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Abstract

Arrows are an extension of the well-established notion of a monad in functional-programming

languages. This paper presents several examples and constructions and develops denotational

semantics of arrows as monoids in categories of bifunctors Cop×C→ C. Observing similarities

to monads – which are monoids in categories of endofunctors C → C – it then considers

Eilenberg–Moore and Kleisli constructions for arrows. The latter yields Freyd categories,

mathematically formulating the folklore claim ‘Arrows are Freyd categories.’

1 Introduction

The motivation to introduce the concept of an arrow comes from functional

programming (Hughes 2000; Paterson 2001). It is intended as a uniform interface to

certain types of computations, streamlining the infrastructure. This enables a high

level of abstraction to uniformly capture for instance quantum computing (Vizzotto

et al. 2006). It also facilitates language extensions like secure information flow (Li &

Zdancewic 2008): instead of building a domain-specific programming language

from the ground up, it can be defined within normal Haskell, using the arrow

interface. After all, arrows provide an abstract interface supporting familiar pro-

gramming constructs like composition, conditional branches and iteration. Haskell

even incorporates convenient syntax to ease the use of such language extensions.

The name ‘arrow’ reflects the focus on the provided infrastructure, especially

compositionality.1

Here is a more mathematical intuition. Monoids are probably the most fundamen-

tal mathematical structures used in computer science. The basic example (A, ; , skip)

is given by a set A ∈ Set of programs or actions, with sequential composition; as

binary operation and an empty statement skip as neutral element for composition.

Such a monoid A does not capture input and output. We may like to add it via

parameterisation A(X,Y ), where X,Y are type variables. Since input is contravariant

and output covariant, we may consider such an indexed monoid A(−,+) as a

bifunctor Cop × C → Set for a suitable category C of types for input and output.

1 In a categorical context, the name is a bit unfortunate, however. We consistently use ‘arrow’ for the
programming construct and ‘morphism’ for the categorical notion.
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But of course, we still want it to have a monoid structure for composition. Hence

we are led to consider monoids in the functor category Cop × C → Set. Our first

main result – stemming from Heunen & Jacobs (2006) – is that such monoids are

in fact arrows as introduced by Hughes.

A special case of the above is when there is only output and no input: these singly

indexed monoids are (categorical) monads. They correspond to the well-known

notion of a monad in Haskell (Moggi 1989; Wadler 1993). Arrows are thus similar

to monads in that they are monoids in suitable categories, namely in categories of

endofunctors C→ C. Hence we are led to ask, ‘What are the Eilenberg–Moore and

Kleisli constructions – two very basic constructions on monads – for arrows?’ Our

second main result – from Jacobs & Hasuo (2006) – is that the Kleisli construction

for arrows corresponds to Freyd categories (Robinson & Power 1997), and moreover

the correspondence is isomorphic. Thus, to the folklore claim ‘Arrows are Freyd

categories’ that we put in precise terms, we add the slogan ‘Freyd is Kleisli, for

arrows.’

These main results are streamlined versions of Heunen & Jacobs (2006) and

Jacobs & Hasuo (2006). The current paper proceeds as follows: In Section 2 we

introduce the concepts of monads and arrows in Haskell more thoroughly, gradually

moving towards a more mathematical mindset instead of a functional-programming

perspective. We also motivate why one can in fact achieve more with arrows than

with monads and give settings where this is useful. Section 3 investigates, still in a

somewhat discursive style, combinations of arrows. It leads up to a deconstruction

into elementary parts of the particular program that motivated Hughes to use arrows

in the first place (Swierstra & Duponcheel 1996). The formal, categorical, analysis

of arrows takes place in Section 4, culminating in our first main result mentioned

above, Corollary 4.1. An example showing the elegance of this approach is discussed

in Section 5, namely arrows facilitating bidirectional computation. Section 6 then

considers algebra constructions for arrows and contains the second main result,

Theorem 6.2. We conclude in Section 7. Appendix A contains a proof of a result

used in Section 4 but only sketched there. Next, Appendix B considers a bicategorical

characterisation of the notion of arrow that elegantly exemplifies its naturality, but

is somewhat out of the scope of the main line of this paper. Finally, Appendix A

gives the missing details of Section 6.

2 Haskell examples

This section introduces arrows and their use in functional-programming languages.

We briefly consider monads first in Section 2.1, since this construction from category

theory historically paved the way for arrows (Section 2.2). Section 2.3 then considers

the advantages of arrows over monads.

2.1 Monads

A major reason for the initial reluctance to adopt functional-programming languages

is the need to pass state data around explicitly. Monadic programming provides an
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answer to this inconvenience (Moggi 1989; Wadler 1993). Through the use of

a monad one can encapsulate the changes to the state data, the ‘side effects’,

without explicitly carrying states around. Monads can efficiently structure functional

programs while improving genericness. This mechanism is even deemed important

enough to be incorporated into Haskell syntax (Peyton Jones 2003). A monad in

Haskell is defined as a so-called type class:

class Monad M where

return :: X →M X

(>>=) :: M X → (X →M Y )→M Y

To ensure the desired behaviour, the programmer herself should prove certain monad

laws about the operations return and >>= (pronounced bind ). These boil down to

the axiom that M be a monad, in the categorical sense. Using the formulation that

is standard in the functional-programming community, a categorical monad consists

of a mapping X �→M(X) on types, together with ‘return’ and ‘bind’ functions

X
rt ��MX, (X →MY )

bd �� (MX →MY )

satisfying

bd(f) ◦ rt = f, bd(rt) = id, bd(f) ◦ bd(g) = bd(bd(f) ◦ g).

In categorical style one defines M to be a functor, with multiplication maps μ =

bd(idMX) : M2X → MX satisfying suitable laws. The above equations are more

convenient for equational reasoning. Often one writes u >>= f for bd(f)(u).

The most familiar monads are powerset, list, lift, state and distribution:

P rt(x) = {x} bd(f)(a) =
⋃
{f(x) | x ∈ a}

(−)� rt(x) = 〈x〉 bd(f)(〈x1, . . . , xn〉) = f(x1) · . . . · f(xn)

1 + (−) rt(x) = up(x) bd(f)(v) =

{
⊥ if v = ⊥

f(x) if v = up(x)

(−× S)S rt(x) = λs . 〈x, s〉 bd(f)(h) = λs . f
(
π1h(s)

)(
π2h(s)

)
D rt(x) = λy .

{
1 if x = y

0 if x 
= y
bd(f)(ϕ) = λy .

∑
x

ϕ(x) · f(x)(y)

In the last case we write D for the ‘subdistribution’ monad D(X) = {ϕ : X →
[0, 1] | supp(ϕ) is finite and

∑
x ϕ(x) � 1}, where the support supp(ϕ) is the set of

x ∈ X with ϕ(x) > 0.

Monads are often considered with strength; i.e. they come equipped with a suitable

natural transformation st : M(X) × Y → M(X × Y ). For later reference, we use

that in our present informal setting each functor M is strong, as its strength can be

described explicitly as

st(u, y) = M
(
λx . 〈x, y〉

)
(u). (1)
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It satisfies the following basic equations:

M(f × g) ◦ st = st ◦ (M(f)× g),
M(π1) ◦ st = π1,

M(α−1) ◦ st = st ◦ (st × id) ◦ α−1,

where we use

πi : X1 ×X2 → Xi, α : (X × Y )× Z
∼=−→X × (Y × Z)

for the familiar product maps fst, snd and assoc.

In other, non-set-theoretic settings one may have to require such strength maps

explicitly. The monad operations interact appropriately with the above strength

map, in the sense that the following equations hold:

st ◦ (rt× id) = rt st ◦ (bd(f)× g) = bd(st ◦ f × g) ◦ st.

In effect, monads are thus functional combinators. They enable the combination

of functions very generally, without many assumptions about the precise functions

to combine. However, these restrictions are severe enough to exclude certain classes

of libraries from implementation with a monadic interface.

2.2 Arrows

Arrows are even more general functional combinators and can be seen as a

generalisation of monads (Hughes 2000, 2005). An arrow in Haskell is a type

class of the form

class Arrow A where

arr :: (X → Y )→ A X Y

(>>>) :: A X Y → A Y Z → A X Z

first :: A X Y → A (X,Z) (Y ,Z)

where X,Z in Haskell denotes the Cartesian product type X × Y . Analogous to

monads, an arrow must furthermore satisfy the following arrow laws, the proof of

which is up to the programmer:

(a >>> b)>>> c = a >>> (b >>> c), (2)

arr (g ◦ f) = arr f >>> arr g, (3)

arr id >>> a = a = a >>> arr id, (4)

first a >>> arr π1 = arr π1 >>> a, (5)

first a >>> arr (id × f) = arr (id × f)>>> first a, (6)

first (first a)>>> arr α = arr α >>> first a, (7)

first (arr f) = arr (f × id), (8)

first (a >>> b) = first a >>> first b. (9)

In fact, as Section 6.1 shows, less structure than Cartesian products suffices,

eliminating the need for projections πi in the above arrow laws. Sometimes, arr(id×f)
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is written as second(arr(f)), where

second(a) = arr(γ)>>> first(a)>>> arr(γ),

and γ : X × Y
∼=−→Y × X is the well-known swap map. The arrow laws (2)–(9)

are sometimes given names (Paterson 2003). Especially noteworthy are the names

‘exchange’ for (6) and ‘extension’ for (8).

Example of arrows will be given in Section 3.

2.3 Monads versus arrows

This paper is concerned with a categorical understanding of this notion of arrows.

At this stage we shall reveal some of the structure involved but are deliberately a bit

vague about the general setting in which we are working. In doing so we move to a

more mathematical notation, for instance writing A(X,Y ) for AX Y in functional

style.

It is not hard to show that an arrow is ‘bifunctorial’ (Lemma 4.1). This means that

for f : X ′ → X and g : Y → Y ′ one also has a map A(X,Y )→ A(X ′, Y ′). The maps

arr : Y X → A(X,Y ) then form natural transformations (Lemma 4.2). Even more,

composition can also be seen as a natural transformation A⊗A→ A, for a suitable

tensor product ⊗ of bifunctors (Proposition 4.2). In this way one can describe the

triple (A, arr, >>>) as a monoid in a category of bifunctors. Here we shall not need

these details yet. But in the remainder of this section we shall introduce arrows as

bifunctors of the form Cop × C→ Set.

