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We report a home-built velocity-gradient-tensor-resolved particle image velocimetry
(VGTR-PIV) system which spatio-temporally resolves all components of the velocity
gradient tensor. This technique is applied to the paradigmatic turbulent Rayleigh–Bénard
convection system in a cylindrical cell at three representative positions, i.e. centre, side
and bottom regions. The VGTR-PIV system allows us to directly measure, for the first
time, the spatio-temporally resolved energy dissipation rate and enstrophy in turbulent
thermal convection. In the experiment, the Rayleigh number Ra varied in the range
2 × 108 � Ra � 8 × 109 and the Prandtl number Pr was fixed at Pr = 4.34. Compared
with the fully resolved energy dissipation rate ε, the pseudo-dissipation provides the best
estimate within 3 %, the planar (two-dimensional) surrogate has a larger relative error and
the one-dimensional surrogate leads to the largest error. The power-law scalings of the
time-averaged energy dissipation rate with the Rayleigh number follow 〈εc〉t/(ν

3H−4) =
9.86 × 10−6Ra1.54±0.02, 〈εs〉t/(ν

3H−4) = 9.26 × 10−3Ra1.25±0.02 and 〈εb〉t/(ν
3H−4) =

2.70 × 10−2Ra1.23±0.02 in the centre, side and bottom regions, respectively where ν

is dynamic viscosity and H is cell height. These scaling relations, along with our
earlier measured time-averaged energy dissipation rate at the bottom wall surface
〈εw〉t/(ν

3H−4) = 9.65 × 10−2Ra1.25±0.02 (J. Fluid Mech., vol. 947, 2022, A15), provide
important constraints against which theoretical models may be tested. For the centre and
side locations in the convection cell, the probability density functions (p.d.f.s) of the
energy dissipation rate and enstrophy both follow a stretched exponential distribution. For
the bottom region, the p.d.f.s of dissipation and enstrophy exhibit a stretched exponential
distribution outside the viscous boundary layer and an exponential distribution inside the
viscous boundary layer. It is also found that extreme events with high dissipation are the
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most intermittent in the side region, whereas the bottom region is less intermittent than
the cell centre.

Key words: Bénard convection, turbulent convection

1. Introduction

Most flows occurring in nature and engineering applications are turbulent. In turbulent
flows, the kinetic energy of a fluid is dissipated at the smallest scales owing to molecular
viscosity. The energy dissipation rate, perhaps the most crucial quantity in the study
of turbulence, characterises the transfer rate from kinetic energy to heat via molecular
viscosity and is defined as

ε = 2νsijsij = ν
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(1.1)

where ν is the kinematic viscosity of the working fluid, sij = (∂ui/∂xj + ∂uj/∂xi)/2 is
a component of the strain rate tensor S, ui is the velocity component (i.e. u, v or w)
and summation over repeated indices is implied. The energy dissipation rate has been
widely studied in systems such as homogeneous and isotropic turbulence, Taylor–Couette
flow, von Kármán swirling flow and turbulent boundary layers. The statistics of the
energy dissipation rate are closely related to intermittency and energy cascades (Frisch
1995). The study of dissipation has promoted developments of many turbulence theories
and models, such as the Richardson cascade model (Richardson 1922), Kolmogorov
phenomenological theory (Kolmogorov 1962) and turbulence modelling (Launder &
Spalding 1974). Important as it is to access the instantaneous energy dissipation rate,
all nine components of the velocity gradient tensor need to be resolved simultaneously,
which is challenging experimentally. Thus, there is very limited work on measuring the
energy dissipation rate without resorting to some assumptions (Wang et al. 2021). In this
paper, we present a measurement system which is able to spatio-temporally resolve the
full velocity gradient tensor down to the Kolmogorov length and time scales while making
long-term measurements at the same time. We demonstrate this technique using the system
of turbulent thermal convection.

Turbulent thermal convection is ubiquitous in both natural phenomena and industrial
applications. Rayleigh–Bénard convection (RBC), as a paradigmatic system for studying
turbulent thermal convection, concerns a fluid layer between two horizontal plates which is
heated from below and cooled from above. The RBC system has been studied extensively,
focusing on both fundamentals and applications of turbulent flows (Ahlers, Grossmann &
Lohse 2009; Lohse & Xia 2010; Chillà & Schumacher 2012; Xia 2013; Xia et al. 2023a).
Given the geometry of the convection cell, the control parameters of the RBC system are
the Rayleigh number Ra and the Prandtl number Pr

Ra = αTgH3�T
νκ

; Pr = ν

κ
, (1.2a,b)
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Experimentally measured fully resolved energy dissipation

where αT and κ are the thermal expansion coefficient and the thermal diffusivity of the
working fluid, g is the gravitational acceleration, H is the cell height and �T is the
temperature difference across the fluid layer. As a closed system, there exists an exact
balance between the volume-averaged energy dissipation rate and the global heat transport
in RBC (Shraiman & Siggia 1990)

〈ε〉V = ν3

H4 (Nu − 1)
Ra
Pr2 , (1.3)

where the operator 〈·〉V indicates volume averaging. This relation highlights the important
role of energy dissipation rate in understanding and modelling the RBC system.

By assuming homogeneity and isotropy within the local measurement volume,
Ni, Huang & Xia (2011) obtained the ensemble-averaged energy dissipation rate by
conducting particle tracking velocimetry (PTV) measurements in the central region and
found a power-law scaling 〈ε〉t ∼ Ra1.55±0.02. They also observed a local balance between
the energy dissipation rate and the convective heat flux in the centre. Subsequently, Li
et al. (2021) measured the ensemble-averaged energy dissipation rate in two (50 mm)3

plume-abundant regions with their edges 15 mm away from the sidewall or the bottom
plate and found a power-law scaling 〈ε〉t ∼ Ra1.34±0.07 in both regions. Although direct
numerical simulation is able to resolve the local energy dissipation rate, due to the
limited computing resources, numerical simulations cannot provide long-term statistics,
especially in the side or bottom regions where local homogeneity does not apply (Verzicco
& Camussi 2003; Zhang, Zhou & Sun 2017; Vishnu, De & Mishra 2022). To the best
of our knowledge, no experimental work has been able to spatio-temporally resolve the
energy dissipation rate in turbulent thermal convection. In the present work, we construct
an advanced velocity-gradient-tensor-resolved particle image velocimetry (VGTR-PIV)
system that has high spatial and temporal resolutions down to the Kolmogorov scales,
is capable of long-term sampling and is versatile enough to be applied to different
representative regions in the thermal convection system. The reported results regarding
the energy dissipation rate in most of the previous numerical studies are based on volume
averages, some over a significant portion and some over the whole volume, of the system.
This makes it difficult to directly compare results from those numerical results with
pointwise measurements. On the other hand, as a closed system, the scaling and probability
density functions (p.d.f.s) of most physical quantities in turbulent RBC are position
dependent. The strong position dependence makes volume averaging not very meaningful
for many physical quantities and highlights the advantages of pointwise measurements.

