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Structure and energy transfer in homogeneous
turbulence below a free surface
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We investigate the turbulence below a quasi-flat free surface, focusing on the energy
transport in space and across scales. We leverage a large zero-mean-flow tank where
homogeneous turbulence is generated by randomly actuated jets. A wide range of
Reynolds number is spanned, reaching sufficient scale separation for the emergence of
an inertial sub-range. Unlike previous studies, the forcing extends through the source
layer, although the surface deformation remains millimetric. Particle image velocimetry
along a surface-normal plane resolves from the dissipative to the integral scales. The
contributions to turbulent kinetic energy from both vertical and horizontal components
of velocity approach the prediction based on rapid distortion theory as the Reynolds
number is increased, indicating that discrepancies among previous studies are likely due
to differences in the forcing. At odds with the theory, however, the integral scale of the
horizontal fluctuations grows as the surface is approached. This is rooted in the profound
influence exerted by the surface on the inter-scale energy transfer: along horizontal
separations, the direct cascade of energy in horizontal fluctuations is hindered, while
an inverse cascade of that in vertical fluctuations is established. This is connected to
the structure of upwellings and downwellings. The former, characterized by somewhat
larger spatial extent and stronger intensity, are associated with extensional surface-parallel
motions. They thus transfer energy to the larger horizontal scales, prevailing over
downwellings which favour the compression (and concurrent vertical stretching) of the
eddies. Both types of structures extend to depths between the integral scale and the Taylor
microscale.
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1. Introduction

Turbulent liquid flows often involve a free surface as an upper boundary; consider, for
instance, the ocean upper layer separated from the atmosphere by the air–sea interface,
or the surface in liquid mixing vessels used in many industrial processes. To understand
the flow physics common to such situations, it is useful to consider the archetypical case
in which the free surface bounds an otherwise homogeneous and isotropic region of
zero-mean-flow turbulence. While this has been extensively investigated, our understating
of this fundamental and highly relevant class of flows is still incomplete. With no
ambition to provide a full account of the literature, below we briefly describe the problem,
summarize the picture painted by some key studies and single out important open
questions that motivate the present work.

1.1. Description of the problem
So long as gravity or surface tensions keeps the deformation of the surface to a minimum,
the surface-normal (vertical) motions vanish approaching the surface. For this reason,
many aspects of the situation resemble zero-mean-flow turbulence adjacent to a solid
boundary (Perot & Moin 1995). Unlike a solid wall, however, a clean free surface imposes
a shear-free boundary condition at the surface, which allows surface-parallel (horizontal)
velocities to persist. In their hallmark study, Hunt & Graham (1978) invoked rapid
distortion theory (RDT) to predict the behaviour of an otherwise homogeneous isotropic
turbulent flow adjacent to a flat plate. Their analysis, as well as several successive studies
(e.g. Brumley & Jirka 1987; Shen et al. 1999; Teixeira & Belcher 2002; Magnaudet 2003),
distinguished between two layers beneath the surface z = 0 (where z is the vertical upward
coordinate).

The so-called source layer or blockage layer, extending to a depth z ∼ −L∞ (where L∞
is the integral scale of the turbulence far from the surface) represents the region in which
the kinematic (no-penetration) boundary condition is felt. In this region, the contribution
to turbulent kinetic energy (TKE) from vertical velocity fluctuations, u2

z , with overlines
denoting averages in time, decays to zero. As upwards-moving fluid travels towards the
surface through the source layer (upwellings or splats), the no-permeability condition
induces an inter-component transfer of energy from vertical to horizontal motions and the
contribution to TKE from horizontal velocity fluctuations, u2

x , is enhanced. This energy is
partly transferred back to vertical TKE when regions of surface-tangential flow converge
and are redirected downwards (downwellings or anti-splats); see Perot & Moin (1995).
While TKE u · u is a scalar quantity, for simplicity from hereon we refer to u2

x ≈ u2
y and

u2
z as horizontal and vertical TKE, respectively, and the re-partitioning of energy between

u2
x and u2

z as inter-component energy transfer.
The dynamic boundary condition affects a shallower viscous layer, z > −δν =

−L∞Re−1/2
T , where the velocity gradients are modified to satisfy the zero-shear-stress

condition at the surface. The problem is parametrized with the bulk Reynolds
number

ReT = 2u′∞L∞
ν

, (1.1)

where ν is the fluid kinematic viscosity. Here, and in the following, the prime indicates
the root mean square (r.m.s.) of the fluctuations around the mean and the subscript ∞
indicates quantities averaged over the homogeneous bulk. With a purely flat surface
and shear-free interface, ReT fully defines the problem when the turbulence in the bulk
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Homogeneous turbulence below a free surface

is homogeneous and isotropic and its spatial decay (absent surface-induced effects) is
negligible. In practice, the surface is deformable to the extent that gravity and surface
tension cannot suppress turbulent fluctuations. We will focus on regimes in which the
effect of surface deformation on the flow is small.

1.2. Previous studies
Early experiments investigated the interaction of turbulence with a solid boundary
imposing no mean shear on the flow. Uzkan & Reynolds (1967) and Thomas & Hancock
(1977) considered grid turbulence interacting with a flow-parallel wall travelling at the
fluid’s mean velocity, finding an increase in the horizontal TKE at the expense of the
vertical TKE near the surface. More recently, Johnson & Cowen (2018) investigated
zero-mean-flow turbulence generated by a randomly actuated jet array opposite a solid
wall, finding similar behaviour of the TKE partitioning. Those studies found that the depth
of the layer influenced by the surface was O(L∞), in agreement with the prediction of Hunt
& Graham (1978).

Seminal experiments on zero-mean-flow turbulence below a free surface were
conducted by Brumley & Jirka (1987) up to ReT ∼ 370, who used an oscillating grid
and observed an increase in horizontal TKE at the expense of vertical TKE as the surface
was approached, in agreement with Hunt & Graham (1978). Similar results were reported
at much larger ReT by Variano & Cowen (2013) using a random-jet-array system similar
to that of Johnson & Cowen (2018). They additionally found a decrease of horizontal
TKE just beneath the surface, which was attributed to unavoidable surface contamination
by surfactants, inhibiting surface dilatational motions (Shen, Yue & Triantafyllou 2004).
Herlina & Jirka (2008), on the other hand, did not observe an increase in horizontal TKE,
and attributed the disagreement with the Hunt & Graham (1978) theory to its simplifying
assumptions, in particular its inviscid nature.

Mechanisms controlling the TKE budget were analysed in the numerical study by Perot
& Moin (1995), who considered various types of boundary conditions. Comparison with
a solid wall boundary suggested that the extent of inter-component transfer of energy is
due to the imbalance between up- and downwellings. Their simulations, as well as those
by Guo & Shen (2010) and Herlina & Wissink (2019), suggested that upwellings are
more energetic than downwellings, pointing to an important role of their imbalance in
determining the free-surface flow dynamics. Numerical simulations by Walker, Leighton
& Garza-Rios (1996) and Teixeira & Belcher (2002) highlighted how the dynamic
boundary condition induces a smaller dissipation rate at the surface, while it does not
significantly alter the surface-normal vorticity.

1.3. Open questions and motivation for the present study
The applicability of the Hunt & Graham (1978) theory to sub-surface turbulence was
debated in several experimental, numerical and theoretical studies, as reviewed in
Magnaudet (2003). While there is substantial evidence that such a theory is in qualitative
agreement with the observations, quantitative comparisons have been limited, in particular
concerning its predictions on the gradients and correlation scales in the near-surface
region. Verification of the theory has been complicated by the way sub-surface turbulence
is introduced. In some configurations, this is forced several integral length scales away
from the free surface, and any effect of the latter is superimposed on the spatial decay of
the turbulence (e.g. Walker et al. 1996). In others, homogeneous turbulence is generated
as an initial condition before the surface is suddenly introduced, yielding an inherently
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transient behaviour (Perot & Moin 1995). Moreover, as RDT is essentially inviscid, its
predictions are expected to apply in the limit of high ReT . Systematic studies of Reynolds
number effects, however, have not been conducted.