Here is a first trivial example: Let (P ,m, e) be a monoid, consisting of an associative

operation m : P × P → P with two-sided unit e : P . It yields probably the most

elementary example of an arrow, namely a constant one. We shall also write it as

P , formally as functor in P (X,Y ) = P , with operations

arr(f) = e, a >>> b = m(a, b) first(a) = a.

Standard examples of monoids P are the singleton type 1 (with trivial operations),

the type 2 = {0, 1} of truth values or Booleans (with either conjunctions �,∧ or

disjunctions ⊥,∨) and the type X� of lists of an arbitrary type X (with the empty

list 〈〉 and concatenation ·).
Every monad (M, rt, bd) with a strength gives rise to an arrow M by

M(X,Y ) = M(Y )X, (10)

with obvious operations (see e.g. Hughes 2000) – strength is used to provide the

operation first.

Dual to a monad, a comonad is given by a mapping X �→ N(X) with ‘coreturn’

and ‘cobind’ operations crt : NX → X and cbd : (NX → Y ) −→ (NX → NY )

satisfying

crt ◦ cbd(f) = f, cbd(crt) = id, cbd(f) ◦ cbd(g) = cbd(f ◦ cbd(g)).

It gives rise to an arrow by (X,Y ) �→ Y N(X) – no strength is needed.
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Comonads are less known but are fundamental structures for handling contexts

(among other things), in which the ‘counit’ ε = crt : NX → X is used for weakening

and the ‘comultiplication’ δ = cbd(idNX) : NX → N2X for contraction (Jacobs

1999). The following diagram presents the main comonads X �→ · · · for handling

streams with discrete time input (Uustalu & Vene 2005):

X� ×X X� ×�
causality

no future
��

anti-causality

no past
�� X�

(〈α(0), . . . , α(n− 1)〉, α(n)) (α, n)
��� � �� λm . α(n+ m)

(11)

The intuition for a pair (α, n) ∈ X� ×� is that n represents the present stage in

the stream α = 〈α(0), α(1), . . . , α(n − 1), α(n), α(n + 1), . . .〉, where everything before n

is past input, and everything after n is future input. The two morphisms in the

previous diagram are homomorphisms of comonads, commuting with the relevant

comonad/context structure. There is a similar real-time analogue.

A strong monad M and a comonad N can also be combined to form arrows.

As illustrated for instance in Uustalu & Vene (2005) and Heuene & Jacobs (2006),

this happens via a so-called distributive law NM ⇒ MN that commutes with the

(co)monad operations. Then one can define an arrow (M,N) via

(M,N)(X,Y ) = M(Y )N(X). (12)

It combines the previous two constructions with monads and comonads separately.

This mapping (X,Y ) �→ M(Y )N(X) leads to an appealing picture of an arrow in

which the monad M is used for structuring the outputs and the comonad N for

the inputs. But arrows are more general than this. For instance, if we wish to do

‘non-deterministic dataflow’ we may consider at first maps of the form

X� ×� −→ P(Y ), (13)

with the comonad on the left-hand side structuring the input of streams and the

monad on the right-hand-side producing non-deterministic output. However, this

requires a distributive law of the form

P(X)� ×� −→ P(X� ×�).

While it is possible to construct such a function – for instance the power law

from Jacobs (2006) – it does not commute with the comonad structure. As a result,

composition is not associative.

The way out is to realise that co-Kleisli maps X� ×�→ Y correspond to maps

X� → Y � via currying. But then non-determinism can be introduced easily into

dataflow, namely by looking at maps

X� −→ P(Y �) (14)

instead of maps (13). The corresponding assignment (X,Y ) �→ P(Y �)(X
�) indeed

forms an arrow – with associative composition. It is however not of the form

(X,Y ) �→M(Y )N(X). Arrows thus have more to offer than monad–comonad combi-

nations. As an aside, it is not so clear how to combine the other comonads in (11)

with non-determinism.
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3 Arrow constructions and examples

This section continues in the discursive style of the previous one. It introduces

several elementary ways to combine arrows and use these constructions to obtain

some well-known examples. The first construction is obvious but useful. Its proof is

straightforward and left to the reader.

Lemma 3.1
Let (A1, arr1, >>>1) and (A2, arr2, >>>2) be arrows. Then so is their product A =

A1 × A2, described by

A(X,Y ) = A1(X,Y )× A2(X,Y )

with operations

arr(f) = 〈arr1(f), arr2(f)〉
〈a1, a2〉>>> 〈b1, b2〉 = 〈a1 >>>1 b1, a2 >>>2 b2〉

first(〈a, b〉) = 〈first1(a), first2(b)〉. �

The next result now follows from the observation in the previous section that each

monoid forms a (constant) arrow. The result is mentioned explicitly because it will

be used later in this form, in Example 3.1.

Corollary 3.1
Let (A, arr, >>>) be an arrow and (P ,m, e) be a monoid. Then A′ = P × A, given by

A′(X,Y ) =
(
P × A

)
(X,Y ) = P ×

(
A(X,Y )

)
,

is again an arrow, with the following operations:

arr′(f) = 〈e, arr(f)〉
〈x, a〉>>>′ 〈y, b〉 = 〈m(x, y), a >>> b〉

first′(〈x, a〉) = 〈x, first(a)〉. �

For the next result we consider functors F that preserve products. This means that

the obvious maps

F(X × Y )
〈F(π1),F(π2)〉

�� F(X)× F(Y )

are isomorphisms. In that case we shall write β = βX,Y : F(X)× F(Y )→ F(X × Y )

for the inverse.

Lemma 3.2
Let (A, arr, >>>) be an arrow and F be a product preserving functor. Defining

AF (X,Y ) = A(F(X), F(Y ))

yields a new arrow AF with the following operations:

arr′(f) = arr(F(f))

a >>>′ b = a >>> b

first′(a) = arr(〈F(π1), F(π2)〉)>>> first(a)>>> arr(β).
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Proof

Checking the relevant equations is not hard. For instance

first′(a >>> b)

= arr(〈F(π1), F(π2)〉)>>> first(a >>> b)>>> arr(β)
(9)
= arr(〈F(π1), F(π2)〉)>>> first(a)>>> first(b)>>> arr(β)
(4)
= arr(〈F(π1), F(π2)〉)>>> first(a)>>> arr(〈F(π1), F(π2)〉 ◦ β)

>>>first(b)>>> arr(β)
(3)
= arr(〈F(π1), F(π2)〉)>>> first(a)>>> arr(β)

>>>arr(〈F(π1), F(π2)〉)>>> first(b)>>> arr(β)

= first′(a)>>>′ first′(b). �

Lemma 3.3

Let (A, arr, >>>) be an arrow and S an arbitrary type. The definition

AS×(X,Y ) = A(S ×X, S × Y )

again yields an arrow, with corresponding structure:

arrS×(f) = arr(idS × f)
a >>>S× b = a >>> b

firstS×(a) = arr(α−1)>>> first(a)>>> arr(α)

where α is the associativity isomorphism for products from Section 2.1. �

This particular construction AS× has already occurred, in a slightly different

formulation, in Hughes (2000, Section 9), where it was introduced via a ‘state

functor’. A similar construction (X,Y ) �→ A(X, S)A(Y ,S ) is defined there for special

arrows with suitable apply operations A(A(X,Y )×X,Y ).

At this stage we can already see how one of the motivating examples for the

notion of arrow can be obtained from the previous constructions.

Example 3.1

In Hughes (2000, Section 4.2) an arrow SD is introduced to describe a special parser

defined by Swierstra & Duponcheel (1996). This arrow can be described as

SD(X,Y ) = (2× S�)×
(
1 + S� × Y

)(S�×X)
. (15)

We show that this arrow SD can be obtained by successive application of the

constructions in this section.

First, the set 2× S� – with 2 = {0, 1} – is used as monoid, not with the standard

structure but with unit and composition given by

e = (1, 〈〉)
m((b, σ), (c, τ)) = (b ∧ c, σ · (if b = 1 then τ else 〈〉)).

It is not hard to see that this yields a monoid. Corollary 3.1 then tells that (15) is

an arrow if the rightmost part (X,Y ) �→
(
1 + S� × Y

)(S�×X)
is. Using the lift monad
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1 + (−) we get an arrow (X,Y ) �→ (1 + Y )X , as shown in Section 2.3. By applying

Corollary 3.3 with set S� we obtain the rightmost part, as required.

When we go into the details of these constructions we can also reconstruct the

associated operations of the arrow (15) as follows:

arr(f)

= 〈 (1, 〈〉), λ(s, x) ∈ S� ×X . up(s, f(x)) 〉
〈(b, σ), f)〉>>> 〈(c, τ), g〉

= 〈 (b ∧ c, σ · (if b = 1 then τ else 〈〉)),

λ(s, x) ∈ S� ×X .
{
⊥ if f(s, x) = ⊥
g(t, y) if f(s, x) = up(t, y) 〉

first(〈(b, σ), f〉)
= 〈 (b, σ),

λ(s, (x, y)) ∈ S� × (X × Y ) .

{
⊥ if f(s, x) = ⊥
up(t, (z, y)) if f(s, x) = up(t, z) 〉.

These operations are precisely as described (in Haskell notation) in Hughes (2000,

Section 4.2).

Example 3.2

Quantum computing (Vizzotto et al. 2006) can be modelled within a functional -

programming language. The states of a quantum program are the so-called density

matrices that we can understand as elements of the monad application D(X)X to

some set X. These states evolve into each other by superoperators, which can be

modelled as arrows (X,Y ) �→ D(Y × Y )(X×X). The previous lemmas also enable us

to show that this quantum-computation arrow is indeed an arrow, by decomposing

it into elementary parts, without checking the arrow laws by hand.

First, recall that the mapping (X,Y ) �→ D(Y )X yields an arrow, induced by the

distribution monad D. Next, notice that the diagonal functor X �→ X ×X preserves

products, so that the mapping (X,Y ) �→ (Y × Y )(X×X) yields an arrow, with

first(a) = λ((x, z), (x′, z′)) ∈ (X × Z)× (X × Z) . ((π1a(x, x
′), z), (π2a(x, x

′), z′))

for given a : X ×X → Y × Y .