The remainder of this paper is organised as follows. We present the experimental set-up,
data acquisition and processing techniques for the spatio-temporally resolved energy
dissipation rate measurement facility (VGTR-PIV system) in § 2. Our main results are
presented in § 3, which is divided into four subsections. In § 3.1, we present results on the
properties of velocity gradient tensor components. In § 3.2, we compare one-dimensional,
two-dimensional and pseudo-surrogates of the energy dissipation rate. In § 3.3, we present
and discuss the Rayleigh number dependence of the energy dissipation rate and the
Reynolds number. In § 3.4, we analyse statistical properties of the energy dissipation rate
and enstrophy. Finally, we summarise our findings and conclude in § 4.

2. The experimental set-up

Xu, Zhang & Xia (2022) measured the full velocity profile at the intersection of two
orthogonal vertical planes above the centre of the bottom plate. The energy dissipation
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x–y camera

x–z camera

y–z camera

532 nm laser

671 nm laser

473 nm laser

Convection cell

Sapphire disc

z

y

x

Figure 1. Sketch of the cylindrical convection cell, the VGTR-PIV system and the Cartesian coordinates.
The enlarged drawing shows a sample of the highly fluctuating planar velocity fields in three orthogonal
measurement planes.

rate at the centre of the bottom plate was obtained using the wall-shear stress vector. The
present rig was built on that system with three orthogonal measurement planes using the
same convection cell. For ease of reference, we provide more details of the convection
cell. As shown in figure 1, it is a cylinder with its height and inner diameter both being
188 mm (unit aspect ratio). A water-filling square jacket is fitted around the Plexiglas
sidewall to reduce image distortion. The bottom plate is made of a 30 mm thick copper
disc with a black-nickel-plated surface. The top plate is made of a 5 mm thick sapphire
disc to ensure both high thermal conductivity (λf ≈ 42 W (m K)−1) and optical access
from above. The temperature of the top plate is measured at the side of the sapphire
disc by four evenly distributed thermistors. The bottom plate temperature is measured
by four embedded thermistors. The thermistors (OMEGA 44031) used to measure the
temperatures of the top and bottom plates have an accuracy of 0.01 K and a response
time of 1 s. We applied another type of thermistor (TE Connectivity NTC), which has
a diameter of 0.2 mm and a response time of 30 ms, to measure the bulk temperature.
Over the sapphire plate, there is a cooling chamber for water circulation. Compared
with the previous experimental set-up (Xu et al. 2022; Xia, Xu & Zhang 2023b), the
current rig enables simultaneous optical measurements in three orthogonal planes, with
sampling time smaller than the Kolmogorov time scale and spatial resolution smaller than
the Kolmogorov length scale, making it possible to spatio-temporally resolve the velocity
gradient tensor and the energy dissipation rate. The convection cell is insulated inside a
thermostat to minimise heat exchange between the convection system and its surroundings,
and the thermostat temperature is kept the same as the bulk temperature, i.e. 40 ◦C. The
Cartesian coordinate system has its origin at the measurement position (centre, side or
bottom), x–y being the horizontal plane and z axis pointing upward.

This measurement system, as shown in figures 1 and 2, is named the VGTR-PIV
system for short. The planar velocity fields in three orthogonal planes were measured
simultaneously. The intersection point of the three planes is the position where the
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Experimentally measured fully resolved energy dissipation

(a) (b)

Figure 2. (a) A photo of the cylindrical convection cell with a square jacket and three-colour orthogonal
laser sheets for the measurement in the bottom region. (b) Overview of VGTR-PIV experimental rig during
measurement. The suspended thermostat and circulation fans are attached to the hanger above.

velocity gradient tensor can be fully resolved. Three lasers with different wavelengths
form orthogonal light sheets, as shown in figure 2(a). The thickness of each light
sheet at the measurement position is 0.5 mm. A 1.5 W laser with λ = 532 nm was
applied to illuminate the horizontal x–y measurement plane, and two 500 mW lasers
with λ = 671 nm and λ = 473 nm were used to illuminate the x–z plane and y–z plane,
respectively. Three synchronised cameras (scientific CMOS PCO.edge with 5.5 megapixel,
16-bit dynamic range) were applied to record the image sequences. The pixel size of
the CMOS sensor is 6.5 µm × 6.5 µm. The cameras were mounted with Nikkor AF
105 mm f /2.8 micro lenses, and each lens was equipped with a 20 nm OD4 bandpass
filter with its centre wavelength corresponding to the appropriate laser wavelength in
the measurement plane. The current set-up significantly improves the image quality by
filtering out unwanted wavelengths. We applied CameraLink HS connection to ensure an
uncompressed long-term data transmission between cameras and disc arrays. To guarantee
the accuracy of the spatio-temporally resolved velocity gradient tensor, vibration sources
such as fans in the thermostat and in the lasers were isolated from the optical table where
the convection cell was placed. For instance, as shown in figure 2(b), the thermostat was
suspended on the upper hanger as a whole, so its vibrations induced by circulation fans
would not be directly transmitted to the VGTR-PIV system.

