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1. INTRODUCTION 

During the last seven years we have become much more aware of the 
importance of velocity anisotropy in spheroidal components. There 
were never any sound arguments for assuming that the velocity 
ellipsoids in spheroidal components would be spherical, but the 
mathematical convenience of this assumption is such that velocity 
anisotropy was either absent from or unimportant in the models 
that seemed so promising at the last Besancon meeting in 1974. 
With the advent of accurate velocity information from absorption-
line studies of early-type systems, it became apparent that the 
real world is a good deal more complex than it might have been, 
and the theoretical situation is now less satisfactory than it 
seemed in 1974. All I can do here is to report on our somewhat 
painful efforts to pick ourselves up from the floor to which the 
observers knocked us in 1975-7. 

2. SPHERICAL SYSTEMS 

As is well known, the most general distribution function for a 
system that is spherically symmetric in all its properties, is a 
function f(E,L) of the specific stellar energy E = 2 v 2 + $ and 
angular momentum L= Irxvl , and the velocity ellipsoids in the 
galaxy are everywhere spherical if and only if (9f/8L)=0. 
Numerical simulations of the relaxation of spherical star 
clusters from Gott (1973) to van Albada (1982) have tended to 
show that while the velocity ellipsoids at the centres of the 
final equilibrium systems are spherical, those near the periphery 
are elongated along the local radial direction. Thus in these 
systems (8f/3L)^0, and we should be wary of assuming that the 
distribution functions of spherical galaxies have f(E). 
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However, until recently we have tended to think in terms of 
models whose distribution functions depend on E only. A nice 
illustration of how misleading this can be is furnished by M87. 
Young et al (1978) and Sargent e_t al (1978) obtained CCD 
photometry and long-slit spectroscopy of this galaxy and 
interpreted their observations on the assumption that the 
velocity dispersion is everywhere isotropic. They concluded that 
the ratio M(r)/L(r) of the mass contained interior to radius r to 
the light inside r, rises steeply from M / L v < 9 at r>600 pc to 
M / L v > 6 0 at r<200 pc. However, if one drops the assumption of 
velocity isotropy, these same observations are consistent with a 
constant mass-to-light ratio M/L v=7.6 (Binney and Mamon 1982). 
Furthermore, it can be argued that the radial variation of the 
anisotropy parameter 5 : ( l - a

e
2 / a

r
2 ) that is implied by the 

assumption of constant mass-to-light ratio in M87 f is of the same 
type as one would have predicted from the theory of Tremaine et 
al (1975) that galactic nuclei are formed as a result of massive 
globular clusters becoming trapped in galactic centres through 
the action of dynamical friction. 

Mamon and I only showed that the first moment of the Vlasov 
equation can be satisfied by a constant M/L model of M87. We did 
not prove that the Vlasov equation can itself be satisfied. 
Unfortunately we do not yet know how to find a distribution 
function f(E,L) that generates given surface density and velocity 
dispersion profiles E(R) and a v(R). The different information 
contents of one function of two variables f(E,J), and two 
functions E (R) and a y(R) of one variable, suggests that if any 
non-negative f(E,L) generates the given profiles, many other 
distribution functions will also be possible. But it is not clear 
under what circumstances no non-negative distribution function is 
compatible with a set of data. Duncan and Wheeler (1980) and 
T r e m a i n e and Ostriker (1982) have tackled the problem of 
interpreting the brightness and velocity dispersion profiles of 
M87 and M31 from this more demanding point of view. 