Thus, according to Lemma 3.2, the mapping (X,Y ) �→ D(Y ×Y )(X×X) is an arrow.

If we follow through the construction, we obtain the following arrow operations:

arr(f) = rt ◦ (f × f)

= λ(x, x′) . λ(y, y′) .

{
1 if f(x) = y ∧ f(x′) = y′

0 otherwise

a >>> b = bd(b) ◦ a
= λ(x, x′) . λ(z, z′) .

∑
(y,y′)

a(x, x′)(y, y′) · b(y, y′)(z, z′)

first(a) = D(〈π1 × π1, π2 × π2〉) ◦ st ◦ (a× id) ◦ 〈π1 × π1, π2 × π2〉

= λ((x, z1), (x
′, z′1)) . λ((y, z2), (y

′, z′2)) .

⎧⎨
⎩

a(x, x′)(y, y′) if z1 = z2
and z′1 = z′2,

0 otherwise.

These indeed coincide exactly with the ones given in (Vizzotto et al. 2006).
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4 Categorical formulation

In this section we shall move towards a categorical formulation of the notion of

arrow. We shall do so by first analysing the structure in a Haskell-like setting. We

denote by HT the category with Haskell types as objects. A morphism σ → τ in

this category is a Haskell function f = λx : σ . f(x) : τ, taking input in σ to output

in τ. Composition of such maps is performed by substitution. Essentially, this is a

Cartesian closed category of types and terms but for the fact that some functions do

not terminate, much like a lambda calculus. Of course there is much more structure

(like general recursion) in Haskell than the types with type variables and terms, like

in system F. Below we shall analyse the behaviour of Haskell arrows as bifunctors

on HT, leading to a more general definition of an arrow over any category C.

4.1 Analysing arrow behaviour categorically

First and foremost, let us show that a Haskell arrow is indeed bifunctorial.

Lemma 4.1

The operation A(−,−) extends to a functor HTop ×HT→ Set by

(X,Y ) �→ {a : A(X,Y ) | a closed term},

whose action A(f, g) : A(X,Y )→ A(X ′, Y ′) on maps f : X ′ → X and g : Y → Y ′ is

given by

A(f, g) = λa . arr(f)>>> a >>> arr(g).

Proof

Using Equations (2)–(4) one easily derives the functorial properties for identity,

A(id, id) = id, and composition, A(f ◦ f′, g′ ◦ g) = A(f′, g′) ◦ A(f, g). �

We now examine the arrow operations arr and first in the light of the bifuncto-

riality of A.

Lemma 4.2

The maps arr : HT(X,Y ) → A(X,Y ) form a natural transformation HT(−,+) ⇒
A(−,+) from exponents to arrows, where HT(−,+) is the homset functor.

Similarly, the maps first : A(X,Y ) → A(X × Z, Y × Z) are natural in X and Y .

This may be formulated as follows: first yields a natural transformation 〈first〉 from

A to the functor A× given by (X,Y ) �→
∏

Z A(X×Z, Y ×Z). Of course, this functor

A× only makes sense in a small category with arbitrary (set-indexed) products Π.

Proof

For maps f : X ′ → X, g : Y → Y ′ in HT and h : HT(X,Y ) we have

(
A(f, g) ◦ arr

)
(h) = arr(f)>>> arr(h)>>> arr(g)

(3)
= arr(g ◦ h ◦ f) = arr(gf(h)) =

(
arr ◦ gf

)
(h)
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and (
A× (f, g) ◦ 〈first〉)(a) = 〈A(f × id, g × id) ◦ πZ 〉Z (〈first(a)〉)

= 〈A(f × id, g × id)(first(a))〉
= 〈arr(f × id)>>> first(a)>>> arr(g × id)〉
(8)
= 〈first(arr(f))>>> first(a)>>> first(arr(g))〉
(9)
= 〈first(arr(f)>>> a >>> arr(g))〉
= 〈first(A(f, g)(a))〉
=

(
〈first〉 ◦ A(f, g)

)
(a). �

The next lemma shows that the maps >>> : A(X, P ) × A(P , Y ) → A(X,Y ) are

natural in X and Y , just like the maps arr and first in the previous lemma. In the

parameter P they are what is called dinatural (Mac Lane 1971, Section 9.4). This

means that for each map f : P → Q the following diagram commutes:

A(X, P )× A(P , Y )
>>> �� A(X,Y )

�������

�������

A(X, P )× A(Q, Y )

id×A(f,id) �������������

A(id ,f)×id ������������� A(X,Y )

A(X,Q)× A(Q, Y )
>>>

�� A(X,Y )

�������
�������

Lemma 4.3

The maps >>> : A(X, P )×A(P , Y )→ A(X,Y ) are natural in X and Y and dinatural

in P .

Proof

Naturality is trivial. As for dinaturality, for a : A(X, P ) and b : A(Q, Y ), we have(
>>> ◦ (id × A(f, id))

)
(a, b) = a >>> A(f, id)(b)

= a >>> arr(f)>>> b

= A(id, f)(a)>>> b

=
(
>>> ◦ (A(id, f)× id)

)
(a, b). �

Intuitively, dinaturality in P signifies that >>> is parametric in its middle argument

type and that this middle parameter is auxiliary; it could just have well been another

one, as long as it is the same across the second argument of the first factor and the

first argument of the second.

4.2 Monoidal structure in the ambient category

Extending from the category HT of (Haskell) types and terms, we would like to

define an arrow over any suitable category C as a monoid in the functor category

Cat(Cop×C, Set) of bifunctors that carries an internal strength. However, to do so we

need to ensure that the ambient category, Cat(Cop×C, Set), has monoidal structure.
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The most elegant way to achieve this is to employ the notion of (parameterised)

coends (see Appendix A). This approach generalises to the V-enriched situation,

when an arrow is a suitable bifunctor Cop × C → V. Such enrichment is necessary

if we are to consider (instead of HT) a categorical model of Haskell which is

most probably Cpo enriched. At this stage we shall present the construction for the

reasonably concrete case in which V = Set, mostly to give some intuition about the

monoidal structure.

Proposition 4.1

Let C be a small category. Then the category Cat(Cop × C, Set) of Set-valued

bifunctors has a monoidal structure with unit I and tensor product ⊗.

Proof

The naturality of HT(−,+) ⇒ A(−,+) observed in Lemma 4.2 suggests that the

(internal) homfunctor could serve as the unit of the intended monoidal structure

on Cat(Cop × C, Set). Thus we define I : Cop × C → Set to be HomC; explicitly,

I(X,Y ) = C(X,Y ) and I(f, g) = gf = λh . g ◦ h ◦ f. This requires C to be locally

small.

The main idea now is to let the monoidal product of two bifunctors A,B : Cop ×
C → Set be the smallest type, containing all bifunctors that behave dinaturally in

the middle parameter. More explicitly, composition >>> is a collection of morphisms

A(X, P )× A(P , Y )
>>> ��A(X,Y ),

which can be combined, using the (arbitrary set-indexed) coproduct in Set, into one

natural transformation with the following component at X,Y ∈ C:( ∐
P∈C A(X, P )× A(P , Y )

) >>> ��A(X,Y )

This requires C to have a (small) set of objects. We take the dinaturality of Lemma 4.3

into account by defining the components of the monoidal product A ⊗ B as the

coequalizer c⎛
⎝ ∐
P ,Q∈C

A(X, P )
×C(P ,Q)
×B(P , Y )

⎞
⎠ d1 ��

d2

��

(∐
P∈C

A(X, P )
×B(P , Y )

)
c ����� (A⊗ B)(X,Y )

of (obvious cotuples of) the morphisms (in Set)

d1 = λ(a, f) . A(id, f)(a) : A(X, P )× C(P ,Q)→ A(X,Q),

d2 = λ(f, b) . B(f, id)(b) : C(P ,Q)× B(Q, Y )→ B(P , Y ),

for all P ,Q ∈ C. The composition maps >>> then reappear as the components of

the unique A⊗ A⇒ A from the coequalizer. �

Remark

The situation sketched in the previous proposition and proof is that of profunctors,

which are also known as distributors or bimodules (Bénabou 2000). Profunctors

and natural transformations form a bicategory Prof , which is a well-studied gener-

alisation of the category of sets and relations. The monoidal structure of Prof (as
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described above) is well known. The basic idea is that composition of profunctors,

and hence the tensor product in the above proposition, can also be written in

terms of standard functor composition using left Kan extension along the Yoneda

embedding. See Day (1970) for the original account or Borceux (1994, Section 7.8)

for a modern record.

The previous lemma puts us in a position to make precise our intuition that arrow

laws (2)–(4) resemble monoid equations.

Proposition 4.2

An instantiation of the Haskell arrow class (A⊗ A)
>>>−→A

arr←− I satisfying (2)–(4) is

a monoid in the category Cat(HTop ×HT, Set) of bifunctors HTop ×HT→ Set.

Proof

We have to check that the monoid equations hold for the span (A⊗ A)
>>>−→A

arr←− I .
Here we exhibit one of the equations, namely

A
ρ−1

��

������������������

������������������ A⊗ I id⊗arr
�� A⊗ A

>>>
��

A,

which for a : A(X,Y ) becomes

a
� �� (a, id)

� �� (a, arr(id))�

��

a >>> arr(id).

Hence commutation of this diagram amounts to arrow law (4), which states that

a >>> arr(id) = a. �

Remark

Although the proof of Proposition 4.1 requires a restriction to small categories, we

will often relax this to locally small categories. We are only after A⊗A anyway, and

indeed, in the construction of A ⊗ A above we used a large coproduct for clarity,

where we could have formulated the composition operation >>> of A via collections

of maps A(X, P )× A(P , Y )→ A(X,Y ) that are natural in X,Y , dinatural in P and

satisfy the arrow Equations (2)–(9).

In this way one could include domain theoretic models that are standardly used

for Haskell semantics.

4.3 Internal strength

Now that we have seen that arrow laws (2)–(4) correspond to the monoid equations

on the semantical side, we investigate the remaining laws (5)–(9) concerning first in

more detail.

