γ . In this case,

the polytope πG(EcM (x)) is a translation of ΣG,M
γ . As

⋃
Q∈F(M)

Q �=G

EQ(Π) is the union of

translations of ΣG,M
γ along the facets of Π, there must be a maximal parabolic subgroup
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Q∈F(M)max such that πG(EcQM (x))⊂ΠQ. By definition, this means that πG(EcM (x))⊂
EQ(Π).

Lemma 4.5. Let Q= LN ∈ F(M), ν ∈ Λξ
L,Q. Suppose that

mXγ(Π)∩N((ε))X L,ν
γ �= ∅.

Then ν ∈ Λξ
L,Q∩πL(Π0).

Proof. We only need to show that ν ∈ πL(Π0). Set x ∈ mXγ(Π)∩N((ε))X L,ν
γ . As x ∈

mXγ(Π), we have

πG(EcM (x))� EQ′(Π), ∀Q′ ∈ F(M), Q′ �=G.

By Lemma 4.4, this is equivalent to

πG(EcM (x))�
⋃

Q′∈F(M)
Q′ �=G

EQ′(Π). (4.4)

Suppose that ν /∈ πL(Π0). Then ν ∈ πL (EQ0
(Π)) for some Q0 ∈ F(M),Q0 ⊃ L. As

ν ∈Λξ
L,Q, the parabolic subgroup Q0 needs to satisfy Q0 ⊃Q−. Now that x∈N((ε))X L,ν

γ

and EcL(x) is a positive (G,L)-orthogonal family, we have

α(HQ′(x)−ν)≥ 0, ∀α ∈ΔQ, Q
′ ∈ P(L).

As Q0 ⊃Q−, this implies that

HQ′(x)⊂ πL (EQ0
(Π)), ∀Q′ ∈ P(L).

Hence πL(EcM (x))⊂ πL (EQ0
(Π)), so

EcM (x)⊂ π−1
L (πL (EQ0

(Π)))⊂
⋃

Q′⊂F(M),Q′ �=G
Q′∩Q0 �=∅

EQ′(Π).

This is in contradiction to the relation (4.4), hence ν must lie in πL(Π0).

Restricting the Harder–Narasimhan reduction (4.3) to the main part mXγ(Π), we have

mXγ(Π) = X ξ
γ �

⊔
Q=LNQ∈F(M)

Q �=G

⊔
λ∈Λξ

L,Q∩πL(Π0)

(
mXγ(Π)∩NQ((ε))X

L,λ,ξL

γ

)
.

The retraction fQ behaves much better on the stratum mXγ(Π)∩NQ((ε))X L,λ,ξL

γ :

Proposition 4.6. Let Q= LNQ ∈ F(M), ν ∈ Λξ
L,Q∩πL(Π0). We have

mXγ(Π)∩NQ((ε))X
L,ν,ξL

γ = Xγ ∩NQ((ε))X
L,ν,ξL

γ .

Hence the retraction

fQ : mXγ(Π)∩NQ((ε))X
L,ν,ξL

γ → X L,ν,ξL

γ

is an iterated affine fibration over Fq.
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Proof. Notice that the second assertion is the corollary of the first one, as follows from
Proposition 2.4. It is thus enough to show the first one. In particular, it is enough to show

Xγ ∩NQ((ε))X
L,ν,ξL

γ ⊂ mXγ(Π)∩NQ((ε))X
L,ν,ξL

γ ,

as the inclusion in the other direction is obvious.

Let x ∈ Xγ ∩NQ((ε))X L,ν,ξL

γ . We claim that EcM (x) ⊂ Π. According to Remark 4.2,
condition (3) of Π being sufficiently regular implies

EcLM (fQ(x))⊂Π0∩π−1
L (ν), (4.5)

because fQ(x) ∈ X L,ν,ξL

γ . This implies that EcM (x) ⊂ Π by Proposition 3.1, because of

the inclusion ⋃
λ∈ΛM

satisfying (∗)

(
λ+ΣG,M

γ

)
⊂Π,

where the condition (∗) refers to (
λ+ΣG,M

γ

)
∩Π0 �= ∅.

The inclusion (4.5) also implies that

EcM (x)�
⋃

Q∈F(M)
Q �=G

EQ(Π).

So x ∈ mXγ(Π), and the proof is concluded.

We summarize the foregoing discussions in a proposition.

Proposition 4.7. The main body has a decomposition

mXγ(Π) = X ξ
γ �

⊔
Q=LNQ∈F(M)

Q �=G

⊔
λ∈Λξ

L,Q∩πL(Π0)

(
mXγ(Π)∩NQ((ε))X

L,λ,ξL

γ

)
,

and the retraction fQ on each stratum

fQ : mXγ(Π)∩NQ((ε))X
L,ν,ξL

γ → X L,ν,ξL

γ

is an iterated affine fibration over Fq of dimension val(det(ad(γ) | nQ,F )) .

Of course, we can restrict the decomposition to each connected component mX ν0
γ (Π),

ν0 ∈ ΛG. Let Λ
ν0,ξ
L,Q = Λξ

L,Q∩Λν0

L . The decomposition implies∣∣(ΛHM
∖
mX ν0

γ (Π)
)
(Fq)

∣∣
=
∣∣(ΛHM

∖
X ν0,ξ

γ

)
(Fq)

∣∣+ ∑
Q=LNQ∈F(M)

Q �=G

∑
λ∈Λ

ν0,ξ

L,Q∩πL(Π0)

q
1
2val(det(ad(γ)|gF /lF ))

·
∣∣∣(ΛHM

∖
X L,λ,ξL

γ

)
(Fq)

∣∣∣
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=
∣∣(ΛHM

∖
X 0,ξ

γ

)
(Fq)

∣∣+ ∑
Q=LNQ∈F(M)

Q �=G

q
1
2val(det(adγ|gF /lF )) ·

∣∣∣(ΛHM

∖
X L,0,ξL

γ

)
(Fq)

∣∣∣
·
∣∣∣Λν0,ξ

L,Q∩πL(Π0)
∣∣∣

=
∣∣(ΛHM

∖
X 0,ξ

γ

)
(Fq)

∣∣+ ∑
L∈L(M)
L �=G

q
1
2val(det(adγ|gF /lF )) ·

∣∣∣(ΛHM

∖
X L,0,ξL

γ

)
(Fq)

∣∣∣
·
∑

Q∈P(L)

∣∣∣Λν0,ξ
L,Q∩πL(Π0)

∣∣∣
=
∣∣(ΛHM

∖
X 0,ξ

γ

)
(Fq)

∣∣+ ∑
L∈L(M)
L �=G

q
1
2val(det(adγ|gF /lF )) ·

∣∣∣(ΛHM

∖
X L,0,ξL

γ

)
(Fq)

∣∣∣
· |Λν0

L ∩πL(Π0)| .

Here for the second equality we have used the fact that all the connected components

of X L,ξL
γ are isomorphic. Moreover, the last term in the equation counts the number

of lattice points in a polytope; it can be calculated effectively with methods from toric
geometry. The following theorem summarizes:

Theorem 4.8. For any ν0 ∈ ΛG, the number of rational points on the main body is∣∣(ΛHM
∖
mX ν0

γ (Π)
)
(Fq)

∣∣= ∣∣(ΛHM
∖
X 0,ξ

γ

)
(Fq)

∣∣+ ∑
L∈L(M)
L �=G

q
1
2val(det(adγ|gF /lF ))

·
∣∣∣(ΛHM

∖
X L,0,ξL

γ

)
(Fq)

∣∣∣ · |Λν0

L ∩πL(Π0)| .

4.2.2. The tail. As the polytope Π satisfies

EP (Π)∩EQ(Π) = EP∩Q(Π), ∀P,Q ∈ F(M),

by the inclusion-exclusion principle we have∣∣(ΛHM
∖
tX ν0

γ (Π)
)
(Fq)

∣∣= ∑
Q∈F(M)

Q �=G

(−1)rk(G)−rk(Q)−1
∣∣(ΛHM

∖
X ν0

γ (EQ(Π))
)
(Fq)

∣∣, (4.6)

where the notation rk means the semisimple rank. Although the polytope EQ(Π) is
not ΣG,M

γ -regular, we can use the general Arthur–Kottwitz reduction, as explained

in Remark 3.2, repeatedly to decompose Xγ (EQ(Π)) into locally closed subschemes

which are iterated affine fibrations over FL,M
γ , L ∈ L(M). This gives a formula for∣∣(ΛHM

∖
X ν0

γ (EQ(Π))
)
(Fq)

∣∣ in terms of the
∣∣(ΛHM

∖
FL,M
γ

)
(Fq)

∣∣s, which can be further

reduced to counting points on the fundamental domains by Proposition 3.8 and Corollary

3.10. This process applies to a large family of truncated affine Springer fibers.
We introduce a family of operators on the set of all positive (G,M)-orthogonal families.

