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NEAR-RINGS OF POLYNOMIALS OVER GROUPS

by J. D. P. MELDRUM, G. PILZ and Y. S. SO

(Received 9th November 1983)

The set G[x] of polynomials over a group (G, +)—as well as the polynomial functions
P(G) on (G, +) form near-rings with respect to addition and composition (substitution).
See [1] for polynomials and [2] for near-rings. A number of results on G[x] can be
deduced from [2].

Due to [1], the polynomials in G[x] can uniquely be represented in the following
"normal form":

gl+zlx+g2+z2x + ... + znx+gn + 1 (1)

with neNQ, gu...,gn + leG, zu...,zneZ, g2,.--,gn^§ if n > \ a n d z , # 0 if g i + 1 # 0 . In
short, we write Y,i (St+Zix) f°r (!)• Another unique representation for the polynomials of
G[x] is given by

£ (g,+z,x-gt)+gm + 1 (2)

with neN0, gteG, zteZ. Since g; + z,x—^; = z;(g, + x—g(), another normal form is given
by

2>,(g,+x-fc)+ft . + i (3)

with neM, gteG and «r,e(l, - 1 } . The zero-symmetric part Go[x]: = {peG[x]|p°0=0}
of G[x] (where 0 denotes the identity in (G, +)) is then given by

-ft)|fteG,ff( 6(1,-1} J. (4)

Note that we write groups additively, this does not imply commutativity. Moreover,
A ^ G means that A is a subgroup of G. A <= B denotes strict inclusion.

The first interesting property of G[x] comes directly from the normal form (4) and
the fact that all g,+x—gt are distributive elements in G[x]:

Proposition 1. G0[x] and P0(G) = {/eP(G)|/(0)=0} are distributively generated
{d.g.) near-rings.
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Another interesting feature stems from the fact that all normal subgroups are left
ideals. For S,T^G let ST be the set of all sums of the form J.+s.-C,- (t( e T, st e S). SG is
then just the normal closure of S in G.

Proposition 2. Let S be a subgroup of(G[x], +). Then

(i) S is a left ideal in G[x] iff S is a normal subgroup, which in turn is equivalent to
5 C u W =S.

(ii) S is aG0[x]-subgroupiffSG = S.

Proof, (a) As in 6.6 of [2] one sees that every normal G0[x]-subgroup of G 0 M is a
left ideal. So let us take a normal subgroup N of G0[x] or of G[x] and arbitrary
peG0[x] and «eiV in order to show that p°neN. From (4) we see that it suffices to
take p=g + x—g. Then pon=g + n—geN and N is a normal G0[x]-subgroup, hence a
left ideal. The rest of (i) and (ii) are shown similarly.

In a general near-ring N, the sum of an iV0-subgroup and a left ideal is an JV0-
subgroup, but usually not a left ideal. The situation is better in G[x]. For that, suppose
(A:g): = {peG[x']\p°ge A} for AcG and geG. If A = G then (A:g) is easily shown to be
a left ideal of G[x].

Proposition 3. Let S be a Go[x]-subgroup of G[x], geG and A = G. Then L: = S +
(A:g) is a left ideal of G[x~].

Proof. Since S is a subgroup and (A:g) a normal subgroup of (G[x], +), L is a
subgroup of G[x]. For heG, seS and pe(A:g) we get h + (s + p) — h

-h)e S + (A:g) = L by Proposition 2(ii). Also,

-g) + (g+p-g)+(g-x)

Hence L is a left ideal by Proposition 2(i).

In order to get results about the structure of G[x] one needs a certain amount of
knowledge about strictly maximal left ideals (i.e. left ideals which are at the same time
maximal G0[x]-subgroups). We start with

Theorem 1. The collection of maximal left ideals L of G[x] with G^L is precisely
given by

\ for p prime.