Recall that a monad T : C → C on a monoidal category C is called strong

when there is a natural transformation ‘strength’ with components stX,Y : T (X) ⊗
Y → T (X ⊗ Y ) that satisfies suitable coherence conditions. This section shows
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that the availability of the function first is equivalent to an analogous form of

strength for bifunctors, which we call internal strength. Its emergence is motivated in

Appendix B.

Definition 4.1

Let C be a category with finite products. The carrier A : Cop × C → Set of a

monoid (A,>>>, arr) in Cat(Cop×C, Set) is said to carry an internal strength natural

transformation with components istX,Y : A(X,Y )→ A(X,Y ×X) if these satisfy

ist(arr(f)) = arr(〈f, id〉), (16)

ist(a)>>> arr(π1) = a, (17)

ist(a >>> b) = ist(a)>>> ist(arr(π1)>>> b)>>> arr(id × π2), (18)

ist(ist(a)) = ist(a)>>> arr(〈id, π2〉). (19)

Using the techniques of Appendix A this can again be extended to bifunctors

A : Cop × C→ V for a category C with finite products and a suitable category V.

The following proposition shows that having internal strength is in fact equivalent

to having a first operation for arrows – as originally introduced by Hughes.

Proposition 4.3

Let (A,>>>, arr) be an instantiation of the Haskell arrow class satisfying (2)–(4). The

maps first : A(X,Y )→ A(X ×Z, Y ×Z) satisfying Equations (5)–(9) correspond to

maps ist : A(X,Y ) → A(X,Y × X) which are natural in Y and dinatural in X and

satisfy (16)–(19).

Proof

The proof of the equivalence of first and ist involves many basic calculations, of

which we only present a few exemplary cases.

Given maps first satisfying (5)–(9), define internal strength on a : A(X,Y ) as

ist(a) = arr(Δ)>>> first(a),

where Δ = 〈id, id〉. One then checks naturality in Y , dinaturality in X and (16)–(19).

The (di)naturality equations can be formulated as

ist(a)>>> arr(g × id) = ist(a >>> arr(g)) (20)

arr(f)>>> ist(a) = ist(arr(f)>>> a)>>> arr(id × f). (21)

By way of illustration we check Equation (17):

ist(a)>>> arr(π1) = arr(Δ)>>> first(a)>>> arr(π1)

(5)
= arr(Δ)>>> arr(π1)>>> a

(3)
= arr(π1 ◦ Δ)>>> a

= arr(id)>>> a

(4)
= a.
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Conversely, given internal strength maps ist satisfying (16)–(19), define

first(a) = ist(arr(π1)>>> a)>>> arr(id × π2),

where π1 : X × Z → X and id × π2 : Y × (X × Z)→ Y × Z . This yields a natural

operation, in the sense that

arr(f × id)>>> first(a)>>> arr(g × id) = first(f >>> a >>> g).

We shall prove Equation (9) in detail and leave the rest to the interested reader:

first(a)>>> first(b)

= ist(arr(π1)>>> a)>>> arr(id × π2)>>> ist(arr(π1)>>> b)

>>>arr(id × π2)
(dinat)
= ist(arr(π1)>>> a)>>> ist(arr(id × π2)>>> arr(π1)>>> b)

>>>arr(id × (id × π2))>>> arr(id × π2)
(3)
= ist(arr(π1)>>> a)>>> ist(arr(π1)>>> b)

>>>arr(id × π2)>>> arr(id × π2)
(18)
= ist(arr(π1)>>> a >>> b)>>> arr(id × π2)

= first (a >>> b). �

The alternative formulation in terms of internal strength ist in the previous

proposition is convenient because its (di)naturality is clearly described, and it has

only two parameters, whereas first has three.

4.4 The categorical definition

After the preparations of Section 4.2 we know that an arrow A satisfying arrow

laws (2)–(4) is precisely a monoid in the category of bifunctors HTop ×HT → Set.

Furthermore, Section 4.3 showed that arrow laws (5)–(9) correspond precisely to

this monoid having internal strength. Since both notions have been defined more

generally than just for the Haskell category HT, we can now lift these properties

into our main definition.

Definition 4.2

Let C be a small category with finite products. An arrow over C is a monoid in

Cat(Cop × C, Set) whose carrier has an internal strength.

In Appendix A we extend the definition of arrow to bifunctors Cop × C → V,

where C is V enriched and both categories satisfy suitable size restrictions.

The combination of Propositions 4.2 and 4.3 justifies this categorical definition by

showing that in the small category HT of Haskell types and functions our categorical

notion of arrows coincides with the conventional one. Let us record this formally.

Corollary 4.1

An instantiation (A,>>>, arr, first) of the Haskell arrow class is an arrow over HT

in the sense of Definition 4.2. �
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Summarising, we have shown that arrows in a type theoretic setting coincide with

monoids in the category of bifunctors HTop ×HT→ Set with internal strength. We

have then lifted this property to a definition of arrow on any suitable category of

bifunctors Cop × C→ V, of which we have described the case V = Set explicitly.

5 Biarrows

The aim of this section is to illustrate that our categorical semantics for Haskell

arrows is at the right level of abstraction. We consider the example of the so-called

biarrows, the semantics of which can now be elegantly expressed by simply restricting

the underlying category.

Biarrows were introduced in Alimarine et al. (2005) as a language extension

facilitating bidirectional computations. For example, implementing a parser as a

biarrow begets a pretty printer ‘for free’. In Haskell terms, a biarrow is a further

restriction of the arrow class interface:

class Arrow B => BiArrow B where

(↔) :: (X → Y )→ (Y → X)→ B X Y

inv :: B X Y → B Y X

satisfying (2), (5), (7), (9) and

(f1 ↔ g2)>>> (g1 ↔ f2) = (f1 >>> g1)↔ (f2 >>> g2), (3’)

(id ↔ id)>>> f = f = f >>> (id ↔ id) (4’)

first(h)>>> (id × f)↔ (id × g) = (id × f)↔ (id × g)>>> first(h) (6’)

first(f ↔ g) = (f × id)↔ (g × id) (8’)

inv(inv(f)) = f (22)

inv(f >>> g) = inv(g)>>> inv(f) (23)

inv(f ↔ g) = g ↔ f (24)

inv(first(f)) = first(inv(f)) (25)

We see that biarrows require a further operation inv on top of arr, >>> and first,

whose type should be inv : B(X,Y ) → B(Y ,X). Since we defined an arrow as a

bifunctor of the form B : Cop×C→ V, a natural transformation B(X,Y )→ B(Y ,X)

is a problem because of the covarinace versus the contravariance. The following

definition enforces the required symmetry C = Cop.

Definition 5.1

For C a category, define a full subcategory C� of Cop × C by the class of objects

{(X,X) : X ∈ C}. We identify the objects of C� and C, so that a morphism X → Y

in C� is a pair of morphisms X → Y and Y → X of C.

The category C� is self-dual by construction. It has finite products if and only if

C has finite biproducts – which, for this situation, are finite products and coproducts

that coincide.
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Definition 5.2

A biarrow on C is defined to be an arrow B on C� that is equipped with a

natural transformation inv : B ⇒ B∗, where B∗ : Cop
� × C� → Set is given by

B∗(X,Y ) = B(Y ,X) and 〈(g, f), (h, k)〉 �→ 〈(f, g), (k, h)〉. The components invX,Y :

B(X,Y )→ B(Y ,X) are required to satisfy

inv ◦ inv = id (26)

inv ◦>>> ◦ γ = >>> ◦ (inv × inv) (27)

inv ◦ arr = arr ◦ γ (28)

inv ◦ first = first ◦ inv (29)

A biarrow B is called left invertible on b ∈ B(X,Y ) if b >>> inv(b) = idX . It is called

right invertible on b if inv(b) >>> b = idY and invertible if it is both left and right

invertible.

Notice that the domain of the operation arr : C�(X,Y )→ B(X,Y ) of a biarrow

B is C(X,Y )×C(Y ,X). Hence one can model the operation (↔) simply by the unit

arr of the monoidal structure of a biarrow.

Let us conclude this section by studying under which conditions the examples of

Section 2.3 are (invertible) biarrows.

Proposition 5.1

The arrow Cop
�×C� → Set of pure functions, given by B(X,Y ) = C(X,Y )×C(Y ,X),

is a biarrow. On morphisms it is given by

(
X ′

g
�� X, Y

f
�� h �� Y ′

)
k

��
� �� λ(a, b) ∈ B(X,Y ) . (h ◦ a ◦ g, f ◦ b ◦ k)

It is left invertible on (the subcategories of C� of) split monics, right invertible

on split epis and invertible on isomorphisms.

Proof

Use the ‘swap’ map (a, b) �→ (b, a) as the natural transformationinv. Since this is

in fact a natural isomorphism, (26)–(29) are trivially satisfied. Left invertibility on

a morphism b ∈ B(X,Y ) means precisely that its components b1 : X → Y and

b2 : Y → X satisfy b2 ◦ b1 = idX , proving the claim that b1 is split mono. The claim

on split epis is similar, and a morphism that is split mono as well as split epi is

necessarily an isomorphism. �

In the style of Section 3, one may proceed to formulate a calculus of biarrows. In

this way one may structurally develop programs together with their “inverses”, as

in (Alimarine et al. 2005).

6 Kleisli and Eilenberg–Moore constructions for arrows

In Section 4 we have observed that arrows are monoids in a category of bifunctors

Cop×C→ V, where C is V enriched. This perspective bears a resemblance to monads.

After all, monads are also monoids in a functor category, namely Cat(C,C). Pursuing
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this analogy, this section investigates Eilenberg–Moore and Kleisli constructions for

arrows.

We should warn the reader that this section requires a stronger stomach for

technical/categorical details. For clarity of exposition, we focus on a non-enriched

setting throughout this section, i.e. V = Set. Enriching the whole framework in

a monoidal closed category V (following Appendix A) is then straightforward.

Concretely, this means that the results in this section will be needlessly restricted to

locally small categories.

6.1 Arrows are Freyd categories

Let us start by exhibiting an obvious way to associate a category of ‘(structured)

computations’ with an arrow. This construction will subsequently be shown to

• give Freyd categories (Power & Thielecke 1997; Robinson & Power 1997);

• provide a bijective correspondence between arrows and Freyd categories,

adhering to the slogan ‘Arrows are Freyd categories’ (Heunen & Jacobs 2006);

and

• be the Kleisli construction for arrows, in a suitable 2-categorical sense, under

the motto ‘Freyd is Kleisli, for arrows’ (Jacobs & Hasuo 2006).