Recall that Q0 = MU0 is the unique parabolic subgroup in P(M) which contains P0.

For L ∈ L(M), let QL
0 = Q0 ∩L. For a positive (L,M)-orthogonal family, we say that
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two faces of it are conjugate if their associated parabolic subgroups are conjugate to
each other by the Weyl group WL/WM . In particular, the edges of the polytope are

parametrized by minimal elements in FL(M)\{M}. An edge is said to be of type α ∈
Δ

QL
0

AM
:= Φ(L,A)∩Φ(U0,A)∩Δ if it is conjugate to the edge having vertices λQL

0
,λsαQL

0
,

where sα is the simple reflection associated to α. Let AG,L
M,α be the operator on the set of

positive (G,M)-orthogonal families defined as follows: as a polytope, it increases by 1 the

length of all the edges whose images in aLM under the projection πL
M are of type α, and

keeps the lengths of all the others invariant. To check that it actually sends a positive

(G,M)-orthogonal family to another one, it suffices to verify for the faces of dimension 2,
but this is clear. Then we set the vertex

λQ0

(
AG,L

M,α(Π)
)
= λQ0

(Π)+
1

2
πM (�∨

α),

to make AG,L
M,α(Π) symmetric with respect to Π. Here �∨

α is the fundamental coweight

corresponding to α. By definition, we see that the operators AG,L
M,α commute with each

other. When G= L, we simplify the notation AG,G
M,α to AG

M,α.

Given a tuple of nonnegative integers n= (nα), α ∈Δ
QL

0

AM
, let

Σn
γ =

∏
α∈Δ

QL
0

AM

(
AG,L

M,α

)nα

(Σγ) . (4.7)

It is easy to see that the polytopes EQ(Π) can be made by iterating this process. For

α ∈ Δ
QL

0

AM
, let 1α be the tuple taking value 1 at α and 0 otherwhere. By Remark 3.2,

the Arthur–Kottwitz reduction works for the complement Xγ

(
Σ

n+1α
γ

)∖
Xγ

(
Σ

n
γ

)
. The

process is completely the same as explained in §3.3, so we do not repeat it here. The

resulting strata are iterated affine fibrations over truncated affine Springer fibers of

the form X L,ν′

γ

(
Σ

L,(n′)
γ

)
, L ∈ L(M),ν′ ∈ ΛL. Iterating this process, Xγ

(
Σ

n
γ

)
can be

decomposed as a disjoint union of locally closed subschemes, which are iterated affine
fibrations over FL,M,μ

γ , L∈L(M),μ∈ΛL. In particular, counting points on ΛHM
∖
Xγ

(
Σ

n
γ

)
can be reduced to counting points on ΛHM

∖
FL,M,μ
γ , which can be further reduced to

counting points on the fundamental domains FL′

γ , L′ ∈ L(M0), as we have explained in

§3.2. This process applies to counting points on ΛHM
∖
X ν0

γ (EQ(Π)) . By equation (4.6),

it gives an expression of
∣∣(ΛHM

∖
tX ν0

γ (Π)
)
(Fq)

∣∣ in terms of
∣∣FL

γ (Fq)
∣∣, L ∈ L(M0).

4.3. Application to Arthur’s weighted orbital integral

By Theorem 2.8 and Proposition 4.3, Arthur’s weighted orbital integral JM (γ) calculates

essentially
∣∣(ΛHM

∖
X 0,ξ

γ

)
(Fq)

∣∣, as X Gder ∩X ξ
γ is the union of |ΛGder

|-copies of X 0,ξ
γ .

The two approaches in §3 and §4 to calculating
∣∣(ΛHM

∖
X 0

γ (Π)
)
(Fq)

∣∣ give us a recurrence

relation involving
∣∣(ΛHM

∖
FL,M,μ
γ

)
(Fq)

∣∣ and ∣∣∣(ΛHM
∖
X L,0,ξL

γ

)
(Fq)

∣∣∣, for L ∈ L(M),μ ∈
ΛLad . If we are able to solve this recurrence relation, we will get an expression for
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∖
X 0,ξ

γ

)
(Fq)

∣∣ in terms of
∣∣(ΛHM

∖
FL,M,μ
γ

)
(Fq)

∣∣s, which can be further reduced

to counting points on fundamental domains, as explained in §3.2.

5. Calculations for the group GL2

Let G = GL2 and let γ ∈ gl2(F ) be a regular semisimple integral element. Assume that
char(k)> 2 and the splitting field of γ is totally ramified over F. The torus T is isomorphic

either to F××F× or to ResE/FE
×, where E is a separable totally ramified field extension

over F of degree 2. We call elements γ in these cases split and anisotropic, respectively.

5.1. Split elements

We can take T to be the maximal torus of G of the diagonal matrices and γ ∈ t(O) a

regular element. Let

n= val(α12(γ)),

which we call the root valuation of γ. The dimension of the affine Springer fiber Xγ is
known to be

dim(Xγ) = n.

In the remainder of this section, we assume that n ≥ 1, as the case n = 0 reduces to

the group GL1. Recall that we have calculated Fγ in [11]. Let X∗(T ) ∼= Z2 be the usual

identification, set (n,0) ∈ Z2, and let

Sch(n,0) =K

(
εn

1

)
K/K.

We have Fγ
∼= Sch(n,0), and its number of rational points is

|Fγ (Fq)|=
n∑

i=0

qi

by the Bruhat–Tits decomposition of Sch(n,0). As ΛPGL2
=Z/2, Fγ has only one variant

F 1
γ ; we can calculate its number of rational points to be

F 1
γ (Fq) =

n−1∑
i=0

qi.

Set a ∈N and let Π be the positive (G,T )-orthogonal family defined by

λw(Π) = λw (Σγ)+w (aα∨
12), ∀w ∈W.

Assume that a � 0. Then Π is sufficiently regular in the sense of §4.2. We can easily

calculate

Q0
γ(a) :=

∣∣X 0
γ (Π)(Fq)

∣∣= n∑
i=0

qi+2qna,
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by the Arthur–Kottwitz reduction. We see that Q0
γ(a) is polynomial in a. By Theorem

4.8, we have ∣∣mX 0
γ (Π)(Fq)

∣∣= ∣∣X 0,ξ
γ (Fq)

∣∣+[2a− (n+1)]qn.

The tail is the disjoint union of two fundamental domains, so its number of rational points
is ∣∣tX 0

γ (Π)(Fq)
∣∣= 2

n∑
i=0

qi.

Because ∣∣X 0
γ (Π)(Fq)

∣∣= ∣∣mX 0
γ (Π)(Fq)

∣∣+ ∣∣tX 0
γ (Π)(Fq)

∣∣,
we get the equation

n∑
i=0

qi+2aqn =
∣∣X 0,ξ

γ (Fq)
∣∣+[2a− (n+1)]qn+2

n∑
i=0

qi.

Solving it, we get

∣∣X 0,ξ
γ (Fq)

∣∣= nqn−
n−1∑
i=0

qi. (5.1)

Now that T (F )1 = T (O) = T (F )1 has volume 1, by Proposition 4.3 we have

Jξ
T (γ) =

∣∣X 0,ξ
γ (Fq)

∣∣= nqn−
n−1∑
i=0

qi.

On the other hand, we can use equation (2.4) to easily calculate the orbital integral

IGγ = qn.

Combined with Theorem 2.8, the foregoing calculations can be summarized as follows:

Theorem 5.1. Let γ ∈ gl2(F ) be a regular semisimple integral element of root valuation
n. It has orbital integral IGγ = qn. The number of rational points on X 0

γ (Π) is

∣∣X 0
γ (Π)(Fq)

∣∣= n∑
i=0

qi+2aqn,

and Arthur’s weighted orbital integral JT (γ) equals

JT (γ) = vol
(
a
SL2

TSL2

/
X∗ (TSL2

)
)
·
[
nqn−

n−1∑
i=0

qi

]
.

5.2. Anisotropic elements

In this case, E = Fq((ε
1
2 )). Suppose that γ = a+ bε

1
2 under the isomorphism ZG(F )(γ)∼=

ResE/FE
×, with a,b ∈ O. Under the basis

{
ε

1
2 ,1
}

of E over Fq((ε)), the element γ is of
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the form

γ =

[
a b

bε a

]
.

