1	Prefrontal cortex stimulation prevents stress-induced HPA axis reactivity in people at
2	familial risk of schizophrenia
3	
4	Ondine ADAM ^{a,b} , Mélanie PERRET ^{a,b} , Louis SIMON ^{a,b,c} , Clément DONDÉ ^{d,e,f,g} , Véronique
5	RAVEROT ^{h, i} , William VALLET ^{a,b} , Marine MONDINO ^{a,b} , Jérôme BRUNELIN ^{a,b}
6	
7	^a Le Vinatier Psychiatrie Universitaire Lyon Métropole,95 boulevard Pinel, F-69500 Bron,
8	France
9	^b Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences
10	de Lyon CRNL U1028 UMR5292, PsyR2 Team, F-69500, Bron, France
11	^c Psychiatric Emergency Service, Hospices Civils de Lyon, F-69005, Lyon, France –
12	louis.simon@chu-lyon.fr
13	^d Univ. Grenoble Alpes, F-38000 Grenoble, France
14	^e INSERM, U1216, F-38000 Grenoble, France
15	^f Psychiatry Department, CHU Grenoble Alpes, F-38000 Grenoble, France
16	^g Psychiatry Department, Centre Hospitalier Alpes-Isère, F-38120 Saint-Egrève, France
17	^h Hospices Civils de Lyon, Groupement Hospitalier Est, LBMMS, Centre de biologie et de
18	pathologie Est, Lyon, France
19	¹ Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences
20	de Lyon CRNL U1028, WAKING Team, F-69500, Bron, France

This peer-reviewed article has been accepted for publication but not yet copyedited or typeset, and so may be subject to change during the production process. The article is considered published and may be cited using its DOI.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/bync-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

21	Corresponding author: Jérôme BRUNELIN, jerome.brunelin@ch-le-vinatier.fr, Équipe de
22	recherche PsyR ² , Centre Hospitalier Le Vinatier, Pôle Est - Bâtiment 416 - 1er étage, 95
23	Boulevard Pinel - BP 300 39, 69678 BRON Cedex, France
24	
25 26	Abstract
27	BACKGROUND: Schizophrenia is a multifactorial disorder with a range of risk factors.
28	Dysregulation in the systems involved in the stress response is a key component of its
29	pathophysiology. Individuals at risk of developing schizophrenia exhibit hyperreactivity to
30	stress and altered cognitive performance, both known as vulnerability markers. This study
31	aims to determine whether stimulation of the prefrontal cortex can reduce reactivity to
32	stress in unaffected siblings of patients with schizophrenia.
33	METHODS: In a randomized, sham-controlled trial, 27 participants were assigned to receive
34	either active (n = 14) or sham (n = 13) transcranial direct current stimulation (tDCS) over the
35	prefrontal cortex for 30 minutes during exposure to an acute stressor. The stress response
36	was measured biologically, via salivary cortisol levels, and cognitively, through a reality
37	monitoring task, which serves as an intermediate cognitive vulnerability marker.
38	RESULTS: In contrast to the sham condition, active stimulation significantly reduced cortisol
39	release in response to stress ($F_{(9,216)}$ = 1.972; p = 0.04) and prevented stress-induced
40	impairment in reality monitoring ($F_{(1,23)} = 9.954$; p = 0.004).
41	CONCLUSIONS: These findings suggest that tDCS should be a promising tool for reducing
42	stress-induced biological and cognitive reactivity in a population at risk of schizophrenia.
43	Keywords
44	tDCS; at risk; cortisol; stress; schizophrenia

45 Introduction

46

47 Schizophrenia accounts for a significant proportion of the global burden of mental disorders 48 in terms of years lived with disability, despite its relatively low prevalence [1]. Although the 49 etiology of schizophrenia remains incompletely understood, there is an increasing body of 50 evidence indicating a multifactorial pathology involving both environmental and genetic 51 components. The role of genetics has been highlighted by the progressive increase in the risk 52 of developing the disease with the genetic proximity of an individual to a patient [2]. Siblings 53 of patients are therefore considered to be at an elevated risk, displaying a tenfold increase in 54 the likelihood of developing schizophrenia compared to the general population. They also 55 exhibited reduced cognitive performance at an intermediate level between the deficits 56 observed in patients and the performances observed in healthy individuals. Deficits have 57 been observed in a range of broad cognitive domains, such as working memory, attention, 58 and executive function [3-6], as well as in specific cognitive processes associated with 59 psychotic symptoms, such as reality monitoring. Reality monitoring is a cognitive process 60 that enables individuals to differentiate between memories of imagined events and 61 memories of perceived real events [7,8]. 62 However, the heritability of schizophrenia is limited to 80% [9], thereby suggesting the 63 presence of non-genetic risk factors. In this regard, the neural diathesis-stress model of 64 schizophrenia posits that in addition to the neurodevelopmental part, the interplay between 65 genetic vulnerability and environmental stressors is responsible for the triggering of 66 neurodegenerative processes which in turn increase the risk of developing this pathology [10]. Indeed, evidence indicates an association between stress exposure and increased risk 67 68 of schizophrenia, particularly in vulnerable populations [11-13].