Definition 6.1 (The category CA)

Let A : Cop × C → Set be an arrow, with operations arr, >>> and first. Define

a category CA to have the objects of C, and define morphisms X → Y given by

elements of the set A(X,Y ). Identities and composition are given by arr and >>> in

the obvious manner.

Before proceeding to explain why this construction gives Freyd categories in

Theorem 6.1 below, let us briefly summarize what a Freyd category is. For that,

we need the notion of a premonoidal category, which can intuitively be thought of

as a monoidal category in which the tensor need not be a bifunctor, though it is

functorial in each variable separately.

Definition 6.2

A binoidal category is a category D, with two functors (−) � X : D → D and

X � (−) : D → D for every object X such that X � Y = X � Y . Hence we write

X � Y = X � Y = X � Y . A morphism f is called central if for each g, both

• (f � id) ◦ (id � g) = (id � g) ◦ (f � id) and

• (id � f) ◦ (g � id) = (g � id) ◦ (id � f).

For such a central f it makes sense to write f � g or g � f for these composites.

Definition 6.3

A symmetric premonoidal category is a binoidal category D together with an object

I ∈ D and natural isomorphisms with central components α : (X � Y ) � Z →
X � (Y �Z), λ : I �X → X, ρ : X � I → X and γ : X �Y → Y �X that obey the

familiar coherence properties for monoidal categories.
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The non-bifunctoriality reflects the order of side effects when we think of D as a

category of ‘computations’. When we include a category C of ‘values’, we arrive at

the notion of a Freyd category (Power & Thielecke 1997; Robinson & Power 1997;

Levy et al. 2003).

Definition 6.4

A Freyd category consists of a symmetric premonoidal category D together with a

category C with finite products and an identity-on-objects functor J : C→ D which2

• carries Cartesian products in C to premonoidal products in D on-the-nose,

J(X × Y ) = X � Y , J(α) = α, J(λ) = λ, etc., and

• preserves central maps. Since every morphism in C is central, this just means

that every morphism in D of the form J(g) is central.

A Freyd category C→ D is called (locally) small if the category D is (locally) small.

Returning to the central construction of this section, the category CA of

Definition 6.1, observe that there is an identity-on-objects functor JA : C → CA

whose action on morphisms is given by arr. This forms an instance of a Freyd

category, as Theorem 6.1 will prove. We shall call this mapping A �→ (C
JA→ CA) from

arrows to Freyd categories the Kleisli construction for arrows. Although this name

will be fully justified (2-categorically) in Section 6.3, we can observe now already

some similarities to the Kleisli construction for monads. For an arrow A induced

by a (co)monad, the associated Freyd category CA coincides with the (co)Kleisli

category for the (co)monad in the usual sense. For the arrow (N,M) of (12), induced

by both a monad M and a comonad N, the Kleisli construction yields what is called

the bi-Kleisli category used e.g. in (Uustalu & Vene 2005).

The Kleisli construction A �→ (C
JA→ CA) turns out to be a bijective map from

arrows to Freyd categories. This observation turns the oft-heard (informal) statement

‘Arrows are Freyd categories’ into the following concrete theorem.

Theorem 6.1 (‘Arrows are Freyd categories’ )

For a locally small category C with finite products, there is a one-to-one correspon-

dence between arrows A over C (in the sense of Definition 4.2) and locally small

Freyd categories C→ D.

Proof

Suppose we are given an arrow A : Cop × C → Set with operations >>>, arr and

ist. Putting D = CA entails that D is symmetric premonoidal by I = 1 ∈ D and

X�Y = X×Y . The premonoidal tensor � extends to a functor (on morphisms) by

virtue of the provided ist – or equivalently first (see Proposition 4.3) and second–

since every morphism a ∈ A(X,Y ) yields a � Z = firstZ (a) : X � Z → Y � Z and

Z � a = secondZ (a) : Z �X → Z �Y . The transformation of an arrow into a Freyd

2 Such a functor J satisfying the two conditions is called a strict premonoidal functor in Definition 8 of
Power & Thielecke (1997). In that paper the notion of Freyd category has not yet been given its name;
still it is a central notion there and appears e.g. in Theorem 14.
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category is completed by defining J : C → D to act as the identity on objects and

as arr on morphisms.

Conversely, suppose given a Freyd category J : C→ D. Define A : Cop×C→ Set

by A(X,Y ) = D(X,Y ). This A is made into a monoid in Cat(Cop × C, Set) by the

unit arr = J : C(X,Y ) → D(X,Y ) and for multiplication >>> the composition

A(X, P )× A(P , Y )→ A(X,Y ) in D. Furthermore we can define internal strength:

istX,Y : A(X,Y )→ A(X,Y ×X) by istX,Y (f) = (f �X) ◦ J(〈id, id〉).

Naturality of ist in Y is obvious; dinaturality in X boils down to the fact that the

diagram

D(X,Y )
istX,Y

�� D(X,Y �X)
(Y�J(g))◦(−)

�������������

D(X ′, Y )

(−)◦J(g)
��								




















D(X,Y �X ′)

D(X ′, Y )
istX′ ,Y

�� D(X ′, Y �X ′)
(−)◦J(g)

		�����������

commutes for every morphism g : X → X ′ in C. The crux here is that it need only

commute for morphisms g of C, i.e. morphisms of D of the form J(g) (cf. Equations

(20) and (21)), which are central. Since one also readily checks (16)–(19), this proves

that a Freyd category induces an arrow. �

The proof of the previous theorem reminds one strongly of the situation for

monads. In the well-known correspondence between

• monoids in the category of functors C→ C,

• monads M on C and

• identity-on-objects functors J : C→ D that have a right adjoint,

the functor J arises from M by the Kleisli construction, while J induces a monad

M by the adjunction. The proof of the above theorem is a generalisation of this

correspondence (Heunen & Jacobs 2006).

6.2 Eilenberg–Moore algebras for arrows

After considering Kleisli constructions for arrows in the previous subsection, we

now turn to the notion of Eilenberg–Moore algebras for arrows. We aim for two

properties of this new notion. First, for arrows induced by (co)monads it should

coincide with the usual notion of (co)algebra. Secondly, an arrow algebra should be

a retraction of a Kleisli category, much like for monads.

Let us start by the situation for monads. We shall understand (Eilenberg–Moore)

(co)algebras in 2-categorical style as natural transformations. Explicitly, an algebra

for a monad (T , η, μ) on a category C is a map ϕ : T ⇒ idC satisfying the familiar

equations ϕ ◦ η = id and ϕ ◦Tϕ = ϕ ◦μ. Since such a monad T is the same thing as

a monoid in Cat(C,C), with monoidal structure given by functor composition and
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the identity functor, these monad equations boil down to the following commuting

diagram:

idC

η
��

���
���

���

���
���

���
T

ϕ

��

T ⊗ T = T 2

ϕ⊗ϕ=ϕ◦Tϕ
��

μ
��

idC idC ⊗ idC

When T is strong we might as well require coherence with its strength:

T (·)× (∗) ϕ
��

ϕ×id 

���������� T ((·)× (∗))
ϕ

��

(·)× (∗)

(30)

The fact that an arrow is also a monoid – in a category of bifunctors – leads to

the following definition.

Definition 6.5

Let A : Cop × C → Set be an arrow. An algebra for A is a natural transformation

χ : A ⇒ Hom that is compatible with arr, >>> and 〈first〉, in the sense that the

following diagrams commute for each Z ∈ C:

Hom
arr ��

























 A

χ

��

A⊗ A>>>��

χ⊗χ
��

A
〈first〉

��

χ

��

A×

χ

��

Hom Hom⊗Hom∼=
�� Hom 〈(−)×Z〉Z

�� Hom×,

(31)

where we used the functor A× from Lemma 4.2 and the analogous Hom×(X,Y ) =

Hom(X × Z, Y × Z).

An algebra of an arrow is thus a (natural) mapping of computations to (pure)

functions. One might have expected a single mapping χ : A(X,Y )→ Hom(X,Y ), but

then it is unclear how to capture commutation with composition >>>. Specifically,

defining χ⊗ χ in (31) is problematic.

In elementary terms, an algebra χ must thus satisfy the equations

χ(arr(f)) = f, χ(a >>> b) = χ(b) ◦ χ(a), χ(first(a)) = χ(a)× id.

Naturality then is a consequence:

χ(A(f, g)(a)) = χ(arr(f)>>> a >>> arr(g))

= χ(arr(g)) ◦ χ(a) ◦ χ(arr(f))
= g ◦ χ(a) ◦ f
= Hom(f, g)(χ(a)).

The rest of this subsection is devoted to results stemming from Definition 6.5.

The first one concerns arrows M induced by monads M as in (10). This subsection

contains two similar results. We write out the proof of the first one in full detail, to

distinguish the trivial parts from the non-trivial ones. Especially the order in which
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to apply the equations in the verification of the multiplication law in the proof

below is delicate.

Proposition 6.1

For a strong monad M there is a bijective correspondence between strong-monad

algebras M ⇒ id and arrow algebras M ⇒ Hom.

Proof

Given a monad algebra ϕ : M ⇒ id, define ϕ : M ⇒ Hom on a ∈ Hom(X,MY )

by ϕ(X,Y )(a) = ϕY ◦ a. We check that it satisfies the required properties, omitting the

subscripts for clarity:

ϕ(arr(f)) = ϕ ◦ η ◦ f ϕ(firstZ (a)) = ϕ ◦ st ◦ (a× Z)

= f, = (ϕ× Z) ◦ (a× Z)

ϕ(a >>> b) = ϕ ◦ μ ◦M(b) ◦ a = (ϕ ◦ a)× Z)

= ϕ ◦M(ϕ ◦ b) ◦ a = ϕ(a)× Z,
= (ϕ ◦ b) ◦ (ϕ ◦ a) ϕ(M(f, g)(a)) = ϕ(M(g) ◦ a ◦ f)
= ϕ(b) ◦ ϕ(a), = ϕ ◦M(g) ◦ a ◦ f

= g ◦ ϕ ◦ a ◦ f
= Hom(f, g)(ϕ ◦ a)
= Hom(f, g)(ϕ(a)).