In the VGTR-PIV measurements, the fluid is seeded with Dantec 10 µm diameter hollow
glass particles with an average particle density of 1.1 g cm−3. Hollow glass spheres instead
of polyamide spheres were applied as our tracing particles since the former can disperse
evenly in water and will not agglomerate into flocs during long-term measurements. The
hollow glass spheres were centrifuged to obtain particles slightly denser than water, since
light particles attached to the sapphire top plate may block the optical access of the top
camera. For particles whose densities do not match the solution, their behaviours may
deviate from the fluid parcels. The inertial effect of the particles can be characterised by
the Stokes number (Raffel et al. 2007) as

St = τp

τη

= d2
p(ρp − ρf )

18νρf τη

, (2.1)

where τp is the time scale of the Stokes viscous drag by particle–fluid interaction, τη is
the Kolmogorov time scale of the flow, dp is the diameter of the particles and ρp and ρf
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Needle tip

(a) (b)

Steel needle

Needle tip

0.3 mm

Steel needle

Thermistor

Moveable tube

3 mm

Figure 3. (a) Photo of the black-painted steel needle with its reflective tip as the calibration target. (b) Sample
of the calibration image.

are the densities of the particles and the fluid, respectively. In our experiment, the time
scale of the Stokes viscous drag is τp = 9.2 × 10−7 s and the Stokes number varies in a
range of St = 1.2 × 10−7–2.1 × 10−6. Therefore, the particles can faithfully follow the
fluid motion in all cases. We also evaluate the particle diameter di in the camera image,
which is estimated following Adrian & Yao (1985) as

di = (M2d2
p + d2

s )
1/2, (2.2)

where M is the magnification of the lens, dp is the particle diameter, ds = 2.44(M +
1)λfa/Da is the diffraction contribution, λ is the laser wavelength and fa and Da are the
focal length and aperture diameter, respectively. The lens aperture was set to fa/Da = 8
for all cases. Therefore, the particle diameter in the camera image occupies 3.0–4.0 pixels
in the centre/side region and 1.9–2.5 pixels in the bottom region.

In order to determine the parameters of the calibration functions that map the
three-dimensional laboratory coordinate system onto the camera image plane, we used
a movable steel needle with its tip diameter around 50 µm as the target, as shown in
figure 3(a). In order to enhance contrast, the steel needle was painted black except for its
tip. The convection cell was placed on a motorised heavy-load x − z stage with an accuracy
of 10 µm. By moving the target using stepper motors and tracking its displacement in each
camera image, the calibration parameters can be obtained. Additionally, the needle tip
also helps determine the exact intersection position of the three orthogonal laser sheets.
The calibration needle was moved away from the intersection point of orthogonal planes
during the VGTR-PIV measurements. Uncertainties caused by thermal plumes and other
disturbances were assessed by tracking the trajectory of the needle tip in each camera,
and the errors were found to be 0.9 µm (≈0.1 pixel) in the vertical planes and 2.6 µm
(≈0.4 pixel) in the horizontal plane at Ra = 3 × 109. Further analysis indicates that these
errors are mainly caused by environmental disturbances and they may also exhibit a
Rayleigh dependence.

The measurements were performed in three representative positions in the convection
cell, i.e. centre, side and bottom, with the corresponding parameters listed in table 1.
The convection cell was levelled when measuring in the centre. For the measurement
in the side or bottom region, the convection cell was tilted by about 0.6◦ in the x–z
plane to lock the orientation of the large-scale circulation (Brown & Ahlers 2008). In the
side region, the measurement point is located at the middle height and is approximately
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Experimentally measured fully resolved energy dissipation

Position Centre (c) Side (s) Bottom (b)

Ra 8.05 × 109–1.94 × 108 7.88 × 109–2.37 × 108 8.28 × 109–2.04 × 108

Pr 4.34 4.34 4.34
η 0.50 mm–2.16 mm 0.47 mm–1.42 mm 0.42 mm–1.31 mm
τη 0.38 s–7.11 s 0.34 s–3.06 s 0.27 s–2.59 s
f 80 Hz 80 Hz 80 Hz
f τη 31–569 27–245 22–207
Particle in image (di) 20 µm–27 µm 20 µm–27 µm 17 µm–23 µm
Pixel resolution 6.9 µm pixel−1 6.9 µm pixel−1 9.2 µm pixel−1

Field of view (x − y) 5.6 mm × 5.6 mm 5.6 mm × 5.6 mm 7.3 mm × 7.3 mm
Field of view (x − z/y − z) 5.6 mm × 5.6 mm 5.6 mm × 5.6 mm 7.3 mm × 23.4 mm
Spatial resolution 0.44 mm 0.44 mm 0.29 mm

Table 1. Experimental parameters of the VGTR-PIV system in the centre, side and bottom measurement
regions. Here, f τη is the number of data points within the Kolmogorov time scale τη.

12 mm away from the sidewall. The side position lies within the large-scale circulation
(x–z) plane and corresponds to the position with the maximum time-averaged vertical
velocity at the mid-height, as obtained in a preliminary measurement at Ra = 109. In the
bottom region, the measurement point is 5 mm over the centre of the bottom plate, above
the time-averaged viscous boundary layer at all Rayleigh numbers (Xu et al. 2022; Xia
et al. 2023b). At each position, measurements were conducted at eight Rayleigh numbers
varying in the range Ra = 2 × 108–8 × 109. To obtain sufficient statistical data, the flow
field at each Rayleigh number was measured at 80 Hz for a time period of 10.5 hours,
i.e. 3 × 106 image pairs. The sampling time corresponds to 5 × 103–3 × 104 times of the
free-fall time unit (tff = √

H/αg�T). Note that the sampling time in our experiments
is one to two orders of magnitude larger than the statistical time in most numerical
simulations, typically O(102). The sampling frequency of f = 80 Hz is sufficient to
resolve the local Kolmogorov time scale since f τη � 1, as indicated in table 1. The
high sampling rate and long sampling time used by our VGTR-PIV system are two key
factors for achieving high-quality statistics of small-scale properties and extreme events in
turbulent thermal convection.