69	Alterations in the systems involved in the stress response [14-19], particularly in the activity
70	of the hypothalamic-pituitary-adrenal (HPA) axis, the main effector of the stress response
71	[20], have been frequently reported in patients with schizophrenia. The basal concentrations
72	of cortisol, a reliable marker of HPA axis activation, have been found to be systematically
73	increased in patients with first-episode psychosis or established schizophrenia [21,22], as
74	well as in clinical high-risk individuals with attenuated symptoms [23]. Abnormalities have
75	also been observed in the HPA axis stress reactivity. Patients with schizophrenia or first-
76	episode psychosis exhibited diminished reactivity, as evidenced by reduced cortisol release
77	[21,24], whereas individuals with prodromes showed HPA axis hyperreactivity, characterized
78	by exaggerated cortisol release [25,26]. Remarkably, hyperreactivity to stress has also been
79	reported in unaffected first-degree relatives of patients with schizophrenia [18,27],
80	suggesting that hyperreactivity could be an endophenotype of schizophrenia. Moreover,
81	altered brain network dynamics during stressful situations have recently been documented
82	in siblings of patients [28]. These impairments would reflect the interactions between genes
83	and the environment, positioning the activation of stress effector systems such as the HPA
84	axis as a core component of the physiopathology of schizophrenia [10].
85	Among the brain regions involved in the regulation of the stress response, the prefrontal
86	cortex exerts an inhibitory influence on the HPA axis through indirect neuronal connections
87	[29]. However, stress can disrupt the functioning and integrity of the prefrontal cortex [30].
88	Recent studies have suggested that stimulation of the prefrontal cortex using non-invasive
89	brain stimulation techniques, such as transcranial direct current stimulation (tDCS), can
90	reduce stress-related cortisol release in healthy individuals, thereby reinforcing the
91	prefrontal cortex's regulatory influence over the HPA axis [31]. tDCS is a promising tool that
92	delivers a weak electric current, modulating the activity of cortical regions beneath the

4

https://doi.org/10.1192/j.eurpsy.2025.2455 Published online by Cambridge University Press

93	stimulation electrodes [32-34] and interconnected brain regions with the stimulated area
94	[35]. Additionally, prefrontal cortex stimulation with tDCS has been demonstrated to
95	modulate cognitive processes, including working memory [36] and reality monitoring [37].
96	The repeated application of tDCS has been associated with improvements in various
97	symptoms across different pathologies, particularly in patients with schizophrenia and
98	depression [38]. It has been postulated that these beneficial effects on stress-related
99	disorders may be mediated by the impact of the prefrontal cortex (PFC) stimulation on the
100	HPA axis activity [39]. This brain region is therefore a prime target for reducing the stress
101	response in individuals with dysfunctional stress response systems. In siblings of patients
102	with schizophrenia, enhancing prefrontal cortex activity could help restore inhibitory control
103	over an exacerbated response, the latter being a potential contributor to the
104	physiopathology of this disorder.
105	
106	In this context, we aimed to evaluate the physiological and behavioral effects of stimulating
107	the PFC using tDCS in first-degree relatives of patients with schizophrenia when confronted
108	with an acute stressful situation. We hypothesized that active PFC stimulation, compared to
109	sham stimulation, would prevent the effects of stress, and that we would be able to measure
110	these effects at two different levels: i) a physiological level by restraining the stress-induced
111	release of cortisol, the end product of the HPA axis, and ii) a cognitive level by preventing
112	stress-induced changes in reality monitoring performances, which are known to be affected
113	by acute stress exposure [40,41].
114	
115	Methods

117 Participants

118	We conducted a randomized sham-controlled, triple-blind trial involving 28 participants. The
119	participants were first-degree relatives, unaffected siblings of patients diagnosed with
120	schizophrenia, aged between 18 and 30 years old. Exclusion criteria were: a current
121	diagnosis or history of a psychiatric (interview with a psychiatrist), somatic or neurological
122	disorder; current any medication treatment (excluding contraception); pregnancy or
123	breastfeeding; and contraindications to tDCS (including head trauma, metal implants in the
124	head, history of stroke, or unexplained loss of consciousness).
125	Participants were randomly assigned to receive either a sham or active tDCS session
126	(randomization ratio of 1:1 with varying block sizes, 2, 4, and 6). The sample size was
127	calculated a priori to have 80% power with a hypothesized 35% elevation of cortisol in the
128	active group and 80% in the sham group, based on the results of a previous study in 30
129	healthy volunteers using the same design and outcomes [42]. Due to missing data
130	(insufficient saliva in 8 out of the 10 collected samples), a participant was not included in the
131	analysis. The final analysis sample consisted of 27 participants, 14 in the active group and 13
132	in the sham group. To minimize the influence of sex hormones, females were included
133	during the first phase of the menstrual cycle.
134	
135	The participants were recruited from the siblings of patients who were hospitalized at Le
136	Vinatier Hospital (Bron, France) between 2019 and 2023. All participants gave written

137 informed consent before taking part in this study. This study complied with the Declaration

- 138 of Helsinki for trials involving human participants and has received approval from a local
- 139 ethics committee (Comité de Protection des Personnes Est IV, France, A00850, on April 10,

2017). The study protocol was pre-registered on a public database (https://clinicaltrials.gov/,
NCT03217357, on July 5, 2017).