Conversely, given an arrow algebra χ : M ⇒ Hom we define χX : MX → X as

χ(MX,X)(idMX). This definition suggests that the Yoneda lemma can also be used. For

clarity, we have chosen to write out the proof that we get an M-algebra directly.

The unit law and naturality are easy:

χ ◦ η = χ(id) ◦ χ(arr(η)) χ ◦M(f) = χ(id) ◦ χ(arr(M(f)))

= χ(arr(η)>>> id) = χ(arr(M(f))>>> id)

= χ(μ ◦M(id) ◦ η ◦ η) = χ(μ ◦M(id) ◦ η ◦M(f))

= χ(η) = χ(M(f))

= χ(arr(id)) = χ(μ ◦M(η ◦ f) ◦ id)

= id, = χ(id >>> arr(f))

= χ(arr(f)) ◦ χ(id)

= f ◦ χ.

Compatibility (30) with strength is proved as follows.

χ× Y = χ(id)× Y (∗)
= χ(st ◦ (id× id)) = χ(st ◦ id)

= χ(id ◦ st)
(∗∗)
= χ(id) ◦ st = χ ◦ st.

The equality (∗) holds because χ is compatible with first, given by first(a) =

st ◦ (a× id); (∗∗) uses the naturality of χ.
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Verification of the multiplication law is subtler:

χ ◦M(χ) = χ(id) ◦ χ(arr(M(χ))) = χ(arr(M(χ))>>> id)

= χ(μ ◦M(id) ◦ η ◦M(χ)) = χ(M(χ)) = χ(μ ◦M(η ◦ χ) ◦ id)

= χ(arr(χ)>>> id) = χ(id) ◦ χ(arr(χ)) = χ(id) ◦ χ(id)

= χ(id >>> id) = χ(μ ◦M(id) ◦ id) = χ(μ)

= χ(μ ◦M(id) ◦ η ◦ μ) = χ(arr(μ)>>> id)

= χ(id) ◦ χ(arr(μ)) = χ ◦ μ.

The proof is completed by checking that the correspondence is indeed bijective:

ϕ = ϕ(id) χ(a) = χ ◦ a
= ϕ ◦ id = χ(id) ◦ χ(arr(a))
= ϕ = χ(arr(a)>>> id)

= χ(μ ◦M(id) ◦ η ◦ a)
= χ(a). �

There is a dual result for comonads. It shows that arrow algebras form a common

generalisation of monad algebras and comonad coalgebras. The proof is similar to

the one above and is left to the reader.

Proposition 6.2

For a comonad N there is a bijective correspondence between comonad coalgebras

id ⇒ N and arrow algebras N ⇒ Hom. �

The previous two propositions can be extended to bialgebras.

Proposition 6.3

Let M be a strong monad, N a comonad and λ : NM ⇒ MN a distributive

law between them. Then there is a bijective correspondence between λ-bialgebras

M ⇒ id ⇒ N and arrow algebras (M,N)⇒ Hom as in (12).

Proof

We shall only give the essentials and leave details to the reader. Assuming a λ-

bialgebra M
ϕ

=⇒ id
ψ

=⇒ N, the following diagram commutes by definition:

M
ϕ

��

ψM

��

id
ψ

�� N

NM
λ

�� MN

ϕN

��

We obtain an arrow algebra (ϕ,ψ) : (M,N) ⇒ Hom by (ϕ,ψ)(a) = ϕ ◦ a ◦ ψ. It

satisfies the required equations.

Conversely, an arrow algebra χ : (M,N) ⇒ Hom induces a pair of maps χ =

(χ1, χ2) by

χ1 = χ(MX,X)(εMX) : MX −→ X

χ2 = χ(X,NX)(ηNX) : X −→ NX.
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Of the verification that it yields an appropriate λ-bialgebra, we only show com-

mutation of the above diagram, i.e. that we have a compatible algebra–coalgebra

pair:

χ1 ◦ λ ◦ χ2 = χ(ε) ◦ χ(arr(λ)) ◦ χ(η) = χ(η >>> arr(λ)>>> ε)

= χ([μ ◦M(η ◦ λ ◦ ε) ◦ λ ◦N(η) ◦ δ]>>> ε)

= χ([η ◦ λ]>>> ε) = χ(μ ◦M(ε) ◦ λ ◦N(η ◦ λ) ◦ δ)
= χ(λ) = χ(μ ◦M(η) ◦ λ ◦N(ε) ◦ δ)
= χ(ε >>> η) = χ(η) ◦ χ(ε) = χ2 ◦ χ1. �

The next lemma shows that arrow algebras are retractions of Kleisli categories.

Lemma 6.1

An algebra for an arrow A on C is precisely a left inverse K : CA → C of the ‘Kleisli

inclusion’ functor JA : C→ CA. (A left inverse is sometimes also called a retraction

and means KJ = id.)

Proof

Given an algebra χ : A⇒ Hom we get a functor CA → C by X �→ X and a �→ χ(a).

It forms a retraction because χ(arr(f)) = f. Conversely, a retraction K : CA → C

yields an algebra K : A⇒ Hom by a �→ K(a). We check naturality:

K(A(f, g)(a)) = K(arr(f)>>> a >>> arr(g))

= K(arr(g)) ◦K(a) ◦K(arr(f))

= KJ(g) ◦K(a) ◦KJ(f)
= g ◦K(a) ◦ f
= Hom(f, g)(K(a)). �

The previous lemma justifies the term Eilenberg–Moore algebra for arrows, since

the next lemma gives an analogous characterisation for monads.

Lemma 6.2

For a monad M on a category C, there is a bijective correspondence between

algebras M ⇒ id and retractions of the Kleisli inclusion J : C→ CM .

Proof

Given an algebra ϕ : M ⇒ id, define a functor ϕ : CM → C by X �→ X and

f �→ ϕ ◦ f. This clearly yields a functor and moreover a retraction:

ϕ(J(f)) = ϕ(η ◦ f) = ϕ ◦ η ◦ f = f.

Conversely, given a retraction K : CM → C of J , we define K : M ⇒ id via

KX = K(idMX : MX → X) : MX → X. This yields a natural transformation and a
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monad algebra:

KX ◦ ηX = K(id) ◦KJ(η) KX ◦M(KX) = KX ◦KMX

= K(μ ◦M(id) ◦ η ◦ η) = K(id) ◦K(id)

= K(η) = K(μ ◦M(id) ◦ id)

= id, = K(μ)

= K(μ ◦M(id) ◦ η ◦ μ)
= K(id) ◦KJ(μ)
= KX ◦ μ. �

6.3 Freyd is Kleisli, for arrows

For monads and comonads, the Kleisli construction is characterised 2-categorically

as a certain left 2-adjoint (Street 1972). Theorem 6.2 will prove that the (bijective)

mapping A �→ (C→ CA) that we have been looking at allows a similar 2-categorical

characterisation. Therefore the bijective mapping is justifiably called the Kleisli

construction for arrows. This subsection will extend the notion of arrow on a

category with finite products to arrows on Freyd categories in general and will

study some additional (2-categorical) properties. It assumes a reasonable level of

familiarity with 2-categories; we refer to Borceux (1994a) for details.

Let us first recall the situation for monads. The Kleisli construction is the left

2-adjoint of the canonical ‘insertion’ 2-functor Ins in the following 2-adjunction3:

Cat

Ins
��

K�



 � Mnd(Cat∗)∗ (32)

Here the 2-category Mnd(Cat∗)∗ is such that

• an object is a pair (C,M) of a category C and a monad M on it;

• a 1-cell (H, σ) : (C,M) → (D,M ′) is a pair of a functor H : C → D and

a natural transformation σ : HM ⇒ M ′H , which is compatible with monad

structures of M and M ′:

C
H ��

M
�� ����

��
σ

D

M ′
��

C
H

�� D

• a 2-cell α : (H, σ) ⇒ (H ′, σ′) is a natural transformation α : H ⇒ H ′ which is

compatible with σ and σ′ in a suitable sense.

The functor Ins is a canonical one mapping an object C to (C, id). The functor K�
of the Kleisli construction maps an object (C, T ) to the Kleisli category CT .

3 The notation Mnd(Cat∗)∗ originates in Street (1972, Section 4). The operator ( )∗ on 2-categories
opposes 1-cells (but not 2-cells). The constructor Mnd is actually a 2-functor which maps a 2-category
C to the ‘2-category of monads’ on C.

https://doi.org/10.1017/S0956796809007308 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007308


428 B. Jacobs et al.

Let us go through similar 2-categorical motions for arrows. Denote by FPCat

the 2-category of categories with finite products. At first, one may try for a functor

K� : ArrFPCat → FPCat for a suitably defined 2-category ArrFPCat of arrows,4

which maps (C, A) to CA. However, the category CA does not necessarily have finite

products; it has only the weaker structure of a Freyd category. The same difficulty

occurs already attempting to extend the 2-adjunction (32) to strong monads. The

problem is resolved by considering arrows on Freyd categories. The 2-adjunction

(32) for arrows then looks as follows:

Freyd

Ins
��

K�



 � ArrFreyd (33)

The definition of arrows on Freyd categories is exactly the same as on categories with

finite products, except for the conditions on first. Recall that in a Freyd category

C
J→ K, the category K has a premonoidal structure denoted by �.

Definition 6.6 (Arrows on Freyd categories)

An arrow on a Freyd category C
J→ K is a monoid A ⊗ A >>>→ A

arr← Hom in the

monoidal category [Kop × K, Set] of bifunctors, equipped with morphisms

firstX,Y ,Z : A(X,Y )→ A(X � Z, Y � Z)

that are natural in X,Y and dinatural in Z and satisfy the following equations:

first(a)>>> arr(J(π1)) = arr(J(π1))>>> a (5’)

first(a)>>> arr(id � J(f)) = arr (id � J(f))>>> first(a) (6’)

first(first(a))>>> arr(α) = arr(α)>>> first(a) (7’)

first(arr(g)) = arr(g � id) (8’)

first(a >>> b) = first(a)>>> first(b) (9’)

The conditions (5’)–(9’) correspond to (5)–(9) in the original definition. Equations

(2)–(4) are already incorporated by the requirement that A be a monoid. Because

J preserves premonoidal structure, the associativity isomorphisms α in (7’) are

inherited from C as αK = J(αC). Recalling the intuition that a morphism in C is a

pure function while one in K is an effectful one, (6’) requires only pure functions to

commute with first(a).