We applied an in-house cross-correlation code and used a high-performance
parallel-computing facility to process the large number of raw images which exceed
500 TB. The background image, calculated as the average intensity of all frames, was
subtracted from each frame to enhance contrast and reduce noise. For the centre and
side regions, each frame was divided into interrogation areas of 128 × 128 pixels with
50 % overlap, while the frames in the bottom region were processed by 64 × 64 pixels
interrogation areas with 50 % overlap. The spatial resolution (i.e. the distance between
adjacent velocity data) is compared with the local Kolmogorov length scale η. The
spatial resolutions of 0.44 mm in the centre/side region or 0.29 mm in the bottom region
are below the corresponding local Kolmogorov length scales, as listed in table 1. The
velocity fields were post-processed using local median check criteria to discard spurious
values. The velocity gradient components in each measurement plane were obtained by
fitting the corresponding velocity profile ui(xj) with a quadratic function using five data
points. Compared with the work in Zeff et al. (2003), which adopted only two points,
incorporating five data points in the current work helps to improve the accuracy of the
velocity gradient. Considering the oversampling in data acquisition, the time sequence
of each velocity gradient component was smoothed using a quadratic function to filter
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out spurious velocity data. In each measurement plane, four velocity gradient tensor
components can be measured, e.g. ∂u/∂x, ∂u/∂y, ∂v/∂x and ∂v/∂y in the x–y plane.
Therefore, the three normal components (i = j) in the velocity gradient tensor were
measured twice by the VGTR-PIV system. Considering that the convection cell was tilted
in the x–z plane, the normal components ∂u/∂x and ∂w/∂z in the x–z plane, and ∂v/∂y
in the y–z plane, were selected to minimise the effect of thermal plumes. The difference
between the normal velocity gradient components obtained from the two measurement
planes is within 5 %.

The spatio-temporally resolved strain rate tensor S and energy dissipation rate ε were
then computed from the velocity gradient tensor following (1.1). The enstrophy, which is
crucial in describing the rotational motion of the turbulent flow, is defined as

Ω ≡ 2aijaij, (2.3)

where aij = (∂ui/∂xj − ∂uj/∂xi)/2 is a component of the rotation rate tensor A. The
relationship between the enstrophy and vorticity (ω = ∇ × u) is Ω = ω2 = ωiωi. The
spatio-temporally resolved enstrophy Ω is calculated following (2.3). Figure 4(a) shows
an example of the measured time series of the energy dissipation rate and enstrophy. It is
seen that both of them are highly intermittent, since the extreme values of ε could be an
order of magnitude larger than the time-averaged values. As shown in figures 4(b)–4(d),
the extreme energy dissipative event corresponds to sharp changes in the direction and
magnitude of in-plane velocity fields. In contrast, the fluid near the intersection point
is nearly stationary when the instantaneous energy dissipation rate is relatively low. In
figure 4(b), which corresponds to a high energy dissipation rate ε = 22.3〈ε〉t, sharp
changes in the magnitude of the in-plane velocity can be easily observed through changes
in the coloured contours, e.g. from purple in the lower right region to orange in upper left
region in the y–z plane, while changes in the velocity directions can be observed in the
in-plane vectors.

3. Results and discussions

3.1. Properties of velocity gradient tensor components
As demonstrated in the highly fluctuating time series in figure 5(a), our VGTR-PIV system
is able to temporally resolve all nine components of the velocity gradient tensor. The
long-term sampling of the velocity gradient tensor allows us to study its statistics. The
normalised p.d.f. of each velocity gradient component is shown in figure 5(b). The p.d.f.
of each velocity gradient component follows an exponential distribution in both positive
and negative tails. The p.d.f.s of the three normal components in the velocity gradient
tensor overlap each other without appreciable differences, as do the six shear components
with themselves. The negative tails of all nine components overlap, while the positive tails
of the three normal components have lower p.d.f.s than the shear components.

Figure 6 shows the p.d.f.s of the normalised normal and shear components of the
velocity gradient tensor in three measurement positions. The velocity gradient p.d.f.s at
different Rayleigh numbers basically overlap. The asymmetry of the velocity gradient
component ∂ui/∂xj can be quantified by its skewness

S∂ui/∂xj = 〈(∂ui/∂xj)
3〉t

〈(∂ui/∂xj)2〉3/2
t

. (3.1)

As shown in figure 7(a), the shear velocity gradient components have a skewness
close to zero, indicating a symmetric distribution, whereas the skewness of the normal
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Figure 4. (a) Time sequence of the normalised energy dissipation rate and enstrophy measured in the centre at
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in-plane velocity magnitude.
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Figure 5. (a) Time sequences of all nine components of the velocity gradient tensor measured in the centre
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Figure 6. The p.d.f.s of velocity gradient components in the (a,b) centre, (c,d) side and (e, f ) bottom regions.
The normal velocity gradient components are shown in panels (a,c,e), while the shear components are shown
in panels (b,d, f ).

component is approximately −0.5. The skewness values are similar across the three
measurement regions, and the symmetry of the normal components appears to increase
slightly with increasing Rayleigh number. The left-skewed p.d.f. of the normal velocity
gradient component is attributed to the energy cascade towards smaller scales. The kurtosis
quantifies the tailedness of the velocity gradient component ∂ui/∂xj as

K∂ui/∂xj = 〈(∂ui/∂xj)
4〉t

〈(∂ui/∂xj)2〉2
t
. (3.2)

As shown in figure 7(b), the kurtosis values of shear components are larger than those
of normal components in each measurement position. The kurtosis values are the largest
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Figure 7. (a) Skewness (3.1) and (b) kurtosis (3.2) of the velocity gradient tensor ∂ui/∂xj separated into its
normal (i = j) and shear (i /= j) components as a function of the Rayleigh number. The average skewness of
three normal components or six shear components is used here. The dashed line is the corresponding value for
the normal distribution.

in the centre and the smallest in the bottom and remain nearly constant as the Rayleigh
number increases.

