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Abstract. We study the cross-correlation between 716 Mg ii quasar absorption systems and
∼ 100,000 Luminous Red Galaxies (LRGs) selected from the Sloan Digital Sky Survey Data
Release 3 in the redshift range 0.4 � z � 0.8. The Mg ii systems were selected to have λλ2796
& 2803 rest-frame equivalent widths � 1.0 Å and identifications confirmed by the Fe ii λ2600
or Mg i λ2852 lines. Over co-moving scales 0.2–13h−1 Mpc, the Mg ii–LRG cross-correlation has
an amplitude 0.69 ± 0.09 times that of the LRG–LRG auto-correlation. Since LRGs have halo-
masses of 1013 M�, this strong cross-correlation signal implies that the absorber host-galaxies
have halo-masses 1–2 × 1012 M�.

1. Introduction
The connection between quasar (QSO) absorption line (QAL) systems and galaxies

(first established by Bergeron & Boissé 1991) is important to our understanding of galaxy
evolution. QALs provide detailed information about the physical conditions and kinemat-
ics of galaxies out to large impact parameters (R>100 kpc), regardless of the absorber’s
intrinsic luminosity (e.g. Steidel et al. 2002, ; Churchill et al. 2005; Kacprzak et al. 2005,
these proceedings). Past results show that Mg ii absorbers are biased towards late-type
galaxies which do not evolve strongly from z� 1 (Steidel & Sargent 1992; Steidel et al.
1994). These results also show that Mg ii absorber host-galaxies have K-band luminosit-
ies consistent with normal 0.7L∗

B Sb galaxies. The cross-section of Mg ii absorbers with
WMgII

r � 0.30 Å appears to be R× ∼ 70h−1 kpc (co-moving) (e.g. Steidel 1995). These
systems are associated with H i absorbers in the Lyman limit regime up to the damped
Ly-alpha absorber (DLA) regime (see also Rao et al. 2005, these proceedings).

In Bouché et al. (2004), we used the Sloan Digital Sky Survey (SDSS) data release
1 (DR1; Abazajian et al. 2003) to constrain the mass of the halos associated with the
Mg ii absorbers. Specifically, we used the absorber-galaxy cross-correlation to measure
the mass ratio of the halos associated with Mg ii since in a hierarchical galaxy formation
scenario, the amplitude ratio of the Mg ii–LRG cross-correlation to the LRG–LRG auto-
correlation is also their bias ratio. The reader is referred to Bouché et al. (2004) and
Bouché et al. (2005a) for the details. Fig. 1 (left) illustrates the methodology. Using
212 Mg ii absorbers and ∼20, 000 Luminous Red Galaxies (LRGs), Bouché et al. (2004)
found that the bias ratio bMg ii

/bLRG is 0.67 ± 0.09 on scales rθ >200h−1 kpc, implying
a halo mass for the Mg ii host galaxies of 0.5–2.5 × 1012 M� (for 1013 M� LRG halos).
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Figure 1. Left : the bias b(M ) as a function of the halo mass M , Mo & White (2002) (solid line).
The right y-axis shows the auto-correlation length r0. LRGs have r0,gg � 6 h−1 Mpc, and thus
masses of � 1013 M�. Right: filled circles show the Mg ii–LRG cross-correlation wag(rθ ) between
716 Mg ii absorbers and 94,649 LRGs. Filled triangles show the LRG–LRG auto-correlation,
wgg. The dashed line shows a power-law fit to wgg. The solid line shows the fit ŵag = a × ŵgg

for rθ > 200h−1 kpc since the smallest scales will be affected by the finite cross-section of the
absorbers. The raw relative amplitude is a = 0.87 ± 0.08. The left panel therefore implies that
our Mg ii absorbers have halos 7–10 times less massive than LRG halos, i.e. our Mg ii absorbers
have halos with mass 1–2 × 1012 M�.