The presence of the surface profoundly transforms the nature of the turbulence in its
immediate proximity. Already, Eckhardt & Schumacher (2001) showed with numerical
simulations that intermittency in the sub-surface velocity increases near the surface.
Cressman et al. (2004) paired these findings with experimental data showing that floating
tracers disperse less rapidly than is the case in sub-surface turbulence, attributing this
to the two-dimensionality imposed by the free-surface boundary condition. Perot &
Moin (1995) similarly suggested that, along the surface, the two-dimensional (2-D)
nature of the flow alters the direct energy cascade expected in three-dimensional (3-D)
flows. While this view was supported by simulations of open-channel flows (Pan &
Banerjee 1995; Lovecchio, Zonta & Soldati 2015), the majority of studies on homogeneous
turbulence under a free surface argued that the flow is essentially three-dimensional,
in that the boundary condition does not impede vortex stretching and the associated
down-scale energy transfer (Walker et al. 1996; Shen et al. 1999; Guo & Shen
2010).

As mentioned, the complex sub-surface dynamics is heavily influenced by the balance
between upwellings and downwellings. These act as building blocks of the near-surface
flow, and their properties are critical to the renewal of the free surface (and thus
the associated gas transfer) (Kermani & Shen 2009; Guo & Shen 2010; Variano &
Cowen 2013; Herlina & Wissink 2014). Gas transfer rates have been directly linked
to the free-surface divergence β = −∂uz/∂z (with the velocity gradient evaluated at
z = 0), whose sign and magnitude depends on the upwelling/downwelling state of the
sub-surface flow (Jähne & Haußecker 1998; McKenna & McGillis 2004; Turney &
Banerjee 2013). In particular, recent work (Babiker et al. 2023) suggests that near-surface
mixing can be quantified by observations of minuscule deformations to the surface;
such an approach, clearly, requires an understanding of the connection between the
characteristics of the surface divergence evidenced by the deformations and the turbulence.
However, the spatial and velocity scales of upward and downward motions have been
examined mostly in numerical studies at limited ReT , and therefore their extent and
strength in regimes relevant to environmental and industrial settings have not been
established.

Motivated by these considerations, here we analyse the results of an extensive
measurement campaign focused on the effects of a quasi-flat free surface on an otherwise
homogeneous turbulent flow. Unlike previous studies, we consider a system in which
high-ReT turbulence is steadily forced in the vicinity of the surface, minimizing spatial
variations unrelated to the effect of the surface. By means of high-resolution particle image
velocimetry (PIV) and laser-induced fluorescence (LIF), we characterize the turbulence
structure from the bulk region to the free surface, resolving from the dissipative to
the integral scales of the flow. The paper is organized as follows. In § 2, we present
the experimental facility, the imaging methodology and the flow statistics that define
the regime under consideration. In § 3, we analyse the structure and evolution of the
turbulence between the bulk and the surface, systematically comparing our observations
with RDT predictions and exploring the inter-scale energy transfer. In § 4, we focus
on the respective roles of upwellings and downwellings in the transport of energy
in space and across scales. We summarize the main findings and draw conclusions
in § 5.
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Figure 1. (a) The turbulence tank and imaging system. Pumps on either side of the tank emit jets of water
(blue) randomly. The three PIV cameras coloured red, green and purple each resolve the fields of view indicated
within the laser sheet (green). A fourth camera (coloured cyan) resolves the surface position using LIF.
(b,c) Snapshots of the out-of-plane vorticity fields at the lowest and highest Reynolds numbers, respectively.
As the Reynolds number increases, the magnitude of the vorticity increases and its spatial scale decreases.

2. Experimental methodology and flow regime

2.1. Apparatus and measurement approach
The experimental apparatus is illustrated in figure 1(a). Turbulence is created in a 2 m3

water tank by two opposing 8 × 8 arrays of submerged pumps. Within each array, the
pumps are separated by 10 cm in the horizontal and vertical directions and intermittently
emit turbulent jets according to the ‘sunbathing’ algorithm proposed by Variano & Cowen
(2013). The magnitude of the fluctuating velocity, and consequently the bulk Reynolds
number ReT , is changed by modulating the power supplied to each pump. This is controlled
by programmable logic circuits, dictating a pulse-width-modulation scheme for each pump
(Chan et al. 2021). On average, 12.5 % of pumps are turned on at a given time and each
jet emission lasts 3 s. The water level is approximately 5 cm above the axis of the jets in
the top row of the array. The relatively small distance between the forcing region and the
surface distinguishes the present set-up from the majority of previous experimental efforts,
which employed oscillating grids or actuated jets placed several integral scales below the
surface (e.g. Brumley & Jirka 1987; McKenna & McGillis 2004; Herlina & Jirka 2008;
Variano & Cowen 2008, 2013). Savelsberg & Van De Water (2009) also forced turbulence
close to the surface with an active grid in an open channel flow, but did not investigate the
influence of the surface on the turbulence underneath. The surface tension of the water σ

is measured via a Du Noüy ring at various points in time, yielding no significant variations
around the standard value of 0.07 N m−1.

The velocity field in the centre of the tank is measured by PIV. A 532 nm laser beam
(Nd:YAG, 200 mJ pulse−1) is converted into a thin diverging sheet and shone vertically
through the glass bottom surface of the tank, illuminating a region within the plane y = 0
(see figure 1a). We denote with x the horizontal direction parallel to the jet axes, and
z the vertical upwards direction, with the origin at the water surface. As is sketched
in figure 1(a), three synchronized cameras (CMOS, 25 Megapixels) are used to image
two side-by-side regions just below the surface, as well as a larger region beneath. The
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tracers are 10 µm hollow glass sphere particles, and the inter-frame timing is varied with
ReT to ensure their maximum typical displacement is approximately 5 pixels, optimal for
zero-mean-flow turbulence facilities of this kind (Carter et al. 2016). In total, the field
of view resolved by the cameras extends approximately 20 cm in the horizontal direction
and approximately 25 cm below the free surface, centred on the midpoint between the two
arrays of pumps. Between 4000 and 6000 instantaneous velocity fields are obtained for
each condition at a rate of 1 Hz using an iterative cross-correlation algorithm (Thielicke &
Stamhuis 2014). Velocity components Ux and Uz from the three cameras are interpolated
onto a uniform grid with spacing 0.53 mm, which is comparable to the vector spacing
obtained with the higher-resolution cameras resolving the region just beneath the surface.
Such vector spacing is the result of an interrogation window size of approximately 1 mm
(which defines the PIV spatial resolution) followed by a standard 50 % overlap between
adjacent windows. The PIV resolution deeper into the bulk is coarser, with an interrogation
window size of approximately 2 mm.

A small amount (less than 3 × 10−7 in volume) of uranine dye is added to the water
to capture the instantaneous position of the water surface η(x) by LIF. To this end, a
fourth CMOS 25 megapixel camera synchronized with the laser pulse is outfitted with
a band-stop filter to block the bright laser light and positioned above the water surface,
angled down by approximately 30◦. It captures the fluorescence of the dye, with the
uppermost part of the bright region demarking the water surface position.

Snapshots of the vorticity field and surface position are shown in figures 1(b) and 1(c) at
the lowest and highest Reynolds numbers investigated, respectively, highlighting the finer
structures at the higher turbulence intensity. Animations of the vorticity fields from each
case (recorded at a faster frame rate for the purpose of visualization) are provided as a
supplementary movie available at https://doi.org/10.1017/jfm.2024.1017.

2.2. Turbulence properties in the bulk
The turbulence statistics are impacted by the presence of the free surface within
approximately one bulk longitudinal integral scale L∞ from the free surface (Hunt &
Graham 1978). As described below, L∞ ≈ 10 cm; as such, in this section we show results
spatially averaged over z < −15 cm, where the flow statistics vary marginally with depth.

In both the horizontal (surface-parallel) direction (i = x) and the vertical
(surface-normal) direction (i = z), the turbulent velocity field is Reynolds decomposed as
Ui(x, z, t) = Ui(x, z) + ui(x, z, t), where Ui is the local mean and ui is the instantaneous
fluctuation. Figure 2(a) shows the components of the fluctuating velocity in the bulk,
u′

i,∞, for each case, displaying a level of large-scale anisotropy typical of similar set-ups
(Esteban, Shrimpton & Ganapathisubramani 2019).

The four available components of the spatial autocorrelation tensor can be calculated as

ρs
i (r) = ui(x)ui(x + rei,s)

u′
i(x)2 , (2.1)

where s signifies whether a longitudinal (s = L) or transverse (s = T) correlation is
considered and i signifies the component (x or z) of the velocity considered. Thus, ei,L = ei
in order to obtain a longitudinal correlation, and ei,T is orthogonal to ei in order to obtain
a transverse one (specifically, using ex,T = −ez and ez,T = ex). Horizontal homogeneity
warrants independence from the generic position x in the measurement plane and enables
replacing ex with −ex.