It is clear that the affine Springer fibers Xγ and X−a+γ are isomorphic, so we can assume
that a= 0. Let b= b0ε

n, b0 ∈ O×. We can write

γ =

[
b0ε

n

b0ε
n+1

]
. (5.2)

Put in this form, it has been shown by Goresky, Kottwitz, and MacPherson [16] that Xγ

admits an affine paving which is induced by the standard Bruhat–Tits decomposition of

the affine Grassmannian. More precisely, let I be the standard Iwahori subgroup – that
is, it is the preimage of B0 under the reduction G(O)→G. Then

Xγ =
⊔

(a1,a2)∈Z2

Xγ ∩ I

(
εa1

εa2

)
K/K,

and each intersection, denoted Sa, is isomorphic to a standard affine space. We calculate

that Sa is not empty if and only if

−(n+1)≤ a1−a2 ≤ n,

and that

dim(Sa) =

{
a1−a2 if a1 ≥ a2,

a2−a1−1 if a1 < a2.

Notice that this is also the dimension of I

(
εa1

εa2

)
K/K, so they must be the same.

Summarizing the foregoing calculations, and noting that T (F )1 = T (O) = T (F )1 has

volume 1, we get the following:

Theorem 5.2. Let γ be matrix (5.2). For (a1,a2) ∈ Z2, we have

Xγ ∩ I

(
εa1

εa2

)
K/K =

⎧⎪⎨⎪⎩I

(
εa1

εa2

)
K/K if − (n+1)≤ a1−a2 ≤ n,

∅ if not.

As a corollary, we have

JG(γ) = IGγ = |Fγ (Fq)|=
n∑

i=0

qi.

6. Calculations for GL3-split case

Let G = GL3 and let γ ∈ gl3(F ) be a regular semisimple integral element. Assume that

char(k)> 3 and the splitting field of γ is totally ramified over F. The torus T is isomorphic

to either F××F××F× or F××ResE2/FE
×
2 or ResE3/FE

×
3 , where E2,E3 are separable
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totally ramified field extensions over F of degree 2 and 3, respectively. We call elements
γ in these cases split, mixed, and anisotropic respectively. Notice that in all these cases,

T (F )1 = T (O) = T (F )1 has volume 1; hence by Proposition 4.3 we have

Jξ
M (γ) =

∣∣X 0,ξ
γ (Fq)

∣∣,
and so

JM (γ) = vol
(
a
SL3

MSL3

/
X∗ (MSL3

)
)
·
∣∣X 0,ξ

γ (Fq)
∣∣

by Theorem 2.8 and Remark 2.3.

In this section, we restrict ourselves to the split case. After conjugation, we take T to be

the maximal torus of G of the diagonal matrices. Then M0 = T and the other proper Levi

subgroups in L(T ) can be parametrized as follows: for a nonempty subset I � {1,2,3}, let
PI be the parabolic subgroup of G which stabilizes the flag

3⊕
i=1

Fqei �
⊕
i/∈I

Fqei � ∅.

Let PI =MINI be the standard Levi factorization. We have MI
∼=GL2×GL1. As MI =

MIc , with Ic the complement of I, it is enough to calculate JT (γ) and JM{i}(γ), i= 1,2,3.
Let γ ∈ t(O) be a regular element. As we show in the appendix of [9], up to conjugation

by the Weyl group we can suppose that

val(α12(γ))≤ val(α23(γ)), val(α13(γ)) = val(α12(γ)).

In this case, γ is said to be in minimal form, and we call

(n1,n2) =
(
val(α12(γ)),val(α23(γ))

)
the root valuation of γ. The dimension of the affine Springer fiber Xγ is known to be

dim(Xγ) = 2n1+n2.

In the remainder of the section, we assume that n1 ≥ 1, as the case n1 = 0 reduces to

the group GL2. Recall that we have calculated the Poincaré polynomial of Fγ in [11].

Proposition 6.1. The fundamental domain Fγ admits an affine paving. Its Poincaré

polynomial, which depends only on the root valuation (n1,n2), is

P(n1,n2)(t) =

n1∑
i=1

i
(
t4i−2+ t4i−4

)
+

n1+n2−1∑
i=2n1

(2n1+1)t2i

+

2n1+n2−1∑
i=n1+n2

4(2n1+n2− i)t2i+ t4n1+2n2 .

In particular, |Fγ (Fq)|= P(n1,n2)

(
q1/2

)
.
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6.1. Calculation of JT (γ)

Set (a1,a2) ∈N2, and let Π be the positive (G,T )-orthogonal family defined by

λw(Π) = λw (Σγ)+w
2∑

i=1

aiα
∨
i , ∀w ∈W.

Assume that Π is sufficiently regular in the sense of §4.2, which means that a1,a2 � 0

and

2a1−a2 > 0, 2a2−a1 > 0.

We will calculate

Q0
γ(a1,a2) :=

∣∣X 0
γ (Π)(Fq)

∣∣
following the two approaches that we have explained, and draw conclusions on Arthur’s

weighted orbital integral.

6.1.1. Counting points by Arthur–Kottwitz reduction. We will work out each

term in Corollary 3.7. Look at the summands indexed by the Borel subgroups. Each
stratum contributes q2n1+n2 , so it remains to count the number of lattice points∑

B∈P(T )

∣∣Λ0
T ∩RB ∩Π

∣∣= 6
∣∣Λ0

T ∩RB0
∩Π
∣∣,

where the equality is due to the symmetry of Π with respect to Σγ . We identify

Λ0
T
∼=
{
(m1,m2,m3) ∈ Z3 |m1+m2+m3 = 0

}
in the usual way. Let aGB0

=
{
a ∈ aGT | α1(a)≥ 0, α2(a)≥ 0

}
, and let

R0 =
{
a ∈ a

G
B0

|�1(a)≤ a1−1, �2(a)≤ a2−1
}
.

Up to a suitable translation, we have∣∣Λ0
T ∩RB0

∩Π
∣∣= ∣∣Λ0

T ∩R0

∣∣ .
We can express it as the difference of two lattice point-counting problems. Let

R1 =
{
a ∈ a

G
B0

|�1(a)≤ a1−1, �2(a)≤ 2(a1−1)
}
,

R2 =
{
a ∈ a

G
B0

|�1(a)≤ a1−1, �2(a)≥ a2
}
.

Then we have ∣∣Λ0
T ∩R0

∣∣= ∣∣Λ0
T ∩R1

∣∣− ∣∣Λ0
T ∩R2

∣∣ .
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We count
∣∣Λ0

T ∩R1

∣∣ as follows:
∣∣Λ0

T ∩R1

∣∣= +∞∑
n=0

∣∣R1∩
{
μ ∈ Λ0

T |�1(μ) = n
}∣∣

=

� a1
2 �∑

i=1

[(3i−2)+(3i−1)]+
1− (−1)a1

2

(
1+

3(a1−1)

2

)
= 3
⌊a1
2

⌋2
+

1

4
(1− (−1)a1)(3a1−1),

where �x� means the largest integer that is less than or equal to x. Similarly, we have

∣∣Λ0
T ∩R2

∣∣= −∞∑
n=2(a1−1)

∣∣R2∩
{
μ ∈ Λ0

T |�2(μ) = n
}∣∣

=

� 2a1−a2−1
2 �∑

i=1

(i+ i)+
1+(−1)2a1−a2

2
· 2a1−a2

2

=

⌊
2a1−a2−1

2

⌋(⌊
2a1−a2−1

2

⌋
+1

)
+

1

4

(
1+(−1)2a1−a2

)
(2a1−a2).

In summary, the summands in Corollary 3.7 indexed by the Borel subgroups contribute

6q2n1+n2

[
3
⌊a1
2

⌋2
−
⌊
2a1−a2−1

2

⌋(⌊
2a1−a2−1

2

⌋
+1

)
+
1

4
(1− (−1)a1)(3a1−1)− 1

4

(
1+(−1)2a1−a2

)
(2a1−a2)

]
. (6.1)

Now we calculate the contributions of the summands indexed by the maximal parabolic
subgroups. They are parametrized at the beginning of the section by nonempty subsets

I � {1,2,3}. For μ ∈ ΛMad
I

∼= Z/2, let qμI =
∣∣FMI,ν

γ (Fq)
∣∣, for any ν ∈ ΛMI

which projects

to μ ∈ ΛMad
I
. Let αI be the unique element in ΦB0∩MI

(MI,T ). A simple calculation with
the affine Springer fibers for the group GL2 shows that

q
(0)
I =

val(αI(γ))∑
i=0

qi, q
(1)
I =

val(αI(γ))−1∑
i=0

qi.