3.2. One-dimensional, two-dimensional and pseudo-surrogates of the energy dissipation
rate

In most previous experimental measurements, only some of the nine components in
the velocity gradient tensor can be resolved. In such cases, one-dimensional (1-D) and
two-dimensional (2-D) surrogates are often used to estimate the time-averaged energy
dissipation rate. The velocity gradient tensor obtained by our VGTR-PIV system allows us
to directly evaluate the accuracy of different surrogates in turbulent thermal convection.
The simplest estimation of the energy dissipation rate (1.1) uses only one velocity gradient
component, i.e. 1-D surrogate. It is often used for homogeneous and isotropic turbulent
flows (Meneveau & Sreenivasan 1991), and is defined as

〈ε〉1−D = 15ν

〈(
∂ui

∂xj

∣∣∣∣
i=j

)2〉
t

= 15
2

ν

〈(
∂ui

∂xj

∣∣∣∣
i /= j

)2〉
t

, (3.3)

where the operator 〈·〉t denotes time averaging. The 1-D surrogate is usually adopted
for single-point measurement together with the Taylor frozen-turbulence hypothesis
(Taylor 1938). When the turbulence is assumed to be locally isotropic, the unavailable
velocity gradient components in two other planes can be substituted by the resolved four
components in a planar PIV (Sharp, Kim & Adrian 2000). The time-averaged energy
dissipation rate based on these four components in the xi − xj (i /= j) measurement plane,
i.e. 2-D surrogate, is estimated as

〈ε〉2−D = ν

〈
2
(

∂ui

∂xi

)2

+ 2
(

∂uj

∂xj

)2

+ 3
(

∂ui

∂xj

)2

+ 3
(

∂uj

∂xi

)2

+ 2
∂ui

∂xj

∂uj

∂xi

〉
t

, (3.4)

where i /= j and there is no summation over repeated indices. Lastly, the pseudo-energy
dissipation rate is defined as

〈ε〉pseudo = ν

〈
∂ui

∂xj

∂ui

∂xj

〉
t
, (3.5)

where summation over repeated indices is implied.
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The relative estimation error to the true value of the energy dissipation rate is defined as

err〈ε〉est = 〈ε〉est − 〈ε〉t

〈ε〉t
, (3.6)

where 〈ε〉est is a surrogate of the time-averaged energy dissipation rate using (3.3)–(3.5).
Figure 8(a,c,e) shows the 1-D surrogate value using each velocity gradient component

following (3.3) for the three measurement positions, while (b,d, f ) compares their relative
errors. In the central region, all nine 1-D surrogates are of the same order of magnitude
and follow similar power-law scaling as a function of Rayleigh number, suggesting that
no component should be neglected. The 1-D surrogates are less scattered in the centre
compared with the side and bottom regions. In the central region, the energy dissipation
rate estimated using a single normal component is lower than that of the shear component.
The relative error in the centre decreases with increasing Rayleigh number, which is
attributed to the increased level of isotropy. For Ra � 109 in the centre, the relative errors
of 1-D surrogate are within ±20 %. In the side or bottom region, the relative errors
of the 1-D surrogates are significantly larger than those for the central region at high
Rayleigh numbers, and the errors also tend to decrease with increasing Rayleigh number.
In the side region, the 1-D surrogate is closer to the true value when using a normal
component than a shear component, and the errors for the three normal components are
similar. In the bottom region, the error of ∂w/∂z is the largest among the nine velocity
gradient components. The component ∂v/∂y, i.e. the normal gradient of the horizontal
velocity perpendicular to the tilting plane, provides the best 1-D surrogate in the bottom
region.

The errors of the 2-D surrogate and pseudo-dissipation methods are shown in figure 9.
It is seen that the relative errors of 2-D surrogates for the three measurement planes are
similar in the central region. In contrast, in the side or bottom region, the best 2-D surrogate
with a relative error of ±10 % comes from the x–z plane, i.e. the vertical plane in which
the convection cell was tilted and the large-scale circulation was locked in. Therefore, for
turbulent thermal convection measurements where the full velocity gradient tensor cannot
be resolved, the time-averaged pointwise energy dissipation rate can be well estimated by
(3.5) using planar PIV in the tilting plane. Compared with the 1-D or 2-D surrogate, the
pseudo-surrogate is the closest to the true value in all measurement positions, with most
errors within ±3 %.

To examine the time-dependent behaviour, we plot in figure 10(a) segments of time
series for the exact and various estimates of the dissipation rate. It is seen that their
instantaneous values can differ significantly. To quantitatively evaluate to what degree the
instantaneous values of various surrogates can reflect the time-dependent property of the
true dissipation, we calculate the correlation coefficient between fully resolved (1.1) and
different surrogate values as

cε,εest = 〈(ε(t) − 〈ε〉t)(εest(t) − 〈εest〉t)〉t

σεσεest

, (3.7)

where σ is the standard deviation. As shown in figure 10(b–d), the pseudo-energy
dissipation rate has the highest correlation with the exact value, indicating that it
best follows the fully resolved dissipation in all the three measurement regions. The
2-D surrogates have lower correlations than the pseudo one, and the 1-D cases are
the worst. These results suggest that, as far as instantaneous value is concerned, the
pseudo-dissipation may be used as an approximation, while both the 1-D and 2-D
surrogates are less suitable for use as substitutes. Another observation is that, in all three
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Figure 8. Time-averaged energy dissipation rate (a,c,e) and relative estimate error using 1-D surrogate (b,d, f )
in the (a,b) centre, (c,d) side and (e, f ) bottom regions as a function of the Rayleigh number. Each figure in the
right panels shares the same legend as the corresponding left panel. The inset in panel (b) provides an enlarged
view of the relative error at high Rayleigh numbers.

measurement positions, the correlation coefficient between the fully resolved and the
pseudo-energy dissipation rates decreases with increasing Rayleigh number.

3.3. Rayleigh number dependences of the energy dissipation and Reynolds number
Figure 11 shows the dependence of the time-averaged dissipation rate 〈ε〉t and the Rayleigh
number Ra in the centre, side and bottom regions. It is seen that energy dissipation rates in
the side and bottom regions are significantly higher than the centre. However, both of them
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Figure 9. (a–c) Relative error of the time-averaged energy dissipation rate using 2-D surrogate and
pseudo-energy dissipation rate in the (a) centre, (b) side and (c) bottom regions as a function of the Rayleigh
number. (d) Comparison of relative errors of the time-averaged energy dissipation rate using 2-D surrogate
(x–z planar) and pseudo-surrogates in three regions.

are an order of magnitude lower than the wall dissipation (Xu et al. 2022). The larger wall
energy dissipation rate compared with the dissipation rate inside the convection cell is also
observed in numerical simulations, e.g. Verzicco & Camussi (2003), Kaczorowski & Xia
(2013), Zhang et al. (2017) and Vishnu et al. (2022). The high energy dissipation rate at the
wall is attributed to the intense shear and strain in the region adjacent to the wall surface.
In the Grossmann–Lohse model, by assuming that the large-scale circulation drives the
bulk turbulence and there exists a linear velocity profile within the viscous boundary
layer, Grossmann & Lohse (2000, 2001) obtained 〈ε〉bulk ∼ Ra1.5 and 〈ε〉BL ∼ Ra1.25,
respectively, where operators 〈·〉bulk and 〈·〉BL denote contributions in the bulk and viscous
boundary layer (BL) regions. For the present study, in the central region power-law fits
〈ε〉t ∼ Raγ to the present data yield γ = 1.54 ± 0.02, which is consistent with the value
of 1.5 in the Grossmann–Lohse (G–L) model and also agrees excellently with the value
of 1.55 ± 0.02 obtained by Ni et al. (2011). As shown later in figure 13(a), the power-law
scaling between the Reynolds number and the Rayleigh number is Re ∼ Ra0.50±0.01. Our
experimental results support the scenario that the local energy dissipation rate in the centre
is proportional to the energy input by the large-scale circulation, i.e.