Proof, (a) It follows readily from Proposition 2(i) that Lp is a left ideal for each
prime number p. Lp^Glx']. Now suppose that U is a left ideal with LpcU. The set V\
of all zeZ such that there is some £,(g,-|-Z;x)e[/ with ^ z , = z is a subgroup of (Z, +)
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containing pL. Since LP#C7 there is some £,-(/«,•+.ft x)e U\Lp. This means that
£ ( y, e 1/ApZ, whence pZcUu hence Ut=Z. But then xeU and (since Gu{x}
generates G[x]) l/ = G[x]. Hence Lp is maximal.

(b) Now let L be a maximal left ideal and define Lx similar to Ux in (a). If St is a
proper subgroup of (Z, +) then S: = {^i(gi + z,x)|^2I£S1} is a proper left ideal of
G[x]. If LjSS, then L^S. Since L is maximal and S¥=G\_x], we get L=S and L1=Sl

= pZ for some prime p. Hence L = Lp.

Theorem 2. Let L be a strictly maximal left ideal of G[x] and Lc: = LryG. Then
LC = G or Lc is a maximal normal subgroup of G.

Proof. By Proposition 2(ii), Lc is normal in (G, +). If LccM = G then M is (again by
Proposition 2(ii)) a G0[x]-subgroup. Since L is maximal, L+M=G[x] . If geG then
there are leL and meM with g — l+m; meM£G implies that leLccM. Hence geM
and M = G. This shows that Lc is a maximal normal subgroup of G.

For a group G let )3(G) be Baer's group radical (the intersection of all maximal
normal subgroups). From Theorem 2 and Proposition 3 we get

Corollary 1. Let L be a strictly maximal left ideal of G[x~\. Then y8(G)sL.

From [3] we get the information that if M is a maximal normal subgroup of G and
geG\M then (M:g) is a strictly maximal left ideal. For groups we can generalize this
result by determining all strictly maximal left ideals of G[x].

Theorem 3. Let G be a group. The set of all strictly maximal left ideals Lof G[x] is
given by the following list.

(i) LA: = (A:0), where A is a maximal normal subgroup of G containing the commutator
subgroup [G, G].

(ii) LB g: = (B:g), where B is a maximal normal subgroup of G not containing \_G,G~\
and g e G\B or g = 0.

(iii) L^p^l^ifei + z .^eGMlxS.fJ^EiZ^modp)}, where p is a prime and
xeHom(G,Zp).

In cases (i) and (iii), G/Ln G is cyclic of prime order, while G/LB BnG = G/B holds in
case (ii).

Proof, (a) First we show that a strictly maximal left ideal L is of the form (i), (ii) or
(iii). If G s L then L = L^ p (where £ is the zero map) is of type (iii) by Theorem 1. Hence
we may assume that G<£L. By Theorem 2, Lc = L n G is a maximal normal subgroup of
G, and G/Lc is simple. By Proposition 2(i), G[_x~]/L is a simple group, too. By
Proposition 2(ii), L is even maximal as a subgroup of G[x] normalized by G. G is an
G0[x]-subgroup of G[x] and so is G + L by 2.15 of [2]. Hence G-l-L=G[x] since L is
strictly maximal and G£L. This implies that (as groups) G[x]/L=
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= G/LC holds. This gives a natural epimorphism TC:G[X]^-G[X]/L-»G/LC. Hence there is
some geG with 7i(x)=g + Lc. By the well-known form of it, n(g) = n(x), therefore n(g-x)
= 0 and g—xeL. Let K: = <Lc> + <g—x>, where < > denotes the normal closure in
G[x]. Now the map </>:G[x]->G, p^>p(g) is clearly a group epimorphism. We claim that
Ker<p = <x —g>. If pe<x —g> then p = po°(x—g) for some po

eG0[x] by Theorem 1 of
[3]. Hence p(g) = po(g-g) = Po(0) = 0 and peKercp. Conversely, if £ = £(£,-+z,x)eKer<p
then x=£(mod<g-x» implies £(g ; + zix) = YJ(gi + z,£)=fc(s) = 0(mod<g-x», hence
ke(g — x>. This shows that the map <p:p+(x — g}-yp(g) is an isomorphism from
G[x]/<g-x> onto G. If ae<Lc> and se<g-x> then iKa + s + < g - x » = a(g) + s(g)
= a(^)£<Lc>