Figure 2(b) shows the four integral length scales in the bulk, Ls
i,∞, at each Reynolds

number, found by identifying the 1/e crossing of the corresponding component of (2.1)
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Figure 2. Conditions in the bulk at each Reynolds number: (a) the components of the r.m.s. velocity
fluctuations and (b) the longitudinal and transverse integral length scales.

(or with integration in the case of LT
z,∞, given its quick convergence). As these length

scales are associated with the width attained by the jets in the homogeneous turbulence
region at the centre of the tank, they are weakly sensitive to the power supplied to the
pumps (Carter et al. 2016). To more easily assess the isotropy, the integral scales based
on the transverse autocorrelations are shown multiplied by two according to the relation
for homogeneous isotropic turbulence, LL

i,∞ = 2LT
i,∞ (Pope 2000). The jet-driven forcing

causes the horizontal velocity fluctuations to remain correlated over larger distances (both
longitudinal and transverse) compared with the vertical fluctuations (Carter & Coletti
2017; Esteban et al. 2019).

Additional PIV measurements are performed along a horizontal plane at z = −20 cm,
using similar hardware and achieving similar resolution as in the near-surface vertical
planes. Figure 2(a) shows, with the dashed lines, the values of u′

x,∞ and u′
y,∞ calculated

from the 2000 snapshots per condition taken during these measurements; comparison
between u′

y,∞ and u′
z,∞ confirms that velocity statistics in the y-direction are quantitatively

similar to those in the z-direction far from the surface. Given the similarity of the velocity
statistics in these two directions, for some statistical vectorial quantity pi in the bulk we
assume py ≈ pz and define a characteristic scalar value as

p =
√

p2
x + 2p2

z

3
. (2.2)

At the present levels of anisotropy, alternative strategies of directional averaging (such
as taking an algebraic average or neglecting the anisotropy altogether) yield marginally
different values (Carter et al. 2016).

We further compute the nth-order structure function as

Ds
n,i(r, z) = (

ui(x + rei,s) − ui(x)
)n

, (2.3)

with s used as in (2.1). The second-order structure functions based on horizontal
separations in the bulk are shown in figure 3, comparing with Kolmogorov
(1941) predictions in the inertial sub-range, DL

2,x,∞ = C2(ε∞r)2/3 and DT
2,z,∞ =
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Figure 3. Longitudinal (a) and transverse (b) structure functions for horizontal separations in the bulk for
each Reynolds number. Solid thick lines give the inertial range scaling given ε∞, and dotted lines give the ∝ r2

scaling.

(4/3)C2(ε∞r)2/3, with ε∞ = 0.5u
′3∞/L∞ and C2 = 2.0, which holds for the present range

of Reynolds numbers (Burattini, Lavoie & Antonia 2005; Carter et al. 2016; Carter &
Coletti 2017; Carter et al. 2020). The Kolmogorov scale in the bulk, lK = (ν3/ε∞)1/4,
is marked in the abscissa of each plot. The curves exhibit the scaling D2 ∝ r2 in the
dissipation range, suggesting that the fine scales of the flow are appropriately captured.

Table 1 summarizes the main properties of the turbulence in the bulk for the considered
cases. As confirmed by figure 3, for all cases the Taylor-scale Reynolds number Reλ =
Lλ,∞u′∞/ν (with Lλ,∞ = u′∞

√
15ν/ε∞ the Taylor length scale) is sufficiently large to

develop an inertial sub-range. The Kolmogorov scales are under-resolved by PIV in the
most intense turbulence, but this will not affect the conclusions. For comparison, the bulk
turbulence properties of selected previous experimental studies are also listed.

Compared with oscillating-grid systems featured in most previous experimental studies
of sub-surface turbulence, the present set-up produces substantially smaller mean
recirculation and inhomogeneities over a larger region (McKenna & McGillis 2004;
Blum et al. 2010; Bellani & Variano 2014; Carter et al. 2016). Various metrics to
characterize the approximation to zero-mean-flow homogeneous turbulence are presented
in figure 4. In particular, following Carter et al. (2016) and Esteban et al. (2019), we
calculate: the mean-flow factor, which is the magnitude of the mean flow relative to the
turbulent fluctuations; the normalized Reynolds shear stress (uxuz), which is 0 in isotropic
turbulence; and the mean strain-rate factor, which compares the strain rate of the mean
flow and the turbulent strain rates. These quantities are defined with

mean-flow factor =
√

Ux
2 + 2Uz

2√
u′

x
2 + 2u′

z
2

, (2.4)

normalized Reynolds shear stress = |uxuz|
u2

x + 2u2
z

, (2.5)
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Figure 4. Parameters related to the homogeneity and isotropy of the bulk flow, defined in (2.4)–(2.7).

mean strain-rate factor =
√

(∂Ux/∂x)2 + 2(∂Uz/∂z)2√
(∂ux/∂x)2 + 2(∂uz/∂z)2

, (2.6)

with all quantities first computed locally and then spatially averaged over the bulk region
z < −15 cm. The latter quantity is especially important to distinguish the canonical case of
homogeneous turbulence from situations in which mean velocity gradients are significant
(as in open-channel flows and shallow riverine environments, Nezu & Nakagawa 1993).
Further, we quantify the homogeneity deviation throughout the bulk region by dividing
the standard deviation of the local values of u′ by the characteristic u′∞ (i.e. the average of
all such local u′ values),

homogeneity deviation = std(u′)∞/u′
∞. (2.7)

We find values of the mean strain-rate factor < 0.02, indicating that nearly all the
dissipation occurring is turbulent, the homogeneity deviation < 0.05, indicating good
spatial homogeneity, and the normalized Reynolds shear stress < 0.03. With the exception
of the lowest ReT case, the mean flow is also relatively weak, MFF < 0.2. It is worth
stressing that those qualities, in particular homogeneity, are obtained over a region larger
than the integral scale of the turbulence, which is essential for establishing the natural
energy cascade (Bellani & Variano 2014; Carter et al. 2016).

2.3. Free-surface deformation
Figure 5(a) shows probability density functions (p.d.f.s) of the surface elevation η

obtained by LIF for each condition. The scale of the surface disturbances, estimated
as 2η′, increases with ReT and is limited to approximately 3 mm in the most intense
turbulence. Further, figure 5(b) plots the bulk Weber number We∞ = ρu

′2∞L∞/σ and
the bulk Froude number Fr∞ = u′∞/

√
gL∞ (with g the gravitational acceleration), which

characterize the ability of the large-scale turbulent motions to deform the surface against
the restoring action of surface tension and gravity, respectively. Even at the larger
ReT , while turbulence is strong enough to counteract surface tension (We∞ > 1), the
large spatial scales guarantee Fr∞ < 1. In this regime of ‘gravity-dominated turbulence’
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Figure 5. Deformations to the free surface. (a) Distributions of the surface elevation at each condition.
(b) Weber and Froude numbers calculated with values from the bulk at each condition.

(Brocchini & Peregrine 2001b), the surface is expected to display small deformations,
coherent with the distributions shown in figure 5(a).

In § 3.1 we show that, below a thin near-surface layer barely resolved by the imaging
system, the orbital velocities induced by gravity–capillary waves are small compared with
the turbulent velocities we measure. Nonetheless, the surface information obtained from
the LIF images is critical in the experimental data processing, as it enables us to mask out
the noisy region of the PIV images above the surface.

3. Turbulence modulation by the free surface

3.1. Vertical fluctuations
Consistent with previous works, we observe marked changes in the statistics of the
turbulence within the blockage layer, z > −L∞. Figure 6(a) shows a snapshot of the
normalized vertical velocity fluctuation field, uz/u′

z,∞, at ReT = 12 400. Here and in the
rest of the paper, when results are shown for only one case, this ReT will be used as
representative unless otherwise specified. Near the surface, the magnitude of vertical
fluctuations decays, as does the horizontal length scale of the vertical velocity structures.
This is evident in figure 6(b), which shows the vertical profiles of u′

z(z)/u′
z,∞ and

LT
z (z)/LT

z,∞, both quantities decreasing by an order of magnitude across the source layer.
The increase of LT

z for z > −0.01L∞ signals the presence of the viscous sublayer and
possibly the influence of surface deformation, as described below.