〈εc〉t ∼ U3

H
= ν3Re3

H4 ∼ Ra1.50±0.03. (3.8)
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Figure 10. (a) Time sequences of the energy dissipation rate (1.1) – solid curve, 1-D surrogate (3.3) – dotted
curve with marker, 2-D surrogate (3.4) – dashed curve and pseudo-dissipation rate (3.5) – dash-dot curve
in the centre region at Ra = 3.01 × 109. For the exact value, all data points are shown as symbols. For 1-D
surrogates, the symbols are replaced by solid lines, and only one in 40 symbols is shown. The time t is
normalised by the local Kolmogorov time scale τη = 0.54 s, and the origin of the abscissa is chosen arbitrarily.
(b–d) Cross-correlation coefficient between fully resolved (true) and surrogate energy dissipation rates in the
(b) centre, (c) side and (d) bottom regions as a function of the Rayleigh number.

Away from the bulk, the power-law exponent γ is found to be 1.25 ± 0.02 in the
side region and 1.23 ± 0.02 in the bottom region. These results, within the experimental
uncertainty, are essentially the same as the exponent 1.25 ± 0.02 for the wall dissipation
rate measured by Xu et al. (2022). They are also the same as the G-L prediction for the
boundary layers, although the scaling prediction in the G-L model is volume-averaged
result, and our results are based on pointwise measurements. Li et al. (2021) measured
the ensemble-averaged dissipation rate in two plume-abundant regions with the edge of
the PTV measurement volume being 15 mm away from the bottom plate or the sidewall.
The obtained scaling exponent of 1.34 ± 0.07 from their experiment should be interpreted
as an averaged value within a volume of (50 mm)3 and would have a non-negligible
contribution from the bulk. Note that in the PTV measurement by Li et al. (2021), the
scaling exponents near the side and bottom are also quite similar. The pointwise energy
dissipation rate as a function of the Rayleigh number has not been reported in numerical
simulations. Our observed values and scaling relations of the energy dissipation rate in
different regions, along with the wall dissipation, provide important constraints against
which theoretical models may be tested.
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Figure 11. Time-averaged energy dissipation rate measured in the centre 〈εc〉t, side 〈εs〉t and bottom 〈εb〉t
regions as a function of the Rayleigh number. The diamond is the wall energy dissipation rate measured at the
bottom plate reported in Xu et al. (2022), and the open circle is the PTV-measured centre dissipation in Ni
et al. (2011). The exponents from power-law fittings as a function of Ra, along with the formulae, are listed in
table 2.

Next, we study the relation between the normalised energy dissipation rate and the local
Nusselt number. The energy dissipation rate is normalised as

ε̃ = Pr2H4〈ε〉t

ν3Ra
, (3.9)

following the exact relation of the volume-averaged dissipation in (1.3). Since all the
measurement positions are well above the thermal BL, the spatial gradient of the mean
temperature can be ignored, and the local Nusselt number is

J̃i = JiH
κ�T

= 〈uiδT〉tH
κ�T

, (3.10)

where Ji is the local heat flux, ui is the velocity component and δT = T − 〈Tc〉t is
the temperature fluctuation relative to the bulk temperature. As shown in figure 12 and
table 2, the normalised energy dissipation rate and the local Nusselt number, within the
experimental uncertainty, have the same power-law scaling exponent, i.e. ξ ≈ ζ (ε̃ ∼ Raξ ,
J̃ ∼ Raζ ). However, our experimental data do not support a local balance in magnitude
between the local heat flux and the local dissipation rate. In the centre region, the local
energy dissipation is approximately 40 % larger than the local Nusselt number. Whereas,
in the side and bottom regions, the magnitude of the local dissipation rate is much smaller
than the local Nusselt number.

The circulation path of the large-scale circulation changes with increasing Rayleigh
number (Sun & Xia 2005). Since our measurement position is fixed in space with varying
Rayleigh, the influence of the changes in the circulation path will be entangled with
other effects, especially in the side and bottom regions. Therefore we define the Reynolds
number based on velocity fluctuations as

Rerms =
√

2k/3H
ν

, (3.11)

984 A8-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

16
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.164


Experimentally measured fully resolved energy dissipation

108 109 1010
100

101

102

103

Ra

ε̃c

ε̃s

ε̃b
ε̃ = 〈ε〉t /(ν3RaPr–2H–4)
J̃i = Ji/(κ�T/H)
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Figure 12. Local normalised energy dissipation rate as a function of the Rayleigh number. The local convective
heat flux J data come from Shang et al. (2008). The power-law scaling exponents as a function of Ra are listed
in table 2.