G = Lc which shows that \j/ maps K/(g — x> = «Lc> + <g—x»/<g — x> onto
Lc. By the second isomorphism theorem we get

G[x]/XsG[x]/<g-x> IKI<&-x>sG/£csG[x]/L

which together with X ^ L shows K = L (note that G[x]/L is simple).
Case I: geLc. Then, since g — xeL, xeL, too, and L is the normal closure of Lcu{x},

i.e. L={£(g ; +z ; x) |£g, eLc}=(Lc:0), and we are in (i) with/4 = Lc or in (ii) with B = Lc.
Case II: g$Lc. Then L=Ks (Lc:g). Both L and (Lc:g) are strictly maximal (Theorem

2 of [3]), hence we have L = (Lc:g). If LC£[G:G] we are in case (ii). If LC^[G,G] then
G/Lc is simple and abelian, hence cyclic of prime order p.

The epimorphism %:G^GILc^*TLp with canonical % and an isomorphism a with
a(g + Lc) = — 1 has kernel Lc. Hence

tx) e L*>Y. (Si + ztg) 6 L c o0 =

and we are in case (iii).
The assertions concerning G/L are already proved or follow easily.
(b) Conversely, each LA, LB g and Lxp, as in the statement of the Theorem, are

strictly maximal left ideals. It is straightforward that they are left ideals. That LA (case
(i)) and LB g (case (ii)) are strictly maximal follows from Theorem 2 in [3] and its proof.
So consider Lxp. Clearly Lx,p#G[x]. Suppose that the G0[x]-subgroup U is strictly
bigger than Lxp and let ueU\Lxp, u = £(g,+Z;x). Then *(£#*)^£z- (modp). Let
fce{l,2,...,p — 1} be such that x(X!^i) = (Xzi) + 'c (modp). There exist m,neZ with mk +
np = \. By the definition of Lxp and since mk = l (modp), x + mueLx p. Since also
— mueU we know that x = (x + mu) — mueU. If geG, let r e{0,l,...,p— 1} be such that
x(g) = r (modp). Then g + rxeLxpcU and rxeU, hence geU. Therefore Gu{x}sl /
and so C/ = G[x].

The proof of the preceding theorem also shows

Corollary 2. All strictly maximal left ideals of G[x] are given by either one of the
following two lists:
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(i) (Gu{px})GW, p a prime, and (Bu{x-g})c w , geG, B maximal normal in G.
(ii) (B:g) with geG\B or g = 0 and B maximal normal in G, and Lx p, p a prime.

This enables us to compute the Jacobson-type radicals of G[x]. Recall that for a
near-ring N with identity, J1/2(A0 is defined as the intersection of all maximal left ideals
of N, while J2{N) is the intersection of all strictly maximal ones. J0(^) = (^i /2W:^)
and Jl(N) = J2(N) (since N has an identity). In the general case, we have

Theorem 4. J1(G[x]) = J2(G[x]) = GG[xln()?(G):G) = {^(gi+ZiX)|Xz1=0 and for all

Proof. Let Jt be the collection of all maximal normal subgroups of G and ( the zero
map. From Theorem 3 we get with G' = \G,G~\:

C'S/l G'$,B 0 = Oor p x*i P
AeJt BsM 9<tB

(A:0))n f) (B:(G\e)u{O})nf)

Now if/ is in the second block of the intersection and geB then/°0e£, hence f°g-
(f—f°0)°geB, since/—/°0eGo[x] and B is normal (see Proposition 2(ii)). Hence

f) (B:(G\J3)u{0}) = (Y f| B\G).