3. AXISYMMETRIC SYSTEMS 

3.1 Systems with f(E,Lz) 

The classical model of an axisymmetric galaxy (e.g. Wilson 1975) 
has a distribution function f (E,L Z) that depends on energy and 
the component L z of angular momentum along the symmetry axis. 
These models are often referred to as "isotropic" because the 
velocity ellipsoids cut meridional planes in circles (see Fig. 
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Figure 1. Possible arrangements of the velocity ellipsoids 
in the meridional plane of an axisymmetric galaxy. 

la). Models of this type have been at a discount since Bertola 
and Capaccioli (1975) and Illingworth (1977) demonstrated that 
most giant elliptical galaxies are not flattened by rotation. 
Actually there has never been any hard evidence that giant 
elliptical galaxies cannot be modelled in this way: Any model 
based on f(E,L2) immediately gives rise to a family of models in 
which the distribution functions f(E,Lz) differ from each other 
only in the parts that are odd in L z. Since the rotation speed of 
a model is proportional to the part of the distribution function 
that is odd in L z and does not contribute to the density 
distribution, all these models have the same density, but among 
them are models that have very small or even zero rotation rates. 

Personally I have always been strongly prejudiced against models 
of this type since I can see no obvious way of ensuring that 
f=f (E,L Z), while flattened but non-rotating ellipticals with 
f^f(E,L z) are a natural consequence of either the Zel'dovich 
(1970, 1978) pancake theory of galaxy formation (Binney 1976), or 
the merger picture of the formation of ellipticals (White, this 
symposium). However two recent developments give pause for 
thought: 

(1) Frenk and White (1980) have shown that the velocities of 
the galactic globular clusters are nearly isotropically 
distributed, rather than being strongly biased around the 
radial direction as are the velocities of the RR-Lyrae stars 
(Woolley 1978). Freeman (this symposium) cautions us against 
assuming blindly that globular clusters are necessarily 
typical of the spheroidal component, but the conclusion of 
Frenk and white shows that velocity anisotropy does not 
always play an important role in spheroidal systems. 
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(2) The observations of early-type disk galaxies and of low 
luminosity ellipticals that have been reviewed by 
Illingworth (this symposium), show that if the velocity 
ellipsoids in these galaxies are not spherical, they must be 
elongated along the radial directions (see Fig. lb) so that 
anisotropy does not make an appreciable contribution to the 
flattenings of these system. 

Jarvis (1981) has recently fitted models based on f(E,L z) to 
observations of the disk galaxies NGCs 4594, 7123 and 7814. He 
models the bulges of these galaxies as systems with f=f Q[exp(-
E / a 2 ) - l ] exp( QLz/o2) that are placed in the disk-like 
gravitational potential $ d(R,z)=-GM d{R 2+[a+(z 2+b 2) 1 / 2] 2}~ 1/ 2 that 
was introduced by Miyamoto and Nagai (1975). Figure 2 illustrates 
the effect of a disk with a quarter of the spheroid's mass on the 
position of the spheroid in the usual v m / a Q diagram. 
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Figure 2. Maximum rotation speed over central velocity 
dispersion for Jarvis' models. The models with and without a 
disk lie in the shaded areas, while the full curve is the 
ratio of global parameters that one obtains from the virial 
theorem. 

By adjusting the five parameters of his models, Jarvis is able to 
fit extensive photometric and kinematic data for the earliest of 
his galaxies, NGC 7814, extremely well. Frankly I find the 
quality of Jarvis' fits disconcerting since, as Hunter (1977) has 
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pointed out, any model with a distribution function such as that 
of Jarvis, of the form f (E,L z)=g(E)h(L z), will tend to become 
spherical near the centre. Furthermore, it is straightforward to 
show that near the centre of Jarvis' models, the spheroid must 
rotate as a solid body as regards the variation of <v^> with both 
radius and height above the disk. My guess is that neither the 
ellipticity profiles nor the velocity fields of bulges have these 
characteristics. Unfortunately, the disks of Jarvis 1 galaxies 
effectively obliterate the central regions, it will be 
interesting to see whether fotationally-flattened low-luminosity 
ellipticals are consistent with distribution functions of the 
form g(E)h(L z). 

