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Among the many papers on the subject of lattices I have not seen
any simple discussion of the congruences on a distributive lattice. I t
is the purpose of this note to give such a discussion for lattices with
a certain finiteness. Any distributive lattice is isomorphic with a ring
of sets (G. Birkhoff, Lattice Theory, revised edition, 1948, p. 140,
corollary to Theorem 6); I take the case where the sets are finite.
All finite distributive lattices are covered by this case.

Let <J? be a lattice of subsets of S and K be a subset of 8 (not
necessarily an element of jQ). Let the definition of the relation q^
between elements of the lattice be that XqKY if and only if
X n K = Y nK. c\K is clearly an equivalence (this would be true
for any lattice). In fact, q^ is a congruence. For if Xc\KY and
ZeL, then (X n Z) n K = (X n K) nZ = (Y n K) n Z = (Y n Z) nK and
(X u Z) n K = (X n K) u (Z n K) = ( Yn K) u (Z n K) = ( YuZ)nK. Therefore
(X nZ)qK( Yn Z) and (X u Z) qK (Yu Z).

The chief theorem is the converse of this: If J? is a lattice of
finite subsets of S, and q is a congruence on &Q, then there is a subset
K of S such that q = q E.

The set Xq of all elements in the relation q to X is a sub-lattice.
For if Yc\ X q Z, then (Yn Z) q (X n X) = X and (7u Z) q (X 0 X)=X.
Let Xg and X, be the greatest and least elements of Xq.

Let K be \JX — U (Xg - Xt). (Unions are over all X of J>.)
First we see that q c c\K. For Xg — Xt c \JX — K. Therefore
(Xg-Xi)nK £K-K= o, and so XgnK=X,n K. But XgnK^XnK^XlnK,
giving XnK = XlnK. If Xq=7q then X, = Yt. Therefore
YnK= YlnK = XlnK = X nK, and so X qKY.

We have now to see that if XqEY, then XqF. We take first the
case I D T ; the proof is by induction on the number of elements in
X — Y. I t is clearly true when X — Y has no elements. Let X — Y
have n elements (n > 0) and a e X — Y and X n K = Y nK. Then
a is not in K and so a e U X — K = \J (Xg — Xt). Therefore there are
elements P and Q of o^such that P q Q and aeP — Q. Then U q V
where U = Y u P. u X and V = Yu Q. n X.
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Then Y jzU nV£U c l . (1)

Now a is not in V n F and a e L\ The number of elements in X — U and
the number of elements in (U n V) — Y are therefore less than n. But,
iTom(l),KnY<zKnUnV<:KnUc:KnX. And XnK=YnK. Therefore all
these are equal. Therefore we have KnX = KnU, UcX, and the
number of elements in X—U is less than n. Therefore U(\X. In
the same way, Fq UnV. But U q UnV. Therefore X q Y.

Now let (X, Y) be any element of q*. Then XnK = XnYnK,
and X^XnY, and so I q J n r . In the same way, Yq Y^X, and so
Xc\ Y.

Note. A similar theorem for complemented modular lattices is
given by Birkhoff, loc. cit., p. 119, Theorem 5.

Definition: If p and r are any two relations, then px is the
relation for which X pxY if and only if there is a Z for which X p Z
and Zx Y.

We can now prove that
/ / p and x are any two congruences on a lattice of finite subsets, then

px = xp.
Let p be qP and x be qR. If A px B, then, for some element C

of the lattice, A qP CqR B, and so AnP = C nP and BnR = C nR.
Then AnPnB = CnPnB = CnRnP = BnRnP. Let D be

(AnR)u(BnP). Then DnR = (AnR)u{BnPnR) = (A nR)u{AnPnR)
= A nR. Therefore A x D. In the same way, D p B. Therefore
A xp B, and so px g-xp. Similarly, xp c pr.

Note. This theorem was proved for relatively complemented
lattices by R. P. Dilworth, Annals of Mathematics, 50(1950), 348.
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