For I = {i}, i= 1,2,3, it is easy to see that∣∣Λ0
MI

∩πMI
(RPI

)∩πMI
(Π)∩ c−1

M (0)
∣∣= ⌊a1

2

⌋
,∣∣Λ0

MI
∩πMI

(RPI
)∩πMI

(Π)∩ c−1
M (1)

∣∣= ⌊a1+1

2

⌋
.
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The summands indexed by PI in Corollary 3.7 with |I|= 1 contribute in total⌊a1
2

⌋(
q2n1

n2∑
i=0

qi+2qn1+n2

n1∑
i=0

qi

)
+

⌊
a1+1

2

⌋(
q2n1

n2−1∑
i=0

qi+2qn1+n2

n1−1∑
i=0

qi

)
. (6.2)

Similarly, the summands indexed by PI with |I|= 2 contribute in total⌊a2
2

⌋(
q2n1

n2∑
i=0

qi+2qn1+n2

n1∑
i=0

qi

)
+

⌊
a2+1

2

⌋(
q2n1

n2−1∑
i=0

qi+2qn1+n2

n1−1∑
i=0

qi

)
. (6.3)

Summing up the contributions from formulas (6.1), (6.2), and (6.3), we obtain the
following:

Proposition 6.2. We have

Q0
γ(a1,a2) =

n1∑
i=1

i
(
q2i−1+ q2i−2

)
+

n1+n2−1∑
i=2n1

(2n1+1)qi

+

2n1+n2−1∑
i=n1+n2

4(2n1+n2− i)qi+ q2n1+n2

+6q2n1+n2

[
3
⌊a1
2

⌋2
−
⌊
2a1−a2−1

2

⌋(⌊
2a1−a2−1

2

⌋
+1

)
+

1

4
(1− (−1)a1)(3a1−1)− 1

4

(
1+(−1)2a1−a2

)
(2a1−a2)

]
+
(⌊a1

2

⌋
+
⌊a2
2

⌋)(
q2n1

n2∑
i=0

qi+2qn1+n2

n1∑
i=0

qi

)

+

(⌊
a1+1

2

⌋
+

⌊
a2+1

2

⌋)(
q2n1

n2−1∑
i=0

qi+2qn1+n2

n1−1∑
i=0

qi

)
.

In particular, it depends quasi-polynomially on (a1,a2).

6.1.2. Counting points by Harder–Narasimhan reduction. We begin by count-

ing points on the main body; we need to work out each term in Theorem 4.8. For L= T ,

it is easy to see that
∣∣∣X T,0,ξT

γ (Fq)
∣∣∣ = 1, and we need to count the number of lattice

points in Λ0
T ∩Π0. Notice that for this we can shrink Π0 to the convex hull of Λ0

T ∩Π0.

We conserve the notation Π0 for the shrunken polytope. In [11, §6], we calculate Ec(x0)
for a particular choice of regular point x0 ∈ X reg

γ ; we can adapt the result to our current

setting. Let (σ1σ2σ3) be the permutation sending (123) to (σ1σ2σ3). The vertices of Σγ

are

λ123 (Σγ) = (0,0,0), λ321 (Σγ) = (−2n1,n1−n2,n1+n2),

λ213 (Σγ) = (−n1,n1,0), λ312 (Σγ) = (−n1,−n2,n1+n2),

λ132 (Σγ) = (0,−n2,n2), λ231 (Σγ) = (−2n1,n1,n1).
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Π0

T1
T2

T3

Figure 4. Completing the hexagon to a triangle.

The vertices of Π0 can be calculated to be

λ123(Π0) = (a1−2n1−1,a2−a1+n1−n2,−a2+n1+n2+1),

λ321(Π0) = (−a2+1,a2−a1,a1−1),

λ213(Π0) = (a2−a1−n1,a1−n2−1,−a2+n1+n2+1),

λ312(Π0) = (a2−a1−n1,−a2+n1+1,a1−1),

λ132(Π0) = (a1−2n1−1,−a2+n1+1,a2−a1+n1),

λ231(Π0) = (−a2+1,a1−n2−1,a2−a1+n2).

We will count the lattice points in Π0 indirectly. We complete the hexagon Π0 to a triangle
T0, whose vertices are

λ123(T0) = λ132(T0) = (2a2−2n1−n2−2,−a2+n1+1,−a2+n1+n2+1),

λ321(T0) = λ312(T0) = (−a2+1,−a2+n1+1,2a2−n1−2),

λ213(T0) = λ231(T0) = (−a2+1,2a2−2−n1−n2,−a2+n1+n2+1).

Let T1 ∪T2 ∪T3 be the complement of Π0 in T0, as shown in Figure 4. Notice that the

Tis do not contain their common boundary with Π0, so

∣∣Λ0
T ∩Π0

∣∣= ∣∣Λ0
T ∩T0

∣∣− 3∑
i=1

∣∣Λ0
T ∩Ti

∣∣ .
The right-hand side is much easier to calculate.

The length of the edges of T0 is 3a2−3−2n1−n2, so

∣∣Λ0
T ∩T0

∣∣= 3a2−3−2n1−n2+1∑
i=1

i

=
1

2
(3a2−2−2n1−n2)(3a2−1−2n1−n2).
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The length of the edges of T1 is 2a2−a1−n1−1. As we do not count the lattice points
on the common boundary of T1 and Π0, we have

∣∣Λ0
T ∩T1

∣∣= 2a2−a1−n1−1∑
i=1

i

=
1

2
(2a2−a1−n1−1)(2a2−a1−n1).

Similarly, the length of the edges of T2 is 2a2−a1−n2−1 and we have∣∣Λ0
T ∩T2

∣∣= 1

2
(2a2−a1−n2−1)(2a2−a1−n2).

The triangle T3 is of the same size as T1, so∣∣Λ0
T ∩T3

∣∣= 1

2
(2a2−a1−n1−1)(2a2−a1−n1).

Finally,

∣∣Λ0
T ∩Π0

∣∣= ∣∣Λ0
T ∩T0

∣∣− 3∑
i=1

∣∣Λ0
T ∩Ti

∣∣ (6.4)

=
1

2
(3a2−2−2n1−n2)(3a2−1−2n1−n2)

− (2a2−a1−n1−1)(2a2−a1−n1)

− 1

2
(2a2−a1−n2−1)(2a2−a1−n2).

We go on to calculate
∣∣Λ0

L∩πL(Π0)
∣∣ for the other Levi subgroups L ∈ L(T ). Let dL be

the distance between the facets ΠQ
0 and ΠQ−

0 , where P(L) = {Q,Q−}. It is easy to see
that ∣∣Λ0

L∩πL(Π0)
∣∣= dL+1.

The set L(T )\{T,G} consists of three elements, Levi factors M{i} of the parabolic
subgroups P{i}, i = 1,2,3. Using the explicit expression of the vertices of Π0, we can

calculate ∣∣∣Λ0
M{1}

∩πM{1}(Π0)
∣∣∣= dM{1} +1 = a1+a2−2n1−1, (6.5)

∣∣∣Λ0
M{2}

∩πM{2}(Π0)
∣∣∣= dM{2} +1 = a1+a2−n1−n2−1, (6.6)

∣∣∣Λ0
M{3}

∩πM{3}(Π0)
∣∣∣= dM{3} +1 = a1+a2−n1−n2−1. (6.7)

Now that
∣∣∣X L,0,ξL

γ (Fq)
∣∣∣ has been calculated in equation (5.1), we can insert equations

(6.4)–(6.7) into the equation in Theorem 4.8 to get the following:
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Proposition 6.3. The number of rational points on the main body is

∣∣mX 0
γ (Π)(Fq)

∣∣= ∣∣X 0,ξ
γ (Fq)

∣∣+ q2n1+n2

[
1

2
(3a2−2−2n1−n2)(3a2−1−2n1−n2)

− (2a2−a1−n1−1)(2a2−a1−n1)

−1

2
(2a2−a1−n2−1)(2a2−a1−n2)

]
+ q2n1(a1+a2−2n1−1)

(
n2q

n2 −
n2−1∑
i=0

qi

)

+2qn1+n2(a1+a2−n1−n2−1)

(
n1q

n1 −
n1−1∑
i=0

qi

)
.