For arrows on categories with finite products, Proposition 4.3 establishes the

equivalence between the operations first and ist. This is also the case for arrows on

Freyd categories, but here we prefer first.

4 We use the notation ArrFPCat rather than Arr(FPCat). The notion of monad is defined in any
2-category C; hence the notation Mnd(C) makes sense, whereas the notion of arrow does not come
with such generality. Moreover, two ∗’s in Mnd(Cat∗)∗ are gone in the corresponding ArrFPCat. The two
∗’s were there due to the choice of ‘lax’ monad morphisms as 1-cells in Mnd(C) (which is convenient
for the Eilenberg–Moore construction); to have ‘oplax’ monad morphisms instead as 1-cells we needed
two ∗’s. In defining the ‘category of arrows’ ArrFPCat there is no room for such choice between lax
and oplax. For example, in the diagram (A1) the 2-cell Hom(H) must be in this direction and not the
other.
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The ingredients of the adjunction (33) are defined straightforwardly, although they

become lengthy when spelled out, and there are some hidden subtleties in the details.

We merely sketch the definitions here and refer to Appendix C for the details.

The 2-categories Freyd and ArrFreyd are those of Freyd categories and arrows on

Freyd categories, respectively. The 2-functor Ins carries an object C
J→ K to the

canonical Hom-arrow (C
J→ K,HomK). The 2-functor K� in the converse direction

is essentially the Kleisli construction for arrows in Definition 6.1. Namely, an object

(C
J→ K, A) is mapped to a Freyd category C

J→ K
JA→ KA, where K

JA→ KA is

constructed like in Definition 6.1.

Now we are ready to prove the (informal) claim ‘Freyd is Kleisli, for arrows.’

Theorem 6.2 (‘Freyd is Kleisli’ )

There is a 2-adjunction K� � Ins : ArrFreyd → Freyd as in diagram (33).

Proof

Its unit is given by (C
J→ K, A)

(id,JA,ι)−→ (C
J→ K

JA→ KA, HomKA
), where ι is the

canonical natural transformation with components id : A(X,Y )→ KA(X,Y ). �

Arrows on categories with finite products also form a 2-category ArrFPCat, just like

ArrFreyd. The obvious horizontal insertion 2-functors produce the following situation:

ArrFreyd

K�
��

Ins

��

�

ArrFPCat
Ins ′��

Freyd FPCat
Ins

��

Ins

��

(34)

We conclude this section by elaborating this diagram. The following theorem gives

its relation to the correspondence result of Theorem 6.1.

Theorem 6.3

The bijective correspondence of Theorem 6.1 between Freyd categories and arrows

on categories with finite products extends to an isomorphism between 2-categories

Freyd and ArrFPCat in an obvious way:

Freyd
Arr

��

K�
�� ∼= ArrFPCat �

An intuition on an object (C
J→ K, A) of ArrFreyd is that it has two different levels

of extra computational structures added to C. One is described by the Freyd category

C
J→ K, and on top of it we have the other one expressed as the arrow A. But in

fact, the additional expressive power that comes from having two infrastructures is

essentially redundant. This can be put in precise 2-categorical terms, for the details

of which we refer to Jacobs & Hasuo (2006).
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7 Conclusion

Arrows are powerful tools in functional programming. They provide compositional

infrastructure, relieving the programmer of tedious bookkeeping, and in fact enable

more general interfaces than monadic programming.

The present paper considered categorical denotational semantics for arrows. The

pivotal point is Definition 4.2, characterising an arrow as a monoid in the category

of bifunctors Cop×C→ Set, which moreover has a structure called internal strength.

This monoidal structure of arrows has been illustrated by several important real-

world examples. Two of them were discussed leading up to the categorical definition

in a way that does not require the arrow laws to be checked by hand. We have

shown that a third language extension (biarrows) can be elegantly formulated using

the provided semantics, indicating that they provide the right perspective and level

of abstraction.

Exploiting the similarity to monads then led to Kleisli and Eilenberg–Moore

constructions for arrows. The definitions have been supported by results analogous

to that of (co)algebras for a (co)monad.

In fact, we have proven rigorously that the Kleisli construction for arrows

corresponds precisely to a Freyd category. This turns the folklore claim ‘Arrows

are Freyd categories,’ which has always remained informal, into a mathematically

precise statement. The arrows-as-monoids perspective, however, is not so delicate

as Freyd categories. Moreover it stresses the compositional infrastructure an arrow

provides.

Ultimately, as with any denotational semantics, this approach aids functional

programmers in reasoning about their programs. For example, it facilitates proving

that the language extension induced by an arrow satisfies the desired domain-specific

properties that initiated its design.

An interesting topic that has not yet been elaborated is recursion schemes for

arrows (Erkök & Launchbury 2002; Benton & Hyland 2003) that might find a more

thorough theoretical foundation in the present work.
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Appendix A

Coends

This appendix briefly recalls the notion of (parameterised) coends (for more

information, see Mac Lane 1971, Section 9.6). This is then applied, as promised

in Section 4.4, to ensure that the category Cat(Cop × C,V) has monoidal structure

for suitable categories C and V. We specialise the category V later.

A coend of a bifunctor A : Cop × C → V consists of an object V ∈ V and a

universal dinatural cocone c : A
•

=⇒ V . Explicitly, a dinatural cocone c consists

of morphisms cP : A(P , P ) → V for each P ∈ C such that for each morphism

f : P → Q of C the following diagram commutes:

A(P , P ) cP
�������������

A(P ,Q)

A(idP ,f) �������������

A(f,idQ)
������������� V

A(Q,Q) cQ

�������������

Moreover c is universal in the sense that for every dinatural cocone e : A
•

=⇒ V ′

there is a unique mediating morphism g : V → V ′ as follows:

A(P , P )

cP ��������������
eP

���������������������������������

A(P ,Q)

A(idP ,f)
��������������

A(f,idQ) �������������� V
g

����������� V ′

A(Q,Q)

cQ
�������������� eQ

���������������������������������

The object V , when it exists, is unique up to isomorphism. By abuse of language, it

is called the coend of A, and it is denoted by V =
∫ P

A(P , P ). The fact that coend

V does not depend on the ‘bound variable’ P makes the remark in Section 4.1 that

the parameter P is auxiliary more specific.
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We described for each P ,Q ∈ C a coend as an object in V. The following lemma

shows that they cooperate so as to form a functor, even when parameterised, as

desired later.

Lemma A.1

Let V be a monoidal category, and suppose A,B : Cop×C→ V are bifunctors such

that for each X,Y ∈ C, the functor

A(X,−)⊗ B(−, Y ) : C× Cop → V (A 1)

has a coend in V. Then these coends extend to a functor∫ P

A(−, P )⊗ B(P ,−) : Cop × C→ V. (A 2)

Proof

This is a special case of Theorem 9.7.2 in Mac Lane (1971). �

Given two bifunctors A,B : Cop ×C→ V, we would like to define their monoidal

product A⊗ B : Cop × C→ V to be the coending bifunctor (A 2). For this we need

all the coends of (A 1) to exist. The naturality of arr in Lemma 4.2 suggests that

exponentiation should be the unit of the desired monoidal structure. This requires

that C be V enriched. This means that we assume objects C(X,Y ) ∈ V with suitable

identity and composition morphisms IX : IV → C(X,X) and CX,Y ,Z : C(X,Y ) ⊗
C(Y ,Z)→ C(X,Z). Moreover, we consider V-bifunctors instead of bifunctors, which

means that we also have morphisms A(X,P ),(Q,Y ) : C(Q,X)⊗C(P , Y )→ A(Q, Y )A(X,P )

in V analogous to application of the bifunctor A. For more information, see Borceux

(1994, Section 6.2) and Kelly (1982); another paper with a lot of related information

is Cattani & Winskel (2005). This requires V to have exponents (with respect to its

tensors) and thus to be monoidal closed.

Indeed, under these conditions, the above ideas combined with Lemma A.1

provide the desired monoidal structure, as the next proposition demonstrates. Its

construction dates back to Day (1970).

Proposition A.1

Let V be a symmetric monoidal closed category and C a V-enriched category.

Suppose that all the coends of the functor (A 1) exist. Then V-Cat(Cop × C,V) is

monoidal.

Proof

Due to the V enrichment of C and closedness of V we can define a V-bifunctor

I : Cop × C→ V by

I(X,Y ) = C(X,Y ) ∈ V

whose action on morphisms, i.e. the morphism

I(X,Y ),(X ′ ,Y ′) : C(X ′, X)⊗ C(Y , Y ′)→ C(X ′, Y ′)C(X,Y )

in V, is the transpose of the iterated composition morphism

C(X ′, X)⊗ C(Y , Y ′)⊗ C(X,Y ) ∼= C(X ′, X)⊗ C(X,Y )⊗ C(Y , Y ′)→ C(X ′, Y ′).
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Next, notice that Lemma A.1 duly enriches over V (see Kelly 1982, Section

2.1), so that for V-bifunctors A,B : Cop × C → V we can define a V-bifunctor

A⊗ B : Cop × C→ V by

A⊗ B =

∫ P

A(−, P )⊗ B(P ,−).

Recall that coend calculus is known to be associative up to isomorphism (Mac

Lane 1971, Proposition 9.8). So to show that the above are indeed a monoidal

product and unit, it suffices to give natural isomorphisms λA : I ⊗ A ⇒ A and

ρA : A⊗ I ⇒ A. We concentrate on ρ for the purposes of the proof. (In fact, this is

an instance of the enriched Yoneda lemma.)