The decay of the vertical velocity fluctuation is shown for all turbulence intensities
in figure 7(a). With increasing ReT the trends agree increasingly well with the RDT
prediction of Hunt & Graham (1978), in particular displaying the scaling u′

z/u′
z,∞ ∝

(−z/L∞)1/3. (For this and the following comparisons with their results, we numerically
calculate the one-dimensional single-point energy spectra in the source layer according to
their (2.53)–(2.55), employing the von Kármán spectrum in their (2.63).) This provides
strong evidence that the applicability of RDT depends on the turbulence Reynolds number
(Magnaudet 2003).

Beside ReT effects, other factors contribute to the deviation from the power-law relation
very close to the surface. First, turbulence statistics change within the viscous sublayer,
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Figure 6. Structure of the vertical velocity fluctuations. (a) Vertical velocity field at one instant in time.
(b) Profiles of the vertical fluctuation velocity scale (solid line) and horizontal correlation length of vertical
velocity (dashed line) as functions of depth, normalized by their values in the bulk.
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Figure 7. Decay of the velocity fluctuation scale within the source layer. (a) The vertical velocity fluctuation
scale, normalized by its value in the bulk, as a function of depth, normalized by the integral scale in the bulk,
for each ReT . The dashed line shows the prediction of RDT (Hunt & Graham 1978). (b–d) The dimensionless
positions of the viscous sublayer, intermittency layer and −zorb, the depth above which the modelled orbital
velocity scale exceeds the measured vertical velocity scale.
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Homogeneous turbulence below a free surface

whose depth is marked in figure 7(b) using the estimate δν = Re−1/2
T L∞ (Brumley & Jirka

1987). Second, surface deformation results in a so-called ‘intermittency layer’ over which
the surface elevation varies in time and space. Following Guo & Shen (2010), we define
this layer as extending to a depth 2η′ below the mean water level, marked in figure 7(c).
Third, small surface undulations generated by the flow propagate along the surface as
capillary–gravity waves (as evidenced by temporally resolved measurements of η(x, y),
not reported here, which will be the focus of later work), which induce an irrotational
orbital velocity uorb. To gauge the depth −zorb over which this is comparable to the
turbulent fluctuations, we compute it in a manner inspired by Thais & Magnaudet (1995).
Briefly, each instantaneous surface elevation field is represented by its spatial Fourier
transform, and the contribution of each mode to the sub-surface velocity field is computed
according to linear wave theory and the gravity–capillary dispersion relation. We define
the depth −zorb (shown in figure 7d) as the height below which u′

z(z) > u′
orb,z(z). For

the representative case ReT = 12 400, all three types of near-surface layers have thickness
O(10−2L∞). In figure 7(a) and in the rest of the paper, we display data at z < −2η′, which
does not affect our conclusions.

The constraint imposed by the surface on the vertical motions is also manifested in
their horizontal structure. This is evident in figure 8(a), in which the transverse structure
functions DT

2,z are plotted at various depths. The circles denote values for r = −z,
i.e. horizontal separations equal to the depth at which DT

2,z is calculated. At all depths,
the turbulence approximately retains the structure of the bulk at scales r � | − z|, while
the magnitude of the vertical velocity fluctuations is reduced at larger separation. This
behaviour is faithfully captured by the Hunt & Graham (1978) theory, according to
which the transverse spectrum of the vertical velocity component (which carries the same
information as DT

2,z) is reduced and flattened at wavenumbers below |z|−1.
The above suggests that, near the surface, the vertical velocity fluctuations are weakly

correlated beyond horizontal scales comparable to the local depth. This is confirmed by
figure 8(b), where the data are recast in the form of transverse autocorrelations ρT

z . Those
decay faster approaching the surface, which corresponds to the decreased LT

z shown for all
Reynolds numbers in figure 8(c). These compare favourably with the prediction of Hunt
& Graham (1978), shown as the dashed red line.

3.2. Horizontal fluctuations
Rapid distortion theory predicts an increase in energy in horizontal motions at the
expense of that in vertical motions. This has been observed in several experiments on
zero-mean-shear flows adjacent to solid boundaries (Thomas & Hancock 1977; Johnson
& Cowen 2018) and free-surface turbulence simulations (Guo & Shen 2010; Herlina
& Wissink 2014; Flores, Riley & Horner-Devine 2017; Herlina & Wissink 2019) and
experiments (Brumley & Jirka 1987; Variano & Cowen 2013). It was not observed,
however, in the long-time statistics of the decaying turbulence simulations by Perot &
Moin (1995) nor in the experiments by Aronson, Johansson & Löfdahl (1997) and by
Herlina & Jirka (2008). We hypothesize that the disagreement is due to study-specific
characteristics of the bulk turbulence. On one hand, the inviscid RDT analysis assumes
a high Reynolds number, which complicated the comparison, especially with early
simulations. According to Magnaudet (2003), the relatively low ReT (resulting in the
viscous layer accounting for a significant fraction of the integral scale) was the reason Perot
& Moin (1995) did not observe a near-surface peak of u′

x(z) at late times of their decaying
turbulence simulations. On the other hand, as mentioned, most experimental studies have
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Figure 8. The spatial structure of vertical motions near the surface. The transverse structure functions
(a) and transverse spatial autocorrelations (b) of vertical velocity for various depths with ReT = 12 400. The
grey curves give the corresponding values in the bulk. (c) The transverse integral length scale, giving the
horizontal footprint of vertical motions, as functions of depth for each Reynolds number. The dashed red curve
gives the RDT predictions of Hunt & Graham (1978), multiplied by LT

z,∞/(L∞/2) as a first-order accounting
of the anisotropy in the bulk.

applied the forcing to generate the turbulence at distances from the surface much larger
than L∞ (e.g. McKenna & McGillis 2004; Variano & Cowen 2013). In those systems,
any change of turbulent energy approaching the surface is superposed on the spatial decay
away from the forcing region. Finally, the ideal conditions of bulk homogeneity, isotropy
and zero mean shear cannot be fully achieved in experiments, possibly clouding the effect
of the surface.

In the present set-up, the distance between the water surface and the axis of the
upper-most jets forcing the turbulence is O(L∞); thus, the natural spatial decay of energy
between the forcing region and the surface is expected to be marginal. Moreover, we are
able to assess the influence of the Reynolds number by spanning almost a decade in ReT .
Figure 9(a) shows profiles of u′

x, indicating how the horizontal energy increase emerges
at ReT >∼ 10 000, while for weaker forcing it is obscured by spatial inhomogeneities.
We remark that this cannot be taken as a general threshold, due to the abovementioned
difficulty of comparing different systems. In fact, near-surface amplification of u′

x has
been reported in experiments at ReT < 1000 by Brumley & Jirka (1987), although with
significant scatter.

Figure 9(b) displays the vertical profiles of u′
x/u′

x,∞ for the highest Reynolds number,
ReT = 22 800, along with the theory of Hunt & Graham (1978). The amplification of
horizontal energy in our experiments occurs over a greater depth, but the peak is in close
agreement with the prediction, u′

x/u′
x,∞ = √

3/2. This is significantly lower than what
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Figure 9. The change in the horizontal velocity fluctuation scale near the surface. (a) Profiles of horizontal
r.m.s. velocity fluctuations as functions of depth for each condition, where the dashed line shows the value in
the bulk. (b) The same data for the highest-ReT case, non-dimensionalized and compared with the amplification
predicted by RDT (red, dashed line).

was observed in numerical studies (Walker et al. 1996; Guo & Shen 2010), and at least two
factors may be responsible. First, in our experiments u′

x decreases in the immediate vicinity
of the surface due to the small amount of surfactant (which is practically unavoidable in
such configurations Variano & Cowen 2013). Thus, the peak might be higher in the limit of
perfectly clean water. Second, numerical simulations have been conducted at much lower
ReT . For reference, Guo & Shen (2010) considered ReT = 123, while the most massive
simulations to date for this configuration are the ones of Herlina & Wissink (2019) at
ReT = 1856.