Now we proceed to counting points on the tail. To begin with, we write down the

vertices of Π:

λ123(Π) = (a1,a2−a1,−a2),

λ321(Π) = (−a2−2n1,a2−a1+n1−n2,a1+n1+n2),

λ213(Π) = (a2−a1−n1,a1+n1,−a2),

λ312(Π) = (a2−a1−n1,−a2−n2,a1+n1+n2),

λ132(Π) = (a1,−a2−n2,a2−a1+n2),

λ231(Π) = (−a2−2n1,a1+n1,a2−a1+n1).

For nonempty subsets I � {1,2,3}, we simplify the notation EPI
(Π) to EI(Π). Using the

coordinates of vertices of Π, we can calculate the lengths of the edges of Π and find the

following expression for EI(Π): when |I|= 1, we have

EI(Π) =
(
AG,MI

αI

)2a2−a1
(Σγ) . (6.8)

When |I|= 2, we have

EI(Π) =
(
AG,MI

αI

)2a1−a2
(Σγ) . (6.9)

As explained before, we can use the Arthur–Kottwitz reduction inductively to count the

number of rational points on X 0
γ (EI(Π)). We give the details for I = {3}; the others can

be calculated in the same way.

Applying Arthur–Kottwitz reduction to pass from
(
A

G,M{3}
α{3}

)a
(Σγ) to

(
A

G,M{3}
α{3}

)a+1

(Σγ),

the picture is similar to Figure 2. We obtain
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γ

((
A

G,M{3}
α{3}

)a+1

(Σγ)

)
(Fq)

∣∣∣∣= ∣∣∣X 0
γ

((
A

G,M{3}
α{3}

)a
(Σγ)

)
(Fq)

∣∣∣+ q2n1

∣∣∣FM{1},1
γ (Fq)

∣∣∣
+ qn1+n2

∣∣∣FM{13},1
γ (Fq)

∣∣∣+ q2n1+n2

=
∣∣∣X 0

γ

((
A

G,M{3}
α{3}

)a
(Σγ)

)
(Fq)

∣∣∣+ q2n1

n2−1∑
i=0

qi

+ qn1+n2

n1−1∑
i=0

qi+ q2n1+n2 .

From this relation and equation (6.8), we deduce that

∣∣X 0
γ

(
E{3}(Π)

)
(Fq)

∣∣= |Fγ (Fq)|+(2a2−a1)

(
q2n1

n2−1∑
i=0

qi (6.10)

+qn1+n2

n1−1∑
i=0

qi+ q2n1+n2

)
.

Similarly, we have

∣∣X 0
γ

(
E{1}(Π)

)
(Fq)

∣∣= |Fγ (Fq)|+(2a2−a1)

(
2qn1+n2

n1−1∑
i=0

qi+ q2n1+n2

)
, (6.11)

∣∣X 0
γ

(
E{2}(Π)

)
(Fq)

∣∣= |Fγ (Fq)|+(2a2−a1)

(
q2n1

n2−1∑
i=0

qi (6.12)

+qn1+n2

n1−1∑
i=0

qi+ q2n1+n2

)
,

∣∣X 0
γ

(
E{12}(Π)

)
(Fq)

∣∣= |Fγ (Fq)|+(2a1−a2)

(
q2n1

n2−1∑
i=0

qi (6.13)

+qn1+n2

n1−1∑
i=0

qi+ q2n1+n2

)
,

∣∣X 0
γ

(
E{23}(Π)

)
(Fq)

∣∣= |Fγ (Fq)|+(2a1−a2)

(
2qn1+n2

n1−1∑
i=0

qi+ q2n1+n2

)
, (6.14)

∣∣X 0
γ

(
E{13}(Π)

)
(Fq)

∣∣= |Fγ (Fq)|+(2a1−a2)

(
q2n1

n2−1∑
i=0

qi

+qn1+n2

n1−1∑
i=0

qi+ q2n1+n2

)
. (6.15)
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Inserting equations (6.10)–(6.15) into equation (4.6), we get the following:

Proposition 6.4. The number of rational points on the tail equals

∣∣tX 0
γ (Π)(Fq)

∣∣= (a1+a2)

(
2q2n1

n2−1∑
i=0

qi+4qn1+n2

n1−1∑
i=0

qi+3q2n1+n2

)
.

The sum of results in Propositions 6.3 and 6.4 gives us another expression for Q0
γ(a1,a2):

Corollary 6.5.

Q0
γ(a1,a2) =

∣∣X 0,ξ
γ (Fq)

∣∣+ q2n1+n2

[
1

2
(3a2−2−2n1−n2)(3a2−1−2n1−n2)

− (2a2−a1−n1−1)(2a2−a1−n1)

−1

2
(2a2−a1−n2−1)(2a2−a1−n2)

]
+ q2n1(a1+a2−2n1−1)

(
n2q

n2 −
n2−1∑
i=0

qi

)

+2qn1+n2(a1+a2−n1−n2−1)

(
n1q

n1 −
n1−1∑
i=0

qi

)

+(a1+a2)

(
2q2n1

n2−1∑
i=0

qi+4qn1+n2

n1−1∑
i=0

qi+3q2n1+n2

)
.

In particular, this shows that Q0
γ(a1,a2) depends polynomially on (a1,a2) ∈N2. As a

corollary, the expression for Q0
γ(a1,a2) in Proposition 6.2 is also a polynomial in (a1,a2),

although it does not seem to be so.

6.1.3. Arthur’s weighted orbital integral. Now we can compare the two expres-

sions in Proposition 6.2 and Corollary 6.5 for Q0
γ(a1,a2). Look at their constant terms

Q0
γ(0,0). As J

ξ
T (γ) =

∣∣X 0,ξ
γ (Fq)

∣∣ in this case, we obtain the following:

Theorem 6.6. Chaudouard and Laumon’s weighted orbital integral for γ equals

Jξ
T (γ) =

n1∑
i=1

i
(
q2i−1+ q2i−2

)
+

2n1+n2−1∑
i=n1+n2

(4n1+2n2−4i−3)qi+
(
n2
1+2n1n2

)
q2n1+n2 .

By Theorem 2.8 and Remark 2.3, we get Arthur’s weighted orbital integral as well. For
the orbital integral IGγ , as T is split, we can calculate it easily by equation (2.4):

IGγ = q2n1+n2 .
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6.2. Calculation of JM1
(γ)

We parametrize the Levi groups as before, with the further simplification Mi := M{i}.
Let γ = diag(γ1,γ2,γ3) and γ′ = diag(γ1,γ3,γ2); notice that

JM2
(γ) = JM3

(γ′).

Moreover, Xγ and Xγ′ have the same geometry, as they have the same root valuation
(indeed, they have the same affine paving), which implies that

JM2
(γ) = JM3

(γ′) = JM3
(γ).

Hence it is enough to calculate JM1
(γ) and JM3

(γ). Notice that M1 corresponds to the

root α2 and M3 to the root α1.

As usual, we identify X∗(T ) ∼= Z3 and aGT with the hyperplane x1 + x2 + x3 = 0 of
aT = X∗(T )⊗R ∼= R3. The subspace a

M1

T ⊂ aGT becomes the line {(0,x,−x)}, and the

subspace aGM1
⊂ aGT becomes {(−x,x/2,x/2)}. The lattice Λ0

M1
is identified with Z by the

mapping

Λ0
M1

→ Z : (−(a+ b),a,b) �→ a+ b.

Its inclusion in aGM1
is described by the mapping

Λ0
M1

→ aGM1
: (−(a+ b),a,b) �→ (−(a+ b),(a+ b)/2,(a+ b)/2).

We identify aGM1
with R by identifying (−x,x/2,x/2) with x ; the inclusion Λ0

M1
⊂ aGM1

becomes the natural embedding Z ⊂ R. On the other hand, the discrete free abelian

group Λ∼=X∗(T ) is naturally identified with Z3, and the morphism HM1
: Λ→ aM1

can

be calculated to be

HM1
(a1,a2,a3) =

(
a1,

a2+a3
2

,
a2+a3

2

)
.

Hence ΛHM1 is freely generated by the element diag
(
1,ε,ε−1

)
.

According to Proposition 3.1, we can take ΣG,M1
γ to be the interval [0,2n1] in aGM1

∼=R.

For N ∈N, N � 0, let ΠN be the interval [−N,2n1+N ], regarded as a (G,M1)-orthogonal
family in aGM1

. We are going to calculate
(
ΛHM1

∖
Xγ(ΠN )

)
(Fq) by the two approaches

we have described.