For each P ∈ C we define a morphism eP : IV → A(X,Y )A(X,P )⊗I(P ,Y ) as the

transpose of the following composite, where IV is the monoidal unit of V:

A(X,Y )

IV ⊗ A(X, P )⊗ I(P , Y )

e′P

���������

∼=
��

A(X, P )⊗ A(X,Y )A(X,P )

evV

�����������������

A(X, P )⊗ IV ⊗ C(P , Y )
id⊗IX⊗id

�� A(X, P )⊗ C(X,X)⊗ C(P , Y )

id⊗A(X,P ),(X,Y )

��

These form a V-dinatural transformation e : A(X,−) ⊗ I(−, Y )
•

=⇒ A(X,Y ). (The

fact that the domain of eP is the monoidal unit in V is caused by the V-enrichment of

the (di)natural transformation.) Since A⊗ I is a coend, there is a unique morphism

ρX,Y : (A ⊗ I)(X,Y ) → A(X,Y ) such that ρX,Y ◦ cP = eP , where c : A(X,−) ⊗
I(−, Y )

•
=⇒ (A ⊗ I)(X,Y ) is the coending dinatural transformation. Then ρ is a

natural isomorphism. The natural transformation whose component ρ−1
X,Y : IV →

(A⊗ I)(X,Y )A(X,Y ) at X,Y is the transpose of the composite

IV ⊗ A(X,Y ) ∼= A(X,Y )⊗ IV
id⊗IY ��A(X,Y )⊗ C(Y , Y )

cY �� ��(A⊗ I)(X,Y ).

is the inverse of ρX,Y , which shows that ρ is indeed a natural isomorphism, as

required. �

To arrive at the monoidal structure of the previous proposition, we relied on the

existence of all the coends of (A 1). However, since we are only after a monoid

in Cat(Cop × C,V), it suffices to require the existence only of coends of the form∫ P
A(X, P ) × A(P , Y ) for all A : Cop × C → C and X,Y ∈ C. Recall that in

Section 4.4 we only needed C to be small. The previous observations lead to the

following extension of this requirement.

Definition A.1

A category C is said to support arrows in a symmetric monoidal closed category V if

it is V enriched, and for each V-bifunctor A : Cop ×C→ V and each pair X,Y ∈ C

the coend
∫ P

A(X, P )⊗ A(P , Y ) exists.

The previous machinery allows us to generalise our main definition, Definition 4.2.
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Definition A.2

Let C be a category with finite products that supports arrows to V. An arrow over

C is a monoid in V-Cat(Cop × C,V) that carries an internal strength.

Notable special cases of the previous definition are V = C Cartesian close, and

V = Set. The latter case reduces the situation to profunctors, which we studied

in Section 4.4. The former one most closely resembles categorical semantics of

Haskell, in that it concerns just one category of types and terms. But if C = V is

to be Cartesian closed, small and cocomplete, then it is forced to be a preorder

(Freyd 1964, Chapter 3, Exercise D). However, small complete internal categories

do exist (Hyland 1988) and can indeed be used as models for polymorphic type

theory. Working in such a universe is very similar to working in a polymorphic

type theory as we have done in Section 4.4. Separating size issues is one of

the reasons we have considered bifunctors to an enriching category V in this

appendix.

Appendix B

Bicategorical characterisation

Now that we have characterised arrows using categories enriched in a monoidal

closed category in Appendix A, we may as well go one step further and give a unified

characterisation of monads and arrows using categories enriched in a bicategory.

As a bicategory is a 2-category in which composition is only associative up to

isomorphism, this allows for the category of profunctors – after all, composition

of profunctors depends on products in Set, which are not strictly associative. This

approach cleanly exhibits the motto

monad

arrow
∼=

Functor

Profunctor
.

The definitions below clearly indicate that both arrows and monad are instances

of monoids; the only difference is that one has to take the right category to

base the monoid on. Finally, this unified approach gives an intuitive basis of

Theorem 6.2.

Definition B.1

Let V be a bicategory and V ∈ V. By a monoid on V we mean a monoid in

the monoidal category V(V , V ), with the identity morphism and composition for

monoidal structure.

To justify this terminology, observe that an (ordinary) monoid in a monoidal

category C is a monoid in the corresponding one-object bicategory.

Definition B.2

Let C be a category enriched in V. A V-monad on C is a monoid on C in V-Cat.

A V-arrow on C is a monoid on C in V-Prof .

For C a category, a Set-monad on C is simply an (ordinary) monad. Unwinding

the definition, a Set-arrow A on C boils down to a monoid in Cat(Cop × C, Set).
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Hence a Set-arrow of the previous definition closely resembles Definition 4.2 for the

case V = Set, since the only thing missing is the (internal) strength. Equivalently,

we can see A as an ‘index’ and speak of a category D with the same objects as C

and with homsets D(X,Y ) = A(X,Y ) instead, in which identity and composition

are given by the monoidal structure on A. Still another equivalent way of putting

this is an identity-on-objects functor J : C→ D. Conversely, given a category D and

an identity-on-objects functor J : C→ D we can reconstruct a Set-arrow A on C by

A(X,Y ) = D(X,Y ) and A(f, g) = Jg ◦ (−) ◦ Jf. This suggests that arrows over C

should resemble identity-on-objects functors C→ D to a category D with the same

objects as C, with added conditions corresponding to internal strength.

To incorporate the internal strength restriction, consider the following definition.

Definition B.3

Let C be a category with finite products. Define a Cat(Cop, Set)-enriched category

self(C) by the same objects as C, and define homobjects (self(C))(X,Y ) = C((−) ×
X,Y ).

For a category C with finite products, a Cat(Cop, Set)-monad on self(C) is an

(ordinary) strong monad on C. Analogously, we can talk about Cat(Cop, Set)-arrows

on self(C) as ‘internally strong arrows over C’. These correspond to a Freyd category

J : C→ D.

Appendix C

2-categorical details in the Kleisli construction for arrows

The 2-category Freyd of Freyd categories is defined in the following obvious ways:

• An object is a Freyd category C
J→ K.

• A 1-cell (F,H) : (C
J→ K) → (D

I→ L) is a pair of a functor F : C → D

preserving finite products and a functor H : K → L preserving premonoidal

structures, such that IF = HJ .

• A 2-cell (α, β) : (F,H) ⇒ (F ′, H ′) : (C
J→ K) → (D

I→ L) is a pair of natural

transformations α : F ⇒ F ′ and β : H ⇒ H ′ such that Iα = βJ .

The 2-category ArrFreyd of arrows on Freyd categories is as follows:

• An object is a pair (C
J→ K, A) of a Freyd category an arrow A on that.

• A 1-cell (F,H, σ) : (C
J→ K, A) → (D

I→ L, B) is a 1-cell (F,H) : (C
J→ K) →

(D
I→ L) of Freyd together with a natural transformation

Kop × K

A ��������
Hop×H ��

σ
=⇒

Lop × L

B��������

Set ,

which is compatible with arr, >>> and first, in the following sense:
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(i) σ • arrA =
(
arrB ◦ (Hop × H)

)
• Hom(H). Here Hom(H) is the following

natural transformation induced by H ’s action on morphisms:

Cop × C

HomC ��������
Hop×H ��
Hom(H)
=⇒

Dop ×D

HomD�����
���

�

Set

(C 1)

(ii) σ •>>>A =
(
>>>B ◦ (Hop ×H)

)
• (σ⊗ σ), where the natural transformation

σ ⊗ σ is defined in the following obvious manner:

(A⊗ A)(X,Y )
(σ⊗σ)X,Y

���������� (B ⊗ B)(HX,HY )

∐
P∈C A(X, P )× A(P , Y )

����

������
∐

Q∈D B(HX,Q)× B(Q,HY )

����

A(X, P )× A(P , Y )

κP
��

σX,P×σP ,Y
�� B(HX,HP )× B(HP ,HY )

κHP
��

Note that this construction of σ ⊗ σ : A⊗ A⇒ (B ⊗ B) ◦ (Hop ×H) is not

an instance of the functoriality of ⊗.

(iii) With first: for each X,Y , Z in C,

A(X,Y )
σ ��

firstA

��

B(HX,HY )

firstB
��

A(X � Z, Y � Z)
σ

�� B
(
H(X � Z), H(Y � Z)

)
∼=

�� B
(
HX �HZ,HY �HZ

)
where the isomorphism is because H preserves premonoidal structures.

• A 2-cell (α, β) : (F,H, σ) ⇒ (F ′, H ′, σ′) : (C
J→ K, A) → (D

I→ L, B) is a 2-cell

(α, β) : (F,H) ⇒ (F ′, H ′) of Freyd which is compatible with σ and σ′ in the

following sense:

Kop × K

A
�����������

Hop×H ′
��

��
� �� ���Hop×β

σ
=⇒

Lop × L

B
�����������

Set

=
Kop × K

A
�����������

Hop×H ′
��

��
� �� ���βop×H ′

σ′
=⇒

Lop × L

B
�����������

Set .

(C 2)

Here, note that a natural transformation β : H ⇒ H ′ : K→ L induces its dual

βop : H ′op ⇒ Hop : Kop → Lop, with the direction of ⇒ reversed.

The 2-functor Ins : Freyd→ ArrFreyd acts as follows:

• An object C
J→ K is mapped to (C

J→ K,HomK). The bifunctor HomK is

obviously an arrow: its operation first comes from the premonoidal structure

of K.

• A 1-cell (F,H) is mapped to (F,H,Hom(H)). Compatibility of Hom(H) with

first is because H preserves premonoidal structures.

• A 2-cell (α, β) : (F,H) ⇒ (F ′, H ′) is mapped as it is. The compatibility of β

with Hom(H) and Hom(H ′) amounts to the naturality of β : H ⇒ H ′.
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The 2-functor K� : ArrFreyd → Freyd is essentially the Kleisli construction for

arrows in Definition 6.1; namely

• an object (C
J→ K, A) is mapped to a Freyd category C

J→ K
JA→ KA, where

K
JA→ KA is constructed like in Definition 6.1. The composition JA ◦ J is indeed

a Freyd category; for example it preserves central morphisms essentially due

to the arrow law (6’);

• a 1-cell (F,H, σ) : (C
J→ K, A) → (D

I→ L, B) induces a functor H̃ : KA → LB
such that: H̃X = HX on objects and H̃f = σX,Y (f) on morphisms; and

• a 2-cell (α, β) is mapped to (α, β̃), where a component β̃X is given by arr(βX).

The naturality of β̃ amounts to the coherence condition (C 2).
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