Having confirmed that, for sufficiently intense turbulence, the horizontal TKE is
augmented in the source layer, we explore its scale-to-scale distribution. This is
characterized by the horizontal energy density

Ex(r, z) = ∂

∂r

(
DL

2,x(r, z)
)

, (3.1)

which is the scale-space analogue of the energy spectrum at depth z (in that Ex(r, z)
r
represents the contributions to the horizontal TKE from structures with size between r
and r + 
r). Figure 10(a) shows Ex(r, z) at the same depths for which the transverse
structure functions are shown in figure 8(a). It is apparent that the spectrum of horizontal
energy exceeds the Kolmogorov scaling Ex ∝ r−1/3 for r > −z. Thus, the comparison
with figure 8(a) demonstrates how both the augmentation of horizontal energy and the
attenuation of vertical energy occur for scales exceeding the local depth. It is notable that
the large-scale Ex(r) amplification is evident at all considered ReT – even those for which
figure 9(a) shows no appreciable amplification of u′

x(z) near the surface.
The amplification of horizontal energy at the large scales results in a significant increase

in the surface-parallel footprint of the near-surface ux structures. This is demonstrated
by the longitudinal autocorrelations ρL

x in figure 10(b), which decay more slowly as the
surface is approached and result in the evolution of the integral scale LL

x (z) in figure 10(c).
While there is uncertainty due to the limited range over which the employed exponential
fit to the autocorrelations can be performed, there is a substantial increase throughout the
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Figure 10. Structure of surface-parallel velocity. (a) The energy density (the radial derivative of the
second-order longitudinal structure function) normalized by its value at r = 0.03L∞. This normalization
accounts for the inhomogeneous forcing with depth: such inhomogeneities impact the energy density at all
scales, while the surface-induced changes occur solely at scales larger than the local depth. Curves are shown
for various z, indicating the increased energy density for large scales r > −z. The dashed line shows the
Kolmogorov scaling. (b) The longitudinal autocorrelation at various depths. Note that the spatial separations
on the horizontal axis are normalized by the characteristic integral scale L∞ which is shorter than LL

x,∞ due to
the anisotropies in the bulk. (c) The longitudinal integral scale normalized by its bulk value for each Reynolds
number as a function of depth. The dashed red line gives the predictions of RDT (Hunt & Graham 1978),
showing that the near-surface amplification we observe experimentally is not captured by this theory.

source layer, especially at the larger ReT . That is in stark contrast with the theory of Hunt &
Graham (1978), which predicts a decrease of the correlation length, following LL

x /LL
x,∞ =

(u′
x

2
/u

′2
x,∞)−1. Herlina & Wissink (2014) also observed an increase of LL

x approaching the
surface, attributing it to the growth of the integral scale as the turbulence decays away from
the forcing region (Pope 2000; Davidson 2004). This explanation is less convincing here,
as the forcing is applied throughout the sub-surface volume. An alternative explanation
is to be found in the way the surface affects the inter-scale transfer of energy, which is
discussed in § 3.4.

3.3. Velocity gradients
The free surface modifies the velocity gradients due to both the kinematic and the dynamic
boundary conditions. In figure 11(a), we plot vertical profiles of the r.m.s. fluctuations for
the measured components of the velocity gradients. Here, we consider the data for the
lowest Reynolds number, ReT = 3000, for which the velocity gradients are best resolved
by PIV. The values in the bulk approximately follow the relations for homogeneous
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Figure 11. Change in the velocity gradients near the surface for the case with ReT = 3000. (a) The r.m.s. of
the four measured components of the velocity gradient tensor. (b) Comparison with the RDT predictions of
Magnaudet (2003) for the behaviour of the variance of the transverse gradients.

isotropic turbulence, (∂ux/∂x)′ = (∂uz/∂z)′ = √
2(∂ux/∂z)′ = √

2(∂uz/∂x)′ (Monin &
Yaglom 1975). Despite the forcing being applied relatively close to the surface, the r.m.s.
velocity gradients still display a weak decay away from the bulk. This is consistent with the
fact that small-scale quantities decay faster than large-scale ones, according to established
relations for freely decaying turbulence: u2

i ∼ ζ−m and (∂ui/∂xj)2 ∼ ζ−(m+1), where ζ is
the distance from the virtual origin of the forcing and m = 1−1.4 (Hearst & Lavoie 2014;
Sinhuber, Bodenschatz & Bewley 2015).

Approaching the surface, (∂ux/∂x)′ declines and (∂uz/∂z)′ grows. As the viscous layer
is approached, they closely approximate the ratio (∂uz/∂z)′/(∂ux/∂x)′ = √

2 predicted
by RDT (Guo & Shen 2010). The sharp decrease of (∂uz/∂x)′ to negligibly low levels
reflects the zero-shear boundary condition, while the increase of (∂ux/∂z)′ follows the
augmentation of the horizontal fluctuations described above. Overall, the trends are
compatible with those reported by Guo & Shen (2010). However, as the present ReT is
two orders of magnitude larger, the relative thickness of the viscous layer is one order
of magnitude smaller, with δν ∼ 0.01L∞ here vs δν ∼ 0.1L∞ in their study. Indeed, the
effect of the zero-shear boundary condition (expected to quench (∂ux/∂z)′ at the surface) is
not reflected by the measurements. Along with imaging limitations, this is due to residual
contamination, which permits shear stress at the surface, and surface deformations, which
permit enhanced motion along z = 0.

In figure 11(b) our results on the transverse gradients are compared with RDT
predictions as obtained by Magnaudet (2003), which involve an increase in (∂ux/∂z)′
and a decrease in (∂uz/∂x)′. The measured changes in transverse r.m.s. velocity gradients
within the source layer align qualitatively with the theory, although the depth of the
affected region and magnitude of the change is underpredicted. The qualitative agreement
confirms the significance of the interaction between the fine scales of the turbulence and
the large-scale flow modifications imposed by the surface.
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3.4. Inter-scale energy transfer
So far, we have shown a marked change in the density of TKE present at various scales
and distances from the free surface, as well as a near-surface change in the dynamics of the
small-scale structures. Here, we explore how such surface-induced changes are reflected
in the transport of energy across scales.

We denote with

qi(x, r) = (ui(x + r) − ui(x))2, (3.2)

= (
ui(x, r))2 , (3.3)

the TKE associated with the i-component of the velocity difference between a point
x and a point r away, noting that qi(x, r → ∞) → 2u2

i in a homogeneous flow. With
this notation, the rate at which energetic motions are compressed or extended by the
local relative motion is qi(x, r)�u(x, r). Averaging in time and along the homogeneous
x-direction, we obtain with qi�u(z, r) the depth-dependent rate at which TKE due to
i-direction fluctuations over a separation r is transported between scales. The approach
builds on the generalized Kármán–Howarth equation (von Kármán & Howarth 1938;
Monin & Yaglom 1975; Hill 2002). Even for inhomogeneous and anisotropic flows for
which only selected velocity components are captured, this framework provides insight on
the magnitude and direction of the energy cascade at the various scales of the turbulence
(Gomes-Fernandes, Ganapathisubramani & Vassilicos 2015; Alves Portela, Papadakis &
Vassilicos 2020; Carter & Coletti 2018).

With 
x and 
z giving the horizontal and vertical components of r, figure 12(a)
shows qi�u(z, r) evaluated in the bulk (averaged in the range −1.6 � z/L∞ � −1),
whereas figure 12(b) shows the same quantity just beneath the surface, evaluated at
z/L∞ = −0.1. The left and right parts of both contour plots refer to the horizontal TKE
(qx) and vertical TKE (qz), respectively. The colour and direction of the arrows indicate the
magnitude and scale-space direction of transport, respectively. Inwards-/outwards-pointing
arrows thus indicate compression/extension of the energetic motions, i.e. energy being
passed to smaller scales (a direct cascade) or to larger ones (an inverse cascade); see
Davidson (2004) and Vassilicos (2015).

In the bulk (figure 12a), TKE from both horizontal and vertical fluctuations is primarily
transferred inwards – that is, in a direct cascade from larger to smaller scales. However,
the large-scale anisotropy in the flow causes departures from the purely down-scale energy
flux (Carter & Coletti 2017). The inter-scale transport of u2

x is greater than that of u2
z ,

largely because of the greater amount of horizontal TKE available to be transferred, as
discussed in detail below. The horizontal compression of both TKE contributions is larger
for the same reason, mirroring results from previous studies focused on flows exhibiting
comparable large-scale anisotropy (Gomes-Fernandes et al. 2015; Carter & Coletti 2018).
Further, the anisotropy yields a relatively small energy cascade over vertical separations,
consistent with the findings of Carter & Coletti (2018) in a jet-stirred turbulence chamber
similar to the present one.