In the Arthur–Kottwitz approach, we need to calculate∣∣(ΛHM1

∖
FG,M1
γ

)
(Fq)

∣∣ and
∣∣(ΛHM1

∖
FM1,M1
γ

)
(Fq)

∣∣ .
Combining Proposition 3.8 and Corollary 3.10, we get∣∣(ΛHM1

∖
FG,M1
γ

)
(Fq)

∣∣= ∣∣FG,M1
γ,μ (Fq)

∣∣= q2n1+n2 +2qn1+n2
(
1+ q+ · · ·+ qn1−1

)
.

For the second calculation, since FM1,M1
γ = X

M1,(0)
γ and ΛHM1 = ΛM1 , we have∣∣(ΛHM1

∖
FM1,M1
γ

)
(Fq)

∣∣= ∣∣(ΛM1
∖
X M1,0

γ

)
(Fq)

∣∣= qn2 .
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The reduction process is illustrated by a figure similar to Figure 2. By Corollary 3.7,
we have the following:

Proposition 6.7.∣∣(ΛHM1

∖
X 0

γ (ΠN )
)
(Fq)

∣∣= ∣∣(ΛHM1

∖
FG,M1
γ

)
(Fq)

∣∣+2Nq2n1
∣∣(ΛHM1

∖
FM1,M1
γ

)
(Fq)

∣∣
= q2n1+n2 +2qn1+n2

(
1+ q+ · · ·+ qn1−1

)
+2Nq2n1+n2

= (2N +1)q2n1+n2 +2qn1+n2
(
1+ q+ · · ·+ qn1−1

)
.

In the Harder–Narasimhan approach, we begin with counting points on the tail. By

construction,∣∣(ΛHM1

∖
tX 0

γ (ΠN )
)
(Fq)

∣∣= 2
∣∣(ΛHM1

∖
FG,M1
γ

)
(Fq)

∣∣
= 2
[
q2n1+n2 +2qn1+n2

(
1+ q+ · · ·+ qn1−1

)]
. (6.16)

Then we calculate∣∣∣(ΛHM1

∖
X M1,0,ξ

M1

γ

)
(Fq)

∣∣∣= ∣∣(ΛHM1

∖
X M1,0

γ

)
(Fq)

∣∣= qn2 .

By Theorem 4.8, this implies∣∣(ΛHM1

∖
mX 0

γ (ΠN )
)
(Fq)

∣∣= ∣∣(ΛHM1

∖
X ξ,0

γ

)
(Fq)

∣∣+[2N − (2n1+1)] · q2n1

·
∣∣∣(ΛHM1

∖
X M1,0,ξ

M1

γ

)
(Fq)

∣∣∣
=
∣∣(ΛHM1

∖
X ξ,0

γ

)
(Fq)

∣∣+[2N − (2n1+1)] · q2n1+n2 . (6.17)

Combining equations (6.16) and (6.17), we obtain the following:

Proposition 6.8.∣∣(ΛHM1

∖
X 0

γ (ΠN )
)
(Fq)

∣∣= ∣∣(ΛHM1

∖
X ξ,0

γ

)
(Fq)

∣∣+[2N − (2n1+1)] · q2n1+n2

+2
[
q2n1+n2 +2qn1+n2

(
1+ q+ · · ·+ qn1−1

)]
.

Comparing Propositions 6.7 and 6.8, we get the following:

Proposition 6.9.∣∣(ΛHM1

∖
X ξ,0

γ

)
(Fq)

∣∣= 2n1q
2n1+n2 −2qn1+n2

(
1+ q+ · · ·+ qn1−1

)
.

It remains to calculate the volume factor voldt
(
ΛHM1

∖
T (F )1M1

)
. By equation (2.5),

it equals 1 because S = T and the morphism HM1
: X∗(T ) → X∗(M) is surjective. The

foregoing calculations can be summarized as follows:

Theorem 6.10. We have

Jξ
M1

(γ) =
∣∣(ΛHM1

∖
X ξ,0

γ

)
(Fq)

∣∣= 2n1q
2n1+n2 −2qn1+n2

(
1+ q+ · · ·+ qn1−1

)
.
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6.3. Calculation of JM3
(γ)

We make identifications as before. The subspace a
M3

T ⊂ aGT becomes the line {(x,−x,0)},
and the subspace aGM3

⊂ aGT becomes {(x/2,x/2,−x)}; they are identified withR as before.
The lattice Λ0

M3
is identified with Z by the mapping

Λ0
M3

→ Z : (a,b,− (a+ b)) �→ a+ b.

The inclusion Λ0
M3

⊂ aGM3
becomes again the natural embedding Z ⊂ R. Similarly, the

group ΛHM3 is freely generated by the element diag
(
ε,ε−1,1

)
.

By Proposition 3.1, we can take ΣG,M3
γ to be the interval [0,n1+n2] in aGM3

∼=R. For
N ∈N, N � 0, let ΠN be the interval [−N,n1+n2+N ], regarded as a (G,M3)-orthogonal

family in aGM3
. We calculate

(
ΛHM3

∖
Xγ(ΠN )

)
(Fq) in two ways as before.

Using similar calculations as before, we get∣∣(ΛHM3

∖
FM3,M3
γ

)
(Fq)

∣∣= ∣∣(ΛM3
∖
X M3,0

γ

)
(Fq)

∣∣= qn1

and ∣∣(ΛHM3

∖
FG,M3
γ

)
(Fq)

∣∣= ∣∣FG,M3
γ,μ (Fq)

∣∣= q2n1+n2 + qn1+n2
(
1+ q+ · · ·+ qn1−1

)
+ q2n1

(
1+ q+ · · ·+ qn2−1

)
.

With Arthur–Kottwitz reduction, we obtain the following:

Proposition 6.11.∣∣(ΛHM3

∖
X 0

γ (ΠN )
)
(Fq)

∣∣= ∣∣(ΛHM3

∖
FG,M3
γ

)
(Fq)

∣∣+2Nqn1+n2
∣∣(ΛHM3

∖
FM3,M3
γ

)
(Fq)

∣∣
= q2n1+n2 + qn1+n2

(
1+ q+ · · ·+ qn1−1

)
+ q2n1

(
1+ q+ · · ·+ qn2−1

)
+2Nq2n1+n2

= (2N +1)q2n1+n2 + qn1+n2
(
1+ q+ · · ·+ qn1−1

)
+ q2n1

(
1+ q+ · · ·+ qn2−1

)
.

For the Harder–Narasimhan reduction, we count the points on the tail∣∣(ΛHM3

∖
tX 0

γ (ΠN )
)
(Fq)

∣∣= 2
∣∣(ΛHM3

∖
FG,M3
γ

)
(Fq)

∣∣
= 2
[
q2n1+n2 + qn1+n2

(
1+ q+ · · ·+ qn1−1

)
+q2n1

(
1+ q+ · · ·+ qn2−1

)]
and the ξ-stable points∣∣∣(ΛHM3

∖
X M3,0,ξ

M3

γ

)
(Fq)

∣∣∣= ∣∣(ΛHM3

∖
X M3,0

γ

)
(Fq)

∣∣= qn1 .

Hence the points in the main body are∣∣(ΛHM3

∖
mX 0

γ (ΠN )
)
(Fq)

∣∣= ∣∣(ΛHM3

∖
X ξ,0

γ

)
(Fq)

∣∣+[2N − (n1+n2+1)] · qn1+n2

·
∣∣∣(ΛHM3

∖
X M3,0,ξ

M3

γ

)
(Fq)

∣∣∣
=
∣∣(ΛHM3

∖
X ξ,0

γ

)
(Fq)

∣∣+[2N − (n1+n2+1)] · q2n1+n2 .
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Combining them gives us the following:

Proposition 6.12.∣∣(ΛHM3

∖
X 0

γ (ΠN )
)
(Fq)

∣∣= ∣∣(ΛHM3

∖
mX 0

γ (ΠN )
)
(Fq)

∣∣+ ∣∣(ΛHM3

∖
tX 0

γ (ΠN )
)
(Fq)

∣∣
=
∣∣(ΛHM3

∖
X ξ,0

γ

)
(Fq)

∣∣+[2N − (n1+n2+1)] · q2n1+n2

+2
[
q2n1+n2 + qn1+n2

(
1+ q+ · · ·+ qn1−1

)
+q2n1

(
1+ q+ · · ·+ qn2−1

)]
.