Position 〈ε〉t/(ν
3H−4) ξ(ε̃) ζ(J̃) α(ε/〈ε〉t) α(Ω/〈Ω〉t)

centre (c) (9.86 ± 0.22) × 10−6Ra1.54±0.02 0.54 ± 0.02 0.49 ± 0.03 0.52 ± 0.03 0.33 ± 0.03
side (s) (9.26 ± 0.21) × 10−3Ra1.25±0.02 0.25 ± 0.02 0.24 ± 0.03 0.40 ± 0.05 0.31 ± 0.02
bottom (b) (2.70 ± 0.06) × 10−2Ra1.23±0.02 0.23 ± 0.02 0.28 ± 0.03 0.66 ± 0.06 0.47 ± 0.04
wall (w) (9.65 ± 0.22) × 10−2Ra1.25±0.02 — — — —

Table 2. Scaling relations of time-averaged energy dissipation rate 〈ε〉t, normalised dissipation ε̃ and local
Nusselt number J̃ as a function of the Rayleigh number. The scaling exponents ξ and ζ are determined from
power laws: ε̃ ∼ Raξ and J̃ ∼ Raζ . Data for the wall energy dissipation rate εw come from Xu et al. (2022).
Data for the local Nusselt number ζ(J̃) come from Shang, Tong & Xia (2008). The exponent α comes from the
stretched exponential function fitting in (3.13) with 95 % confidence bounds.

where k = 〈u′2 + v′2 + w′2〉t/2 is the turbulent kinetic energy, u′ = (u′, v′, w′) = u − 〈u〉t
is the vector of velocity fluctuations and rms denotes root mean square. The same definition
of Rerms is also used in Lam et al. (2002), Schumacher et al. (2014) and Zhang et al.
(2017). The Taylor-scale Reynolds number, which is traditionally used to characterise the
grid turbulence (Pope 2000), is calculated as

Rλ = k

√
20ν

3〈ε〉t
. (3.12)

The relations of the Reynolds number Rerms and the Taylor-scale Reynolds number Rλ
as a function of Ra are shown in figure 13 and table 3. Note that a fall off of the data
point occurs at the lowest Rayleigh number (Ra ≈ 2 × 108), corresponding to a small
temperature difference between the top and bottom plates (�T ≈ 0.8 K). In this case,
controlling the temperature stability of the conducting plates is difficult in the experiment.
The power-law scaling exponents of β ≈ 0.50 between Rerms and Ra for the three regions
agree well with the results reported in Lam et al. (2002). In the central region, a power-law
relation between Rλ and Ra is observed with a scaling exponent χ = 0.25 ± 0.02, which
differs from the volume-averaged value of 0.39 measured in the centre by Ni, Huang
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0.50 ± 0.02
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0.38 ± 0.02
0.35 ± 0.02
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Bottom

101
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Centre
Side
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(a) (b)

Figure 13. (a) Velocity fluctuation Reynolds number Rerms as a function of the Rayleigh number.
(b) Taylor-scale Reynolds number Rλ as a function of the Rayleigh number. The fitted power laws are listed in
table 3, with data points at the lowest Ra not included in the fitting.

Position Rerms Rλ γ β χ

centre (c) 1.60 × 10−2Ra0.50±0.01 2.28 × 10−1Ra0.25±0.02 1.54 ± 0.02 0.50 ± 0.01 0.25 ± 0.02
side (s) 2.75 × 10−2Ra0.50±0.02 3.44 × 10−2Ra0.38±0.02 1.25 ± 0.02 0.50 ± 0.02 0.38 ± 0.02
bottom (b) 2.79 × 10−2Ra0.51±0.03 5.66 × 10−2Ra0.35±0.02 1.23 ± 0.02 0.51 ± 0.03 0.35 ± 0.02

Table 3. Power-law scaling relations of the velocity fluctuation Reynolds number Rerms and the Taylor-scale
Reynolds number Rλ as a function of the Rayleigh number. The power-law scaling exponents γ (〈ε〉t ∼ Raγ ),
β (Rerms ∼ Raβ ) and χ (Rλ ∼ Raχ ) are expected to follow χ = 2β − γ /2, see text for details.

& Xia (2012). The power-law scaling exponents χ between Rλ and Ra are larger in the
side (0.38 ± 0.02) and bottom (0.35 ± 0.02) regions than the centre. With 〈ε〉t ∼ Raγ and
Rerms ∼ k1/2 ∼ Raβ , the power-law scaling exponent of the Taylor-scale Reynolds number
Rλ ∼ Raχ is expected to follow χ = 2β − γ /2, which is confirmed by the respective
exponents listed in table 3.

3.4. Statistical properties of energy dissipation rate and enstrophy
The p.d.f.s of the highly intermittent energy dissipation rate in the centre, side and bottom
regions are shown in figure 14. We emphasise that the quality of our p.d.f. statistics is
superior to that obtained by numerical simulations relying on spatial averaging, as the latter
have a limited sampling time period which is two to three orders of magnitude smaller than
the current dataset (Verzicco & Camussi 2003; Zhang et al. 2017; Vishnu et al. 2022).
In the centre and side regions, the shape of the p.d.f. curve is basically independent of
the Rayleigh number. In contrast, for the bottom region (see figure 14e), the p.d.f. tail
first increases rapidly and then saturates with increasing Rayleigh number. The tail of
the energy dissipation p.d.f. can be well described by a stretched exponential function
(Chertkov, Falkovich & Kolokolov 1998)

f (X) = C√
X

exp
(−mXα

)
, (3.13)

where α, C and m are fitting parameters. In the bottom region, the p.d.f. of the energy
dissipation rate exhibits an exponential distribution at low Ra and gradually changes
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Figure 14. The p.d.f.s of the energy dissipation rate in the (a,b) centre, (c,d) side and (e, f ) bottom regions.
Data have been normalised with their mean values. The black solid curves in the linear–log plots (a–c) indicate
the stretched exponential fittings at the largest Ra. The black quadratic curves in the log–log plots (b,d, f )
indicate the log-normal fittings at the largest Ra. The coloured straight lines in panel (e) indicate exponential
fittings at low Rayleigh numbers Ra � 109.

to a stretched exponential as Ra increases. The fitted exponent α in (3.13), as listed in
table 2, indicates that extreme dissipative events are the most intermittent in the side
region, while the bottom region is less intermittent than the centre. As far as we are aware,
the pointwise p.d.f. statistics have not been reported in numerical simulations. The p.d.f.
statistics from simulations concern either the entire convection cell or a volume in the
bulk region (Zhang et al. 2017; Vishnu et al. 2022). The strong position dependence may
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Figure 15. (a) Conditional p.d.f. of energy dissipation rate based on the instantaneous viscous BL thickness
δu(t) in the bottom region at Ra = 2.04 × 108. The dashed curve is an exponential fitting to the conditional
p.d.f. inside the instantaneous viscous BL, and the solid curve is a stretched exponential p.d.f. fitting to the
conditional outside the BL. (b) The p.d.f. of the wall energy dissipation rate at the centre of the bottom plate.
The dashed line indicates the exponential fitting at the largest Ra.