Near the surface (figure 12b), the inter-scale transfer is radically different. The
magnitude of the horizontal compression of u2

x is significantly reduced, and strikingly,
the arrows denoting the transfer of u2

z point outwards for horizontal separations. This
indicates that, beneath the surface, there is an inverse cascade of vertical energy: fluid
regions of intense vertical velocity fluctuations are, on average, stretched horizontally such
that vertical energy is transferred to larger scales.
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Figure 12. The inter-scale transfer of energy at various depths with ReT = 12 400. (a,b) The vector transfer
of energy between scales qi�u(z, r) in the bulk (a) and at z/L∞ = −0.1 (b). In each map, the left and
right sides give the inter-scale transfer of horizontal and vertical TKE, respectively. The colour gives the
magnitude of the transfer and the arrow gives its direction in scale space. Dashed circles trace scales of constant
|r| =

√
(
x)2 + (
z)2. (c,d) The radial component of the horizontal transfer of horizontal (c) and vertical (d)

TKE at various depths, indicating a reduction (or even reversal in direction) of the transfer near the surface.
(e) Vertical profiles of the inter-scale transfer of contributions to TKE for the separation scale 
x/L∞ = 0.40.

These surface-induced modifications to the inter-scale energy transfer are made even
more apparent in figures 12(c)–12(e), which show the inwards horizontal transfer of
horizontal and vertical TKE at various depths. The term giving the stretching of horizontal
TKE, qx
ux, amounts to the longitudinal third-order structure function DL

3,x, whose
negative slope is proportional to the inter-scale TKE transfer in the inertial range
(Davidson 2004; Vassilicos 2015). As seen in figure 12(c), such negative slope is reduced
as the surface is approached, signalling a hindering of the direct cascade. For the stretching
of vertical TKE qz
ux the trend is even stronger (figure 12d): as the surface is approached,
the sign of this quantity (and the slope of the curve over an intermediate range of horizontal
separations) becomes positive, indicating that the vertical TKE is, on average, transferred
to larger scales. Figure 12(e) plots vertical profiles of qi
ux(z) at the representative
separation 
x/L∞ = 0.4 and indicates that, while the general trend of energy transfer
reduction is seen across the source layer, it becomes sharper in the upper stratum of depth
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O(0.1L∞). Here, the direct cascade of horizontal energy is quenched and the cascade of
vertical energy is inverted.

To understand the origins of this behaviour, it is instructive to Reynolds decompose both
qi and 
ux and write the horizontal inter-scale transfer as

qi
ux = q′
i(
ux)

′ki, (3.4)

where ki = qi
ux/(q′
i(
ux)

′) represents the correlation between qi and 
ux. In other
words, the presence of the surface changes the inter-scale energy transfer rate because
it affects (i) the turbulent energy available to be transferred qi, (ii) the horizontal
extension/compression 
ux and (iii) the correlation between both quantities ki. (Note that
kx contains the same information as the skewness of 
ux.) To isolate the effect of the free
surface, we express each factor in (3.4) as the sum of its bulk value and a depth-dependent
deviation (denoted with a tilde)

qi
ux =
(

q′
i,∞ + q̃′

i(z)
) (

(
ux)
′
∞ + ˜(
ux)′(z)

) (
ki,∞ + k̃i(z)

)
, (3.5)

where the first, second and third terms on the right-hand side quantify the effect of the
changes in (i), (ii) and (iii), respectively, with depth.

These three contributions and their combined effect on the inter-scale transfer are
depicted in figure 13 as a function of 
x and z, for the horizontal transfer of qx (panels
a–d) and qz (e–h). As discussed in § 3.1, the horizontal TKE is increased near the
surface, especially at large scales. This increase in the amount of TKE available to be
transferred through scales causes the down-scale transfer of qx to become more negative;
see figure 13(a). Figure 13(e) and § 3.2 show the opposite is the case for qz. This change
in the magnitude of the TKE present, however, is sub-dominant compared with the
decreased coupling between TKE and horizontal extension/compression (figure 13c, f )
which effectively determines the behaviour of the inter-scale transfer for both components
(figure 13d,h). In both cases, the decreased coupling makes qi
ux less negative, hindering
the cascade. The surface also induces a somewhat larger magnitude of 
ux (figure 13b,e),
although this effect is moderate.

So far, we have illustrated the inter-scale energy transfer for the case ReT = 12 400. The
dynamics of the near-surface cascade of u2

x , however, is sensitive to the degree to which the
horizontal TKE accumulates near the surface, which becomes more pronounced with more
intense forcing (see figure 9). Figure 14 illustrates how, for ReT = 22 800, the increase
in the horizontal energy available to be transferred overcomes the decreased correlation
between energetic events and compression. As a result, the net down-scale transfer of
horizontal TKE is enhanced near the surface. Still, the behaviour of the vertical TKE
transfer (not shown) is qualitatively similar to what is displayed under less intense forcings,
with a sizeable backscatter of energy to large scales.

Taken together, the results of this section demonstrate how, along horizontal separations,
the surface hinders the direct cascade of horizontal TKE and causes an inverse cascade
of vertical TKE. (Isolating the surface-induced changes to the inter-scale energy transfer
along vertical separations is more challenging, as those are overwhelmed by the spatial
non-homogeneity in this direction.) The hindrance of the direct cascade, we have shown,
stems from the decorrelation between compressive velocity structures and energetic events
near the surface. This limits the rate at which large-scale energetic structures break down
into smaller eddies and results in the increase of LL

x approaching the surface seen in
figure 10(c). That the same effect is not observed for LT

z is likely due to the kinematic
boundary condition: this imposes that the horizontal footprint of the vertical fluctuations
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Figure 13. Terms relating to the modification of inter-scale energy transfer near the surface for horizontal
(a–d) and vertical (e–h) TKE for ReT = 12 400. Orange values indicate an enhancement of the cascade
(i.e. making the transfer more negative), while purple values indicate a reduction of the cascade. Panels (a,e)
show the effect of the change in energy available to be transferred; panels (b, f ) indicate the effect of the change
in the scale of the velocity differences; panels (c,g) indicate the change due to the decorrelation between the
energetic structures and horizontal compression. Panels (d,h) show the total change in transfer relative to the
bulk value. Given that the most pronounced changes occur in the upper half of the source layer and that our
results are influenced by forcing-induced anisotropies in the bulk, we take the ‘bulk’ to be z/L∞ = −0.4 for
the purpose of this analysis.
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Figure 14. As in figure 13, but with ReT = 22 800 and showing only the change in the transfer of horizontal
TKE. In this case, the increase in qx near the surface overcomes the decreased kx, such that the total down-scale
energy transfer (d) is enhanced.

must approach the one of the surface divergence, whose extent is discussed in the following
section.

4. Role of upwellings and downwellings

We turn to the dynamics of upwellings and downwellings, critical to the transfer of mass
and energy between the surface and the bulk (Perot & Moin 1995). Here, we address
questions about their magnitude and spatial extent, quantities that are connected to the
surface divergence and in turn to the various processes to which the latter is relevant
(McKenna & McGillis 2004; Magnaudet & Calmet 2006; Kermani & Shen 2009; Turney
& Banerjee 2013; Herlina & Wissink 2014). We then analyse the role of upwellings and
downwellings in the intercomponent energy transfer near the surface, illustrating how
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the imbalance between both types of events contributes to the inter-scale energy transfer
discussed in § 3.4.

4.1. Topology and magnitude
The no-penetration condition at the free surface implies that, for small z and an
approximately flat surface, uz ∼ z∂uz/∂z (McKenna & McGillis 2004). This amounts to
a positive correlation between the surface divergence β = ∂ux/∂x + ∂uy/∂y = −∂uz/∂z
(with the gradients evaluated at the surface) and the sub-surface vertical velocity, making
β a natural metric to gauge the local state of upwelling/downwelling (Guo & Shen 2010).
Figures 15(a) and 15(c) show instantaneous fields of uz and ∂uz/∂z, respectively, with
the depth normalized by both L∞ and Lλ. Within a distance O(Lλ) of the surface, there
is a resemblance between the two fields. At larger depths the coherence is gradually
lost.

These visual observations are supported by the flow statistics. Figure 15(b) shows how
LT

z (the characteristic scale of uz in the homogeneous x direction, shown in black) shrinks
as the surface is approached, while the characteristic scale of ∂uz/∂z (based on the integral
of its autocorrelation which is O(Lλ)), grows sightly.