Comparing Propositions 6.11 and 6.12, we get the following:

Proposition 6.13.∣∣(ΛHM3

∖
X ξ,0

γ

)
(Fq)

∣∣= (n1+n2)q
2n1+n2 − qn1+n2

(
1+ q+ · · ·+ qn1−1

)
− q2n1

(
1+ q+ · · ·+ qn2−1

)
.

As before, the volume factor voldt
(
ΛHM3

∖
T (F )1M3

)
equals 1, and so we have the

following:

Theorem 6.14. We have

Jξ
M3

(γ) =
∣∣(ΛHM3

∖
X ξ,0

γ

)
(Fq)

∣∣= (n1+n2)q
2n1+n2 − qn1+n2

(
1+ q+ · · ·+ qn1−1

)
− q2n1

(
1+ q+ · · ·+ qn2−1

)
.

7. Calculations for GL3-mixed case

Let G = GL3 and let γ ∈ gl3(F ) be a regular semisimple integral element. Assume that

T ∼= F× ×ResE2/FE
×
2 , with E2 a separable totally ramified field extension over F of

degree 2. As before, we can reduce to the case in which γ is a matrix of the form

γ =

⎡⎣a b0ε
n

b0ε
n+1

⎤⎦, (7.1)

with a ∈ O,b0 ∈ O×. Let m= val(a).

Let P be the parabolic subgroup P = B0∪B0s2B0, and let P =MN be the standard

Levi decomposition. We identify X∗(A) ∼= Z3 in the usual way. This gives us an
identification ΛM

∼= Z2 and hence ΛM ⊗R ∼= R2. We also identify aGM with the line

x+y = 0 in R2, which can be further identified with R by taking the coordinate x. Under

these identifications, the moment polytope Σγ of the fundamental domain Fγ can be
taken to be the closed interval

Σγ = [−n(γ,P,P−),0]⊂R∼= aGM .

To simplify the notation, we abbreviate n(γ,P,P−) to nγ . We have

nγ =min{2m,2n+1}.
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Figure 5. The (G,A)-orthogonal family Πn1,n2 and its extension to a triangle.

By definition, we can take

Fγ = Xγ ∩X n+1 (Σγ) .

This can be refined a little bit. For (n1,n2) ∈ N2, let Πn1,n2
be the positive (G,A)-

orthogonal family as indicated in Figure 5 (excluding the dashed part).

Consider the positive (G,A)-orthogonal families Πnγ,n+1. For i ∈ Z, −nγ ≤ i≤ 0, let

Πi
nγ,n+1 =Πnγ,n+1∩π−1

M (i),

where i ∈Z is considered as an element of aGM by the identification R∼= aGM . By Theorem
5.2, we have

X M,(i,n+1−i)
γ ⊂ X M,(i,n+1−i)

(
Πi

nγ,n+1

)
, for i=−nγ, . . . ,0.

This implies that

Fγ = Xγ ∩X n+1 (Σγ) = Xγ ∩X n+1
(
Πnγ,n+1

)
.

It is possible, but quite hard, to construct an affine paving of Fγ and count the
number of rational points with it. Instead, we take an indirect route. Let Δnγ,n+1 be

the completion of Πnγ,n+1 into a triangle, as indicated in Figure 5. We can count the

number of rational points on X n+1
γ

(
Δnγ,n+1

)
quite easily, using the affine pavings in

[9, Proposition 3.6]. The complementary X n+1
γ

(
Δnγ,n+1

)∖
Fγ can be treated by the

Arthur–Kottwitz reduction. Taking their difference, we find |Fγ (Fq)|.
We calculate the number of rational points on X n+1

γ

(
Δnγ,n+1

)
. For N ∈N, let

IN =Ad
(
diag

(
εN,1,1

))
I.

According to [9, Proposition 3.6], when N � 0, we have an affine paving

X n+1
γ

(
Δnγ,n+1

)
=

⋃
εa∈X n+1

γ (Δnγ,n+1)
A

X n+1
γ

(
Δnγ,n+1

)
∩ IN εaK/K.
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Figure 6. Counting points in the nonequivalued case.

Figure 7. Counting points in the equivalued case.

The dimension of the affine paving can be calculated using [9, Lemma 3.1], together with
Theorem 5.2. When m≤ n – that is, γ is not equivalued – the dimension of the paving is

min{a2,m}+min{a3,m}+
{
a2−a3 if 0≤ a2−a3 ≤ n,

a3−a2−1 if 1≤ a3−a2 ≤ n+1.

Otherwise, the intersection is empty. When m ≥ n+1 – that is, γ is equivalued – the
dimension of the paving is

min{a2,n}+min{a3,n+1}+
{
a2−a3 if 0≤ a2−a3 ≤ n,

a3−a2−1 if 1≤ a3−a2 ≤ n+1.

Otherwise, the intersection is empty. We summarize the situation in Figures 6 and 7. The
triangle is cut into four parts by the two long red lines, and the dimension of the fibration

fP restricted to the affine pavings in different parts are given by different formulas. The

two dashed lines bound the region where X M
γ ∩ IN εaK/K is nonempty.
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Proposition 7.1. Let γ be a matrix in the form of equation (7.1). When val(a) =m≤ n,

we have

∣∣X n+1
γ (Δ2m,n+1)(Fq)

∣∣= 2m−1∑
j=0

(⌊
j

2

⌋
+1

)
qj +(2m+n+1)q2m

+

m+n∑
j=2m+1

(4m+n+1− j)qj +

2m+n∑
j=m+n+1

(
3(2m+n− j)+1

)
qj

+ q2m
n∑

j=0

qj .

In the summation, we use the convention that a summand is empty if its subscript is
greater than its superscript.

Proof. Summing along the dotted blue lines in the four regions of Figure 6, we get

∣∣X n+1
γ (Δ2m,n+1)(Fq)

∣∣= m∑
i=0

qi
(
1+ q+ · · ·+ qi

)
+

2m∑
i=m+1

qi
(
1+ q+ · · ·+ q2m−i

)
+

m−1∑
i=0

qi+m
(
qm+1−i+ · · ·+ qn

)
+

m−1∑
i=0

qi+m
(
qm−i+ · · ·+ qn

)
+ q2m

2m+n∑
i=2m+1

(
1+ q+ · · ·+ qi−2m

)
+ q2m

n∑
i=0

qi.

After rearranging the summand, we get the proposition.

Proposition 7.2. Let γ be a matrix in the form of equation (7.1). When val(a) =m>n,

we have

∣∣X n+1
γ (Δ2n+1,n+1)(Fq)

∣∣= 2n∑
j=0

(⌊
j

2

⌋
+1

)
qj +

3n+1∑
j=2n+1

(3(3n− j+1)+1)qj + q2n+1
n∑

j=0

qj .

Proof. Summing along the dotted blue lines in the four regions of Figure 7, we get

∣∣X n+1
γ (Δ2n+1,n+1)(Fq)

∣∣= n∑
i=0

qi
(
1+ q+ · · ·+ qi

)
+

2n+1∑
i=n+1

qi
(
1+ q+ · · ·+ q2n+1−i

)
+

n∑
i=1

qi+n
(
qn+1−i+ · · ·+ qn

)
+

n−1∑
i=1

qi+n+1
(
qn+1−i+ · · ·+ qn

)
+ q2n+1

3n+1∑
i=2n+2

(
1+ q+ · · ·+ qi−(2n+1)

)
+ q2n+1

n∑
i=0

qi.

After rearranging the summand, we get the proposition.
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Now we calculate the number of rational points on the complement X n+1
γ

(
Δnγ,n+1

)
\

Fγ . For i ∈ Z, 1≤ i≤ n+1, let

Δi
nγ,n+1 =Δnγ,n+1∩π−1

M (i),

where i ∈ Z is considered as an element of aGM by the identification R∼= aGM .

Proposition 7.3. Let γ be a matrix in the form of equation (7.1). We have

X n+1
γ

(
Δnγ,n+1

)∖
Fγ =

n+1⋃
i=1

f−1
P

(
X M,(i,n+1−i)

γ

(
Δi

nγ,n+1

))
∩Xγ,

where (i,n+1− i) ∈ Z2 is regarded as an element in ΛM by the identification Z2 ∼= ΛM .

Its number of rational points over Fq equals

qnγ

n∑
j=0

(
1+ q+ · · ·+ qj

)
.