The first two intersections give (/?(G):G). Moreover, we get C\pL^p ^ \ Y ,
0 } 2 G c w . That this inclusion is in fact an equality can be seen by the same argument as
for equations (3) and (4) at the beginning of this paper. Finally, take q = Yj(Si +
ziX)e(p(G):G)nGGlx]. Then 2>,- = 4°0ey?(G). if x is in Hom(G,Zp), z^C, then x is an
epimorphism and G/ker % = 2 p . Hence ker / is maximal and normal in G, pG £ ker x, and
/?(G)£ker/. Hence xQj>i) = 0 = Xzi> since qeGGlx]. Therefore qeLx p and we can forget
about the third part of the intersection. Hence the result (in the elegant and the explicit
form.).

Examples.

(i) Since 0(Z) = {0}, we get

(ii) Let G be the direct sum of simple groups. Then similarly
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(Hi) Now let G be the group Z™. Then fi{G) = G and

(iv) The arguments in the proof of Theorem 4 showed that (B:0) = (B:B) holds for all
normal subgroups B of G. But in general, (/?(G):G)#(/?(G):0). Let, for instance,
geG\P{G). Then £ + x-ge(j?(G):O), but (g + x-g)°g=g£j3(G), whence

Concerning the other two Jacobson-type radicals Jo and J1/2 of [2] we get from 5.2
and 5.35 of [2]

Corollary 4. Jo(G) = (0(G[x]):G[x]) and J1/2(G) = 0(G[x]).

We close this topic with some remarks on G[x].

(i) All G[x]-groups of type 2 arise as G[x]/L for L a strictly maximal left ideal. If
G[x~]/L is cyclic of prime order then x acts as the identity and G induces the
constant maps. Hence G[x]/(0:G[x]/L) = Zp xZp, where the first Zp is generated
by the image of x and the second Zp is given by the constant maps. If G[x]/L is
not of this kind, it is isomorphic to the non-abelian simple group G/Ln G. Then
G0[x] induces the near-ring I(G/LnG) generated by all inner automorphisms of
G/LnG. Adding the constants we get G[xy(O:G/LnG)^I(G/LnG) + G/LnG.
Observe that by 7.46(c) of [2], I(G/LnG) = M0(G/LnG) if G/LnG is finite,

(ii) The G[x]-groups of type 0 which are not of type 2 are induced by maximal
normal subgroups L of G[x] where G + L/LcG[x~]/L. The latter creature is
simple. In this case, G[x]/(0:G[x]/L)^(K,S) +G/LnG, where (R,S) is the d.g.
near-ring generated by the inner automorphisms of G{_x~\/L induced by G/LnG.
Observe that G\_x~]/L need not be finite, nor need G/LnG be simple.

Life becomes very simple if we change from the variety of all groups to $4, the one of
all abelian groups. In this case, for all Gssi we have other polynomial algebras, namely

|

Proposition 4. For Ges/, (G]x[, +, o) is an abstract affine near-ring.

The proof is easy and hence omitted.
Theorem 9.77 of [2] gives us the following

Corollarly 5.- For Gestf, all radicals of G]x[ are equal to P(G), which is the Frattini
subgroup in this case.

One knows from universal algebra (see e.g. [1]) that G]x[ must be a factor near-
ring of G[x] if Gesf. In fact:
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Theorem 5. Let G be abelian.

(i) 9:G[x]->G]x[:Yd(gi+zix)^(Y1gi) + (Y,zi)x is a near-ring epimorphism.
(ii) G

Proof, (i) follows from [1] (it is not trivial that 9 is well-defined!) and from this we
get (ii) by the homomorphism theorem.

Example. Z[x]/(0:Z)^Z]x[.

Remarks.

(i) There is a striking similarity between Theorem 4 and (ii) in Theorem 5. It is,
however, unknown how far these results are related.

(ii) One may switch to the variety of .R-modules (see [4]). One then gets, for an R-
module M, a polynomial algebra (near-ring and R-module at the same time)
MR[x] = {m + rx\meM,reR). MK[x] is again an abstract affine near-ring (in the
paper [4] we show that all abstract near-rings are isomorphic (!) to some
MR[x]). Hence all radicals are equal to J(M) + J(R)x, where J(M) is the
intersection of all maximal R-submodules of M and J(R) is the Jacobson-radical
of R.
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