142

143 Overview of the experimental Procedure

144 All experimental sessions took place in the morning, with participants arriving at 8:30 am. To 145 minimize inter-individual variations associated with the nychthemeral cortisol cycle, the 146 stress induction protocol began between 10:30 and 11 am for all participants. Upon arrival 147 at the laboratory, participants completed a series of self-report questionnaires and the 148 computerized reality monitoring task. An initial saliva sample was then collected as the basal 149 sample. Subsequently, a 30-minute tDCS session was initiated, followed by the beginning of 150 the instruction and anticipation phase of the MAST protocol, as done in a previous study 151 conducted with healthy volunteers [42]. Six saliva samples were collected at five-minute 152 intervals during the tDCS session (Figure 1). After the stimulation period, three additional 153 samples were collected at 15-minute intervals while participants filled in the self-report 154 questionnaires and the computerized reality monitoring task a second time. 155 156 Transcranial Direct Current Stimulation 157 The tDCS was administered using a DC-plus Stimulator (NeuroConn GmbH, Germany). The 158 current was delivered through two 3 x 3cm electrodes. Because of the key role of the PFC in 159 stress regulation [29,30], the electrodes were placed following the 10/20 international EEG 160 electrode placement system, with the anode over F3 and the cathode over F4 161 (corresponding to the left and right PFC, respectively). A conductive paste (Ten20, Weaver 162 and Company, USA) was applied to the surface of the electrodes in contact with the skin. 163 Stimulation was administered for 30 min at 2 mA, with a 30-second ramp-up and ramp-down

164	periods. The stimulation parameters (30min, 2mA) and electrodes montage were selected
165	based on our previous studies, in which tDCS not only reduced stress reactivity in healthy
166	volunteers [42], but also improved cognition [43] and alleviated symptoms in patients with
167	major depression [44]. Sham stimulation consisted of applying a 2-mA current only during
168	the first minute of the stimulation period (with 30 s ramp up/ramp down). Blinding was
169	ensured using the "Study Mode" of the tDCS device, which allows the entry of an individual
170	five-digit code corresponding to either active or sham stimulation. The device then delivers
171	the stimulation (active or sham based on the code) without the knowledge of the person
172	administering the stimulation or the participant. Each code was assigned to a participant by
173	a third party, thus ensuring blinding of participants, experimenters, and statisticians.
174	
175	Stress Induction Protocol
176	Stress was induced using an adapted version of the Maastricht Acute Stress Test (MAST,
177	[45]), which combines psychogenic and physical stressors that we previously used in a study
178	with the same design [42]. After five minutes of anticipation, during which the experimenter
179	informed the participant that the stress exposure was imminent, the participant was
180	subjected to alternating periods of different durations of both hand immersion in water at
181	8°C, which constituted a physical stressor, and mental arithmetic, which constituted a
182	psychogenic stressor, for 10 minutes (see Figure 1 for details of periods duration). The order
183	of presentation and the duration of the physical and mental stressors were the same for
184	each subject, while the participants were not informed of the duration of each sequence.
185	During the mental arithmetic periods, participants were required to perform subtractions
186	(e.g., counting backward from 3125 in steps of 17) in the quickest possible time without

187 making any mistakes. Whenever they hesitated or made a mistake, the experimenter

188 provided negative feedback and restarted the trial from the beginning.

189

190 *Reality Monitoring*

191 Reality monitoring performance was assessed before and after the stress protocol using a 192 computerized version of the task previously developed and validated in the lab [46]. The task 193 consisted of a presentation phase immediately followed by a test phase. In the presentation 194 phase, 16 words were displayed on a computer screen in a sequential order for a duration of 195 three seconds each, with each word preceded by an instruction presented for three seconds. 196 The instructions were either to "Imagine hearing the following word" for half of the words or 197 to "Listen to the following word" for the other half. In the subsequent test phase, 198 participants were presented with 24 words in succession, including the 16 words from the 199 presentation phase (8 imagined and 8 heard) and 8 new words. Participants were asked to 200 determine the source of each word (i.e., "Imagined", "Heard", or "New"). To acquaint 201 themselves with the task requirements and to ensure proper understanding of the 202 instructions, all participants completed a short training session prior to the main task. Two 203 distinct lists of 24 words were used to avoid any learning effect between the pre- and post-204 stress and stimulation assessments. 205

206 Outcomes

The primary outcome used to assess the reactivity to stress was cortisol levels, which were
estimated by measuring salivary cortisol concentration. Salivary cortisol is a reliable marker

- 209 of cortisol variations observed in the blood [47], thus allowing us to avoid the stress
- associated with blood sampling. A total of ten saliva samples were collected throughout the

211	course of the experiment to monitor the kinetics of cortisol release. Saliva was sampled
212	using Salivettes (Sarstedt, Germany). The Salivettes were then centrifuged and stored at -
213	20°C until analysis. Cortisol levels were determined