Proof. Observe that the second assertion is a direct consequence of the first one by

Proposition 2.4. It is thus enough to show the first assertion.
Set x ∈ X n+1

γ

(
Δnγ,n+1

)
, and notice that it does not belong to Fγ if and only if

HP (x) ∈ [1,n+1]⊂R∼= aGM, (7.2)

because HP−(x)≤HP (x). This implies that

X n+1
γ

(
Δnγ,n+1

)∖
Fγ =

n+1⋃
i=1

f−1
P

(
X M,(i,n+1−i)

γ

(
Δi

nγ,n+1

))
∩Xγ

(
Δnγ,n+1

)
.

To finish the proof, we only need to show that

f−1
P

(
X M,(i,n+1−i)

γ

(
Δi

nγ,n+1

))
∩Xγ

(
Δnγ,n+1

)
= f−1

P

(
X M,(i,n+1−i)

γ

(
Δi

nγ,n+1

))
∩Xγ,

for i= 1, . . . ,n+1. The inclusion ‘⊂’ is obvious; we only need to show its inverse. For any

point x ∈ f−1
P

(
X

M,(i,n+1−i)
γ

(
Δi

nγ,n+1

))
∩Xγ , the inclusion (7.2) holds. By Proposition

3.1, together with the fact that Ec(x) is a positive (G,A)-orthogonal family, we have

Ec(x)⊂Δnγ,n+1,

whence the equality we want.

Summarizing all the foregoing discussions, we get the following:

Theorem 7.4. Let γ be a matrix in the form of equation (7.1). When val(a) =m ≤ n,

we have
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|Fγ (Fq)|=
2m−1∑
j=0

(⌊
j

2

⌋
+1

)
qj +(2m+1)

m+n∑
j=2m

qj

+

2m+n−1∑
j=m+n+1

(2(2m+n− j)+1)qj + q2m+n.

When val(a) =m> n, we have

|Fγ (Fq)|=
2n∑
j=0

(⌊
j

2

⌋
+1

)
qj +

3n∑
j=2n+1

(2(3n+1− j)+1)qj + q3n+1.

Now it is easy to deduce the weighted orbital integral Jξ
M (γ). For N ∈N, N � 0, let

ΠN = [−nγ −N,N ]⊂R∼= aGM .

We can count the number of rational points
∣∣X n+1

γ (ΠN )(Fq)
∣∣ in two ways. By the

Arthur–Kottwitz reduction, we have∣∣X n+1
γ (ΠN )(Fq)

∣∣= |Fγ (Fq)|+2Nqnγ ·
∣∣FM

γ (Fq)
∣∣ .

By the Harder–Narasimhan reduction, we have∣∣X n+1
γ (ΠN )(Fq)

∣∣= 2 |Fγ (Fq)|+
∣∣X n+1,ξ

γ (Fq)
∣∣

+(2N −nγ −1)qnγ ·
∣∣FM

γ (Fq)
∣∣,

where we use the fact that X M,ν,ξ
γ = FM

γ for any ν ∈ ΛM because γ is anisotropic in
m(F ). The comparison of the two expressions implies∣∣X n+1,ξ

γ (Fq)
∣∣= (nγ +1)qnγ ·

∣∣FM
γ (Fq)

∣∣−|Fγ (Fq)| .

By Theorems 7.4 and 5.2, we have the following:

Theorem 7.5. Let γ be a matrix in the form of equation (7.1). When val(a) =m ≤ n,

we have

Jξ
M (γ) =

∣∣X n+1,ξ
γ (Fq)

∣∣= 2mq2m+n+
2m+n−1∑
j=m+n+1

2(j−m−n)qj −
2m−1∑
j=0

(⌊
j

2

⌋
+1

)
qj .

When val(a) =m> n, we have

Jξ
M (γ) =

∣∣X n+1,ξ
γ (Fq)

∣∣= (2n+1)q3n+1+
3n∑

j=2n+1

(2j−4n−1)qj −
2n∑
j=0

(⌊
j

2

⌋
+1

)
qj .

By Theorem 2.8 and Remark 2.3, we get Arthur’s weighted orbital integral. As before,

the orbital integral IGγ can be calculated by equation (2.4):

IGγ = qnγ

n∑
i=0

qi =

{
q2m

∑n
i=0 q

i if m≤ n,

q2n+1
∑n

i=0 q
i if m> n.
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8. Calculations for GL3-anisotropic case

Let G = GL3 and γ ∈ gl3(F ) be a regular semisimple integral element. Assume that

char(k)> 3 and T ∼=ResE3/FE
×
3 , with E3 =Fq((ε

1
3 )). As before, take the basis

{
ε

2
3 ,ε

1
3 ,1
}

of E3 over F. We can assume that γ is of the form

γ =

⎡⎣ b0ε
n1 c0ε

n2

c0ε
n2+1 b0ε

n1

b0ε
n1+1 c0ε

n2+1

⎤⎦, (8.1)

with b0,c0 ∈ O× and n1,n2 ∈ N. In this case, Arthur’s weighted orbital integral is the
same as the orbital integral, and both are equal to

∣∣X 0
γ (Fq)

∣∣. The matrix γ is equivalued

of valuation n1+
1
3 if n1 ≤ n2, and equivalued of valuation n2+

2
3 if n2 < n1. According

to Goresky, Kottwitz, and MacPherson [16], the affine Springer fiber Xγ admits affine
paving

Xγ =
⋃

a=(a1,a2,a3)∈Z3

Xγ ∩ IεaK/K.

Let Sa be the cell Xγ ∩ IεaK/K. Restricted to the connected component X 0
γ , we can

calculate that Sa is nonempty if and only if

a1−a2 ≤ n1, a2−a3 ≤ n1, a3−a1 ≤ n1+1, (8.2)

and that it is of dimension∣∣∣∣{(m,α) ∈ Z×Φ(G,A) | 0≤m+α(x)< n1+
1

3
, m+α(ya)< 0

}∣∣∣∣,
with x= (1,2/3,1/3),ya = (−a1,−a2,−a3) ∈X∗(A)⊗R. The results are summarized in

Figure 8. Summing up, we get the following:

Theorem 8.1. Let γ ∈ gl3(O) be the matrix in equation (8.1). Suppose that n1 ≤ n2; it

is then equivalued of valuation n1+
1
3 . The orbital integral associated to γ equals

IGγ =
∣∣X 0

γ (Fq)
∣∣= 1+2

�n1
3 �∑

i=1

q2(3i−1)
(
q2+ q+1

)
+

n1∑
i=1

(
i−2

⌊
i

3

⌋
−1

)
q2i−3

(
q3+2q2+2q+1

)
+

2n1∑
i=n1+1

(
2n1− i−2

⌈
2n1− i

3

⌉
+1

)
qi+n1−1(q+2)

+ q2n1−1

(⌈
2n1−1

3

⌉
−
⌊
n1−2

3

⌋
−1

)
+2

n1−1∑
i=� 2n1−1

3 �
q3i+1,

where �x� denotes the largest integer less than or equal to x, and �x� denotes the smallest

integer greater than or equal to x.
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Figure 8. Counting points for ramified anisotropic γ ∈ gl3(O): First case.

The same calculations apply for n2 < n1, with the differences that Sa is nonempty if

and only if

a1−a3 ≤ n2, a2−a1 ≤ n1+1, a3−a2 ≤ n1+1

and that it is isomorphic to an affine space of dimension

∣∣∣∣{(m,α) ∈ Z×Φ(G,A) | 0≤m+α(x)< n2+
2

3
, m+α(ya)< 0

}∣∣∣∣ .
These are summarized schematically in Figure 9. Summing up, we get the following:
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Figure 9. Counting points for ramified anisotropic γ ∈ gl3(O): Second case.

Theorem 8.2. Let γ ∈ gl3(O) be the matrix in equation (8.1). Suppose that n2 < n1; it

is then equivalued of valuation n2+
2
3 . The orbital integral associated to γ equals

IGγ =
∣∣X 0

γ (Fq)
∣∣= 1+2

�n2
3 �∑

i=1

q2(3i−1)
(
q2+ q+1

)
+

n2∑
i=1

(
i−2

⌊
i

3

⌋
−1

)
q2i−3

(
q3+2q2+2q+1

)
+

(
n2−2

⌈
n2−1

3

⌉)
q2n2−1

(
1+2q2

)
+

2n2∑
i=n2+2

(
2n2− i−2

⌈
2n2− i

3

⌉
+1

)
qi+n2−1(1+2q)

+2

�n2−2
3 �∑

i=0

q3(n2−i)−2(1+ q)+2q2n2

(⌈
2n2−1

3

⌉
−
⌊
n2−2

3

⌋
−1

)
+ q3n2+1.
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