3.2 Systems with f(E,L z,I 3) 

The great majority of orbits in potentials like those of disk 
galaxies admit a third integral of motion in addition to L z and E 
(eg. Martinet and Mayer 1975). There is no unique form for the 
third integral since, given any third integral l 3 , any non-
trivial function I 3'(E/L z/I 3) yields a new third integral l 3'. 
However, the potentials of spheroidal components are usually 
fairly spherical, and in this case it is natural to consider l 3 

to be a generalization of the magnitude L= |rxv| of the angular 
momentum vector (Saaf 1968, Innanen and Papp 1977, Richstone 
1982). Adopting the convention that I 3 is the natural 
generalization of L, consider the general structure of models 
based on the following simple distribution functions. 

(i) f = f K(E)exp[ftL z - (11 )2] 
a2 r ac 

(ii) f = f K(E)exp[-(I 3
2-L z

2)/(r a a ) 2 ] 

(iii) f = f K(E)exp[£L _ ( 2 ) / ( r a ) 2 ] 

* a 2 3 z a 
where f K=f 0[exp(-E/<? 2)-l] is King's (1966) distribution function, 
and ft and r a are parameters. 

A model built around the first of these distribution functions 
will rotate with central angular speed ft like the models of 
Prendergast and Tomer (1970), Wilson (1975) and Jarvis (1981), 
while having radially elongated velocity ellipsoids as in the 
m o d e l s of Michie and Bodenheimer (1963). Figure lb is a 
caricature of a model of this type. Such models may account for 
observations of rotationally-flattened spheroidal components and 
globular clusters. Lupton and Gunn (in preparation) have 
constructed models of this type and fitted them to observations 
of globular clusters, by assuming I 3*L. Petrou (1982 and this 
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symposium) has constructed models in which a more sophisticated 
approximation to l 3 is employed. 

Since the distribution function (ii) is even in Lz, it leads to 
models which do not rotate. However, these models will be 
flattened because the argument of the exponential is 
approximately equal to [-(L x

2+L y
2) ], and so orbits that carry 

stars far from the equatorial plane will be depopulated. Clearly 
we can set a model of this type rotating by adding a component to 
f that is odd in L z as in (iii). Petrou (1982) has used a 
distribution function akin to (iii) to build models which are 
flattened by anisotropy rather than rotation. 

Two problems that should not be difficult to solve, but have been 
outstanding for some years, are (a) to find the distribution 
function that generates a realistic spheroidal system with a flat 
rotation curve, and (b) to find the distribution function that 
generates a box shaped bulge like that of NGC 128 (p.7 of the 
Hubble Atlas). 

3.3 Schwarzschild's Method 

Schwarzschild (1979) introduced a technique into galactic 
d y n a m i c s which enables one to construct a model with a 
predetermined density distribution, without assuming anything 
about non-classical integrals such as l 3 # m Schwarzschild's 
technique, one chooses a convenient potential and then uses the 
computer to calculate a library of orbits in this potential. 
Linear programming techniques are then used to determine whether 
these orbits can be populated in such a way as to generate the 
initially assumed potential. 

This technique has so far only been applied by Schwar zschild to 
the construction of triaxial systems, and by Richstone (1980 and 
this symposium) and M e y s e_t a_l (this symposium) to the 
construction of rather special scale-free models. It is a pity 
that nobody has yet used Schwarzschild's method to construct a 
realistic axisymmetric model, since the technique is very well 
suited to this problem, and the labour involved, though 
considerable, is much less than that involved in the construction 
of Schwarzschild's triaxial models. 