The coupling of the surface divergence to the vertical velocity at various depths is
quantified for the representative case ReT = 12 400 in figure 15(d), which displays in black
the correlation coefficient between β and uz

Cβ,uz(z) = β(x)uz(x, z)
β ′u′

z(z)
. (4.1)

The surface divergence is approximated as β = −∂uz/∂z evaluated at the centre of the
uppermost PIV interrogation window, ∼1 mm from the surface. As this is of the order of
the viscous sublayer, we expect the estimate to be appropriate to retrieve correct trends
(Guo & Shen 2010). The profiles of Cβ,uz confirm a strong surface–depth correlation near
the surface.

To compare the behaviour during upwellings and downwellings, we condition the
statistics on the sign of β, which is positive for the former and negative for the latter. Given
the roughly equal occurrences of β < 0 and β > 0, the overall (unconditioned) correlation
between β and uz (4.1) could be approximated as the average of the two conditional
correlations shown, with

1
2

(
β(x)uz(x + zez)

−

β ′u′
z(z)

+ β(x)uz(x + zez)
+

β ′u′
z(z)

)
≈ Cβ,uz(z), (4.2)

where the superscripts indicate the sign of β on which the averaging is conditioned.
The coloured curves in figure 15(d), each corresponding to one term on the left-hand
side of (4.2), indicate that the surface-parallel flow is correlated to the vertical
motion beneath over a deeper depth during upwellings than during downwellings.
Likewise, conditioning the transverse covariance of uz on its sign yields larger values
of LT

z when uz > 0 compared with instances when uz < 0; see figure 15(b). These
results indicate that upwellings have a larger horizontal and vertical extent than
downwellings.

The strong correlation between β and uz in the vicinity of the surface is not hindered by
the broad distribution of either quantity. This is highlighted in their joint p.d.f. shown in
figure 15(e), with uz taken at z = −0.1L∞, where Cβ,uz ∼ 0.5 (see figure 15d). The trend
of 〈uz〉 conditioned on β indicates that upwards sub-surface velocities are more strongly
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Figure 15. The coupling between vertical velocity and its vertical gradient near the surface. (a,c) Snapshots
of uz (a) and ∂uz/∂z (c) in the vicinity of the surface. (b) The transverse length scale of the vertical velocity, in
black. The blue and red curves give the contributions from downwards and upwards velocities, respectively. The
dotted grey line is the horizontal integral scale of ∂uz/∂z structures. (d) The correlation between the surface
divergence and the vertical velocity as a function of the depth, in black. The purple and green curves give the
contributions to the correlation from instances of negative and positive surface divergence, respectively. As in
(c), vertical axes are scaled logarithmically. (e) The joint distribution of surface divergence and sub-surface
vertical velocity taken at a depth z = −L∞/10. Cyan lines trace constant relative occurrences and the red
line gives the expected vertical velocity given a surface divergence. ( f ) Standalone distributions of the two
quantities, each normalized by its own standard deviation, evidencing their positive skewness.

tied to positive divergence than downward ones are to negative divergence. This is true
particularly for anomalously large fluctuations. As shown in figure 15( f ), both β and uz are
intermittent and positively skewed: near the surface, fast upwards velocities (thus strongly
positive surface divergence) are more likely to occur than fast downwards velocities (and
strongly negative surface divergences).

To complete the view of the flow topology, figure 16 shows the correlation between
β and uz at a depth z and offset horizontally by 
r. We condition again on the sign of
β, with contributions from downwellings and upwellings shown on the left and right,
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Figure 16. Contribution to the correlation between β and ux by instances of β < 0 (left) and β > 0 (right).
The white arrows indicate the weighted-averaged velocity field under each structure.

respectively. As with the vertical velocity–overhead β correlations shown in (4.2), the
overall correlation between β and the vertical velocity at some depth and horizontal offset
can be approximated as

1
2

(
β(x)uz(x + 
rex + zez)

−

β ′u′
z(z)

+ β(x)uz(x + 
rex + zez)
+

β ′u′
z(z)

)

≈ β(x)uz(x + 
rex + zez)

β ′u′
z(z)

, (4.3)

where the superscripts indicate the sign of β on which the averaging is conditioned.
Further, we show with the arrows the mean sub-surface velocity field conditioned on
positive/negative surface divergence, obtained by a conditional weighted average of the
sub-surface velocity with |β| as the weight. This approach, akin to the variable-intensity
spatial averaging schemes employed by Guo & Shen (2010) and Khakpour, Shen & Yue
(2011), suggests that coherent upwellings possess higher intensity and greater spatial
extent in both vertical and lateral directions. We stress that this procedure yields a
statistical representation of the transport dynamics which is not necessarily representative
of instantaneous events – in particular, the averaging smooths the small-scale features of
the near-surface fields, such as those pictured in figures 15(a) and 15(c). Further, with any
interpretation of results relating to the size and energetics of upwellings and downwellings,
one must keep in mind that, over the entire flow, there is 0 net upwards or downwards mass
flux through a given surface-parallel plane.

Because the turbulent scales change throughout the source layer, there is no immediately
apparent metric to characterize the size of upwelling and downwelling structures. As they
involve vertical velocity fluctuations carrying fluid to or from the surface, however, the
depth at which Cβ,uz remains high embodies the reach of the surface–bulk coupling.
Figure 17 shows profiles of Cβ,uz vs z normalized by three different length scales: L∞,
Lλ and the mixed length scale (LλL∞)1/2. The latter incorporates the correlation lengths
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Figure 17. Correlations between the surface divergence and sub-surface velocity at a given depth, with the
depth normalized by (a) the far-field integral scale, (b) the far-field Taylor scale and (c) a mixed length scale
combining the two. Correlations less than 1 at the surface result from a combination of limited resolution near
the surface, experimental error and finite Froude and Weber number effects.

of both ∂uz/∂z and uz, yielding the best collapse of the data in the source layer (below
the near-surface layer affected by viscous effects and surface deformation). Therefore,
we conclude that this mixed scale, which involves the characteristic scales of the surface
and sub-surface motions, is a viable estimate of the vertical extent of surface-attached
upwellings and downwellings over the wide range of considered ReT .

In previous numerical studies, the horizontal footprint of these structures appeared to be
comparable to L∞ (Guo & Shen 2010; Herlina & Wissink 2014). One potential explanation
for the discrepancy with our results is the disparate Reynolds numbers: the simulations
attained ReT one-to-two orders of magnitude smaller than in our experiments and thus
yielded marginal separation between the relevant scales, as the Taylor scale scales as
L∞/Lλ ∝ Re1/2

T and the mixed length scale scales as L∞/(LλL∞)1/2 ∝ Re1/4
T .

4.2. Contribution to the inter-scale energy transfer
By virtue of their different magnitude and topology, upwellings and downwellings
contribute differently to the transport of energy in space and across scales. This is explored
by conditioning the statistics on the sign of uz rather than β, which allows us to compare
the turbulence structure associated with upward and downward fluctuations throughout
the source layer. We still refer to upwellings/downwellings, although we do not restrict the
analysis to surface-attached structures.

Figure 18(a) presents conditional profiles of the vertical component of TKE, indicating
that upward motions carry stronger surface-normal fluctuations than downward ones:
u2

z
+

> u2
z
−

(with superscripts indicating the sign of uz). This is consistent with simulations
by Guo & Shen (2010), who found the latter to have weaker surface-normal velocity than
the former. The imbalance results from the spatial non-homogeneity in the source layer:
downward motions carry fluid from the near-surface region where vertical TKE is lower,
and vice versa for upward motions. This is reflected in the surface-normal transport of
vertical TKE by the vertical fluctuations, −∂u3

z /∂z (figure 18b). Its positive sign in the
upper part of the source layer implies a net transport of turbulence towards the surface, as
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Figure 18. The role of upwards and downwards motions in the budget of vertical TKE. (a) The vertical TKE
profiles during each direction of motion. (b) The vertical flux of vertical TKE during each direction of motion.
The dashed grey line gives the flux due to the mean flow. (c) The horizontal inter-scale transport of vertical
TKE at a depth z = −0.1L∞.

described in detailed by numerical simulations (Perot & Moin 1995; Walker et al. 1996;
Calmet & Magnaudet 2003). The net vertical transport results from opposite contributions
(from upwellings and downwellings) of comparable magnitude, with upward motions
prevailing, especially at depths O(0.1L∞). This net transport has been shown to feed
the net inter-component transport from vertical to horizontal energy (Walker et al. 1996).
By comparison, the net flux of vertical TKE by the small mean flow, −∂(u2

z uz)/∂z, is
negligible.