make the volume averaging not very meaningful when the near-wall regions are included.
For example, using data within a volume very close to the wall surface for statistics may
erroneously result in a stretched exponential distribution of the dissipation p.d.f. rather
than an exponential distribution, since a linear superposition of (pointwise) exponential
distributions within the sampling volume would result in a spurious stretched exponential
distribution (Berberan-Santos, Bodunov & Valeur 2005). We also examine the log-normal
distribution adopted in the refined similarity hypothesis (Kolmogorov 1962). In the log–log
plots in figure 14(b,d, f ), there exist significant deviations from log-normality (quadratic
curve) for both intense and low dissipation events. For the bottom region in figure 14( f ),
the tails on both sides become higher with increasing Ra and saturate for Ra � 109.
The left power-law tails representing low dissipative events may be associated with the
Gaussian core of the p.d.f. of velocity gradient fluctuations (Gotoh & Yang 2022). The
deviation of the right tail to the fitted log-normality is attributed to the intermittent nature
of the local energy dissipation (Emran & Schumacher 2008). The right tail with respect to
the fitted log-normality is the highest in the side region, confirming the most pronounced
small-scale intermittency there.

The exponential distribution of the dissipation p.d.f. at low Rayleigh numbers, as shown
in figure 14(e), can be considered an inherent property of the near-wall region. Figure 15(a)
compares the dissipation p.d.f.s conditioned on the instantaneous BL thickness, i.e.
whether or not the measurement position of dissipation zε is inside the viscous BL. The
viscous BL thickness here is obtained using the slope method, i.e. the distance at which the
extrapolated linear section of the velocity profile intersects the maximum velocity (Xin,
Xia & Tong 1996; Xu et al. 2022), i.e.

δu(t) ≡ max(u)

(∂u/∂z)|z=0
. (3.14)

The dissipation p.d.f. exhibits an exponential distribution when the measurement position
zε is inside the instantaneous BL (zε < δu) and turns into a stretched exponential shape
when lying outside (zε > δu). Since the viscous BL becomes thinner with increasing
Ra, the contribution by the exponential part decreases with increasing Ra, and thus,
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Figure 16. The p.d.f.s of the enstrophy in the (a,b) centre, (c,d) side and (e, f ) bottom regions. Data have
been normalised relative to their mean values. The black solid curves in the linear–log plots (a–c) indicate the
stretched exponential fittings at the largest Ra. The black quadratic curves in the log–log plots (b,d, f ) indicate
the log-normal distribution fittings at the largest Ra. The coloured straight lines in panel (e) indicate exponential
fittings at low Rayleigh numbers Ra � 109.

the stretched exponential contribution becomes increasingly dominant. In addition, by
analysing the dataset at the bottom plate (Xu et al. 2022), we found that the p.d.f. of the
wall energy dissipation rate εw is also exponentially distributed, as shown in figure 15(b).
Therefore, the exponential distribution can be considered an intrinsic property of the
near-wall region.
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The p.d.f.s of enstrophy, as defined in (2.3) in the centre, side and bottom regions, are
shown in figure 16. The extreme events are more probable in enstrophy than in the energy
dissipation rate, similar to the observations in homogeneous and isotropic turbulence
(Zeff et al. 2003; Yeung, Donzis & Sreenivasan 2012; Yeung, Zhai & Sreenivasan 2015;
Buaria, Pumir & Bodenschatz 2022). The fitted exponent α of the stretched exponential
function in (3.13), as listed in table 2, indicates that, compared with the centre and side
regions, highly rotational events are less probable in the bottom region. The reason for the
exponential p.d.f. distribution of enstrophy in figure 16(e) is similar to that for dissipation
in figure 14(e), i.e. an intrinsic property in the near-wall region.

4. Conclusions

We have developed an in-house velocity-gradient-tensor-resolved PIV (VGTR-PIV)
system that is capable of spatio-temporally resolving all components of the pointwise
velocity gradient tensor. This measurement system is applied to study the energy
dissipation rate in turbulent RBC. The measurements were taken at three representative
positions, i.e. centre, side and bottom. The p.d.f.s of the velocity gradient tensor
components follow an exponential distribution and overlap for different values of Ra in
each region. Owing to the lack of local isotropy, care should be taken when estimating
the time-averaged energy dissipation rate using a single velocity gradient component
in the near-wall regions. Compared with the fully resolved energy dissipation rate,
the pseudo-dissipation provides an accuracy within ±3 %, the 2-D surrogate has an
error of ±10 % and the 1-D surrogate leads to the largest relative error of ±20 %
among the three approximations (this is based on ∂v/∂y, with y the horizontal direction
perpendicular to the large-scale circulation plane; the other components would give
even larger errors). Among the three orthogonal measurement planes, the vertical plane
within which the large-scale circulation is locked provides the best 2-D surrogate
regarding the time-averaged energy dissipation rate. The pseudo-energy dissipation
rate also provides the best surrogate in terms of instantaneous values when compared
with the fully resolved dissipation. Regarding the Rayleigh number dependence, the
time-averaged energy dissipation rate follows power-law scalings of 〈εc〉t/(ν

3H−4) =
(9.86 ± 0.22) × 10−6Ra1.54±0.02, 〈εs〉t/(ν

3H−4) = (9.26 ± 0.21) × 10−3Ra1.25±0.02 and
〈εb〉t/(ν

3H−4) = (2.70 ± 0.06) × 10−2Ra1.23±0.02 in the centre, side and bottom regions,
respectively. These scaling relations, along with the wall energy dissipation rate following
〈εw〉t/(ν

3H−4) = (9.65 ± 0.22) × 10−2Ra1.25±0.02, provide important constraints against
which theoretical models may be tested. Away from the centre, the local energy dissipation
rate and the local Nusselt number exhibit similar power-law scaling with respect to Ra.
The p.d.f. of dissipation rate or enstrophy can be well described by a stretched exponential
function outside the viscous boundary layer while following an exponential distribution
inside the viscous boundary layer. The side region is the most likely to experience extreme
dissipative events, while the bottom region is less intermittent than the centre. In addition
to turbulent RBC, we expect the present VGTR-PIV measurement system to be applicable
in studying the spatio-temporally resolved velocity gradient tensor in other turbulent flows.
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