4. TRIAXIAL SYSTEMS 

Over the last four years a wide range of triaxial equilibrium 
stellar models have been published. Aarseth and Binney (1978) and 
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Wilkinson and James (1982) have described n-body models in which 
the triaxial figure is stationary in space, while Schwarzschild 
(1979) has used his technique to construct a model of this type 
around a predetermined Hubble-like density profile. Wilkinson and 
James (1982) and Schwarzschild (1982) have shown that anisotropy-
supported bars of this type can be generalized to include figure 
rotation. Hohl and Zang (1979) and Miller and Smith (1979) have 
shown that rapidly rotating clouds of stars invariably relax to 
tumbling bars. The product of a galaxy merger (White, this 
symposium) is oblate if the galaxies spiral together from a large 
impact parameter encounter, and prolate if the galaxies collide 
head-on and their spins are dynamically unimportant. A head-on 
collision between galaxies with suitably aligned spins can 
generate a system which is part prolate and part oblate (Gerhard 
1982a) and may not even settle to a state that is steady in a 
suitable rotating frame of reference (Gerhard 1982b). 

Thus numerical work indicates that triaxial equilibria are the 
outcome of a wide variety of initial conditions. Attempts to 
determine whether elliptical galaxies are more often prolate or 
oblate (Marchant and Olson 1979, Richstone 1979, Lake 1979, 
Merritt 1982) have yet to produce a definite result for want of 
sufficient photometric and spectroscopic data. At the moment the 
best hope of pinning down the shapes and figure rotation speeds 
of ellipticals seems to lie in gas in and around these galaxies. 
Westerbork observations (Knapp, this symposium) indicate that the 
velocity fields of many of these gas features are remarkably 
regular. This suggests that each element of gas is moving on a 
closed orbit. The spatial and velocity structure of these orbits 
should betray the figure and rotation speed of the underlying 
potential (Binney 1978, 1981, van Albada et al 1981, Heisler et 
al 1982, Magnenat 1982, Tohline and Durisen 1982). 
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DISCUSSION 

RICHSTONE : In the work with Mamon on M87 you used a hydrostatic 
approach. Don't you think considerations of the collisionless Boltzmann 
equation make the large jumps in your anisotropy parameter (as a function 
of radius) somewhat unreasonable ? 

BINNEY : At present Jean's moment equations provide the only flexible 
framework within which to analyse observational data. Of course, one 
would prefer to think about observations in terms of an algorithm that 
generates distribution functions f(E,L) that are compatible with given 
observations, but we don't have such a treasure. So Mamon and I thought 
we would probe the limits of what can be achieved with Jean's equations, 
and emphasize the danger of assuming with Sargent et al that 3 can be 
simply set to zero. 
The following simple argument shows that very rapid changes in 3 are 
possible in principle : in the portion of an unconfined Michie model in 
which 3 - 1 , the density p(r) - Pi (ri/r) 3.5. if w e set this system in 
the low-density core of a giant elliptical we will have 

B(D = 1 - p/Q [ p / ( £ ' ) 3 - 5 + p 2 O * ] ~ 1 

where , OQ and a r are the radius-independent parameters of the ellip­
tical envelope, and s is the radially-directed velocity dispersion 
towards the outside of the Michie model. If one now sets p = p , s = a r 

and 3 (°°) = 0.4, one finds that 3(0.75r 1) = 0.84 and 3(l.15r\) = 0.52. 
When account is taken of the potential generated by the elliptical 
envelope, the density of the anisotropic core will fall more steeply 
than p ~ r 3*5 ' and so 6 will decrease even more rapidly than in this 
naive model. In our model of M87, 3 changes from 0.85 at 100 pc to 0.4 
at 200 pc. 

INAGAKI : Is it possible,or even easy to construct dynamically stable 
models with velocity dispersion decreasing inwards ? 

BINNEY : An example of a system of this type is the spherical galaxy 
with f(E) that obeys the R A law in projection (Mon. Not. R. Astr. Soc. 
200, 951). Antonov's work (Vestnik Leningrad Univ. No 19 : 96) shows 
that this system is stable to all types of perturbation, and a decreases 
interior to 0.07Re. It Is easy to construct systems of this sort by 
inserting cold quasi-isothermal models into hot models of the same type 
(Mon. Not. R. Astr. Soc. 190, 873). 
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