The differing behaviour of downwellings and upwellings is connected to the decreased
correlation between qz and 
ux near the surface, which was shown in § 3.4 to determine
the reduced cascade of vertical TKE. Specifically, as illustrated in figure 16, downwellings
and upwellings produce horizontal compression (
ux

−
< 0) and stretching (
ux

+
>

0) along the surface, respectively. The resulting inter-scale transfers of vertical TKE
are displayed in figure 18(c) for the representative depth z/L∞ = −0.1: downwellings
compress energy to smaller scales, while upwellings extend energy to larger horizontal
scales. Due to the energetic imbalance shown in figure 18(a), energetic extensions
during upwellings are more effective than compressions during downwellings, ultimately
resulting in the inverse cascade of vertical TKE.

While upward motions contain a larger amount of vertical TKE compared with

downward ones, the opposite is true for horizontal TKE: u2
x
+

< u2
x
−

, as shown in
figure 19(a). Indeed, downward motions near the surface carry fluid from layers rich in
horizontal energy, especially at the large scales, as described in § 3.2. Moreover, in keeping
with the flow topology displayed in figure 16, the horizontal TKE tends to be transferred to
larger and smaller scales during upwellings and downwellings, respectively (figure 19b).
While shedding light on the role each type of motion plays in transferring horizontal TKE
between scales, the present analysis does not fully explain the reduced correlation between
qx and 
ux shown in figure 13(c), motivating future work.
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Figure 19. Characteristics of horizontal TKE during periods of downwards (blue) and upwards (red) motion.
(a) The horizontal TKE during both types of motion. (b) The inter-scale horizontal transfer of horizontal TKE
at z = −0.1L∞, evidencing an inverse cascade during upwards motions.

5. Conclusions

We have investigated the influence a free surface exerts on the turbulence underneath,
using a large zero-mean-flow water tank in which homogeneous turbulence of controllable
intensity is forced. Several specific features of the present set-up distinguish it from
installations used in past studies, making it especially suitable for studying the problem.
The turbulence in the bulk is homogeneous over a region much larger than the integral
scale and has negligible mean velocity gradients; therefore, the finite size of the tank
does not significantly influence the dynamics. The range of explored Reynolds numbers,
up to ReT = 22 800 and Reλ = 590, allows for the development of an inertial range,
with substantial separation between the integral and dissipative lengths of the system,
L∞/lK = O(103) and L∞/δν = O(102). This is essential for establishing the power-law
scalings predicted by Kolmogorov (1941) and Hunt & Graham (1978). Moreover, the
forcing is applied homogeneously in depth up to less than one integral scale from the
surface. This limits the spatial decay of TKE while maintaining weak surface deformation,
with wave amplitudes of the order of the viscous layer thickness. This has enabled us to
address several open questions, reaching the following conclusions.

In the source layer, both the magnitude and the length scale associated with the vertical
TKE decrease on approaching the surface, in line with the RDT predictions by Hunt
& Graham (1978). For most observables, the quantitative agreement with their theory
systematically improves with increasing ReT . This is consistent with the analysis of
Magnaudet (2003) who showed how nonlinear effects from the large-scale distortion by
the surface (neglected in the original analysis) vanish in the high-ReT limit. The blockage
effect is clearly demonstrated by the energy distribution across spatial scales: the surface
limits the vertical fluctuations of eddies larger than the depth at which they are located.
The increase of horizontal TKE predicted by RDT is visible only at the higher turbulence
intensity, ReT >∼ 10 000, whereas for weaker forcing the effect is mild and thus obscured
by spatial inhomogeneities. The level of forcing at which the horizontal TKE enhancement
emerges is expected to depend on the specific system. Overall, our results indicate that
differences in ReT and forcing schemes were the likely cause of discrepancy between
previous studies.

The growth of horizontal energy in the source layer is concentrated at the large
scales, specifically those for which the vertical energy is suppressed. This results in
a strong enlargement of the integral scales of horizontal fluctuations, opposite to the
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RDT prediction. Such an accumulation of energy at the large scales is interpreted as the
consequence of a hindered TKE cascade. The latter is demonstrated in the framework of
the generalized Kármán–Howarth equation, specifically focusing on the inter-scale energy
transfer across horizontal scales. The proximity to the surface inhibits the forward cascade
of horizontal TKE, and even causes an inverse cascade of vertical TKE. This behaviour
is rooted in a loss of correlation between energetic motions and compressive states of
the flow. Such correlation is a hallmark of 3-D homogeneous turbulence, associated with
the prevalence of vortex stretching and strain self-amplification and classically signalled
by the negative skewness of the longitudinal velocity gradients (Davidson 2004; Carbone
& Bragg 2020; Johnson 2021). Near the surface, the extension/compression of velocity
differences is radically altered by the upwelling and downwelling structures populating
the near-surface region.

To analyse the effect of upwellings and downwellings on TKE transport, we have
conditioned our data on the sign of the surface divergence and sub-surface velocity.
Leveraging the scale separation achieved in our set-up, we find that the vertical extent
of up- and downwellings lies between the integral and the Taylor microscale, being
O((LλL∞)1/2) ∼ Re−1/4

T L∞. While a firm theoretical underpinning for such scaling is
not available, a mixed length is consistent with the involvement of both energetic
eddies (carrying fluid up the source layer) and velocity gradients (related to the surface
divergence). Statistically, we find upwellings to be more energetic, determining the net
flux of vertical TKE towards the surface. Downwellings, on the other hand, carry stronger
horizontal TKE. These imbalances are connected to the opposite contribution of both types
of motions to the inter-scale flux of energy: upwellings carry fluid parcels towards the
surface and stretch them horizontally along it, while downwellings compress and carry
them towards the bulk. Therefore, it is during downwellings that surface-attached vortices
can stretch (Shen et al. 1999), which is crucial for transferring horizontal energy to smaller
scales (Davidson 2004; Johnson 2021).

The nature of the energy cascade in the vicinity of and along the free surface has
been much debated, with several studies presenting evidence of a quasi-2-D turbulent
dynamics (Pan & Banerjee 1995; Perot & Moin 1995; Sarpkaya 1996; Lovecchio et al.
2015), and others emphasizing the fundamentally 3-D character of the flow (Walker et al.
1996; Shen et al. 1999; Guo & Shen 2010). The present investigation represents a step
to reconcile those views, as it highlights how upwellings and downwellings are not only
chiefly responsible for the spatial transfer of energy, but also for the inter-scale flux
at the surface. Energetic imbalances between upwellings and downwellings impact the
amount of energy each type of motion extends or compresses to different scales. In the
aggregate, we find that the near-surface structures modify the turbulence in such a way
that the correlation between compressive and energetic structures is reduced, hindering
the down-scale cascade of TKE.

The present configuration in which turbulence is forced throughout the fluid volume is
of high practical relevance; e.g. for shallow rivers and oceanic fronts, in which near-surface
processes generate and sustain energy fluctuations (Nezu & Nakagawa 1993; D’Asaro
et al. 2011; Franca & Brocchini 2015; Taylor & Thompson 2023). Other common systems,
however, involve turbulence generated at depth, diffusing towards the surface before
feeling its influence. The effect of the distance between the turbulence generation region
and the surface has not been systematically assessed, and research is warranted on this
point to identify mechanisms with a maximum degree of generality.

Other notable aspects that are outside the scope of the present work deserve attention.
In particular, the essentially non-homogeneous and anisotropic character of near-surface
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turbulence implies that 3-D measurements are required to close the inter-scale energy
budget. This is highly challenging as the Kolmogorov and integral scales need to be
simultaneously resolved; it can be achieved, however, with advanced imaging approaches
(Knutsen et al. 2020). Moreover, surface contamination may play a key role in the coupling
of the sub-surface velocity to the surface divergence: Marangoni stresses induced by
surfactant concentration gradients alter the structure of the divergence field (McKenna &
McGillis 2004; Shen et al. 2004). Dedicated experiments are required to reach a predictive
understanding of such processes. Further, when the surface deformation becomes large,
its dynamics is two-way coupled with the turbulence dynamics underneath (Brocchini
& Peregrine 2001a; Savelsberg & Van De Water 2009; Smeltzer et al. 2023). Future
measurements involving more highly deformed surfaces will elucidate this interplay of
surface energy, wave kinetic energy and turbulence energy.

Supplementary movie. A movie of the vorticity fields at each Reynolds number is available as
supplementary material at https://doi.org/10.1017/jfm.2024.1017.
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