2. Results
Here, we extend our DR1 results using SDSS Data Release 3 (DR3; Abazajian et al.

2005). We selected 716 Mg ii absorbers from SDSS/DR3 with zabs � 0.8 using an auto-
mated technique that included the following criteria: (i) WMgII

r � 1.0 Å ; (ii) we require
that WMgI

r �0.2Å , and that WFeII
r �0.5 following the DLA criteria of Nestor et al. (2003)

and Rao & Turnshek (2000) (see Rao et al. 2005, these proceedings, for an updated dis-
cussion). We remove spurious candidates by visually inspecting each Mg ii spectrum.

For each absorber, we selected ∼ 1, 300 Luminous Red Galaxies (LRGs) from the
SDSS/DR3 using colour criteria following Scranton et al. (2003), and in a slice of width
Wz = 0.1 using photometric redshifts calculated with the code of Csabai et al. (2003).
There are a total of 94,649 LRGs meeting these criteria, within 12.8h−1 Mpc, our largest
bin.

For the cross-correlation, wag, we used the estimator 1+wag(rθ ) = AG/AR , where AG
is the total observed number of absorber–galaxy pairs between rθ − dr/2 and rθ + dr/2
and AR is the total absorber–random galaxy pairs. This estimator is necessary to account
for the non-symmetric situation: Mg ii absorbers have precise redshifts, while the LRGs
have photometric redshifts with an accuracy of σz � 0.1 (see Bouché et al. 2005a, for
a discussion). Fig. 1 (right) shows our results (see caption). The errors in wag and wgg

were computed using Njack =10 jack-knife realisations.
The amplitude of the Mg ii-LRG cross-correlation relative to that of the LRG–LRG

auto-correlation is 0.69 ± 0.07 ± 0.06, after applying a correction of 25 ± 10 percent dis-
cussed in Bouché et al. (2004). The two error terms reflect the statistical and systematic
uncertainty, respectively. By adding the errors in quadrature, the bias ratio is

a = 0.69 ± 0.09 . (2.1)

Within the context of hierarchical galaxy formation, Eq. 2.1 implies that our Mg ii ab-
sorbers have halo masses 7–10 times smaller than the LRGs. For 1013 M� LRG halos,
the Mg ii absorbers have halos of 1–2 × 1012 M�.
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It is important to realise that this method (i.e. measuring the halo mass from the
ratio of projected correlation functions) has the following advantages (see also Bouché
et al. 2004): (i) it constrains the mass of the Mg ii/DLA host-galaxies in a statistical
manner without directly identifying them; (ii) it is free of systematics from contaminants
(e.g. stars); and (iii) it does not require knowledge of the true width of the redshift
distribution of the galaxies used. The last two points are a consequence of the fact that
we use the same galaxies for wgg(rθ ) and for wag(rθ ).

3. Discussion
Our results are consistent with those of Bergeron & Boissé (1991) and Mo & Miralda-

Escudé (1996). For instance, Mo & Miralda-Escudé (1996) indicate that the majority
of Mg ii absorbers reside in systems with Vcirc = 150–300 km s−1 with a median at
∼ 200 km s−1. Our mass measurement appears to corroborate that of Steidel et al.
(1994) who found that Mg ii absorbers with WMgII

r �0.3 Å are associated with late-type
∼0.7L∗

B galaxies, since the expected amplitude ratio between early and late type galaxies
is ∼0.70 (see Bouché et al. 2004).

Are our results consistent with ΛCDM? That is, are there enough massive halos to ac-
count for dN/dz? From dN/dz = n(M) σ(M) dr/dz, RX � 70 kpc (co-moving) (Steidel
1995), n(M) = 10−2h−3 Mpc−3, dN/dz = 0.3 (n/10−2) (RX /70 kpc)2 � dN/dz(obs),
and we can conclude that there are enough massive 1012 M� halos. While we defer a
more detailed analysis of these results to Bouché et al. (2005b), preliminary results also
indicate little dependence of the halo mass on the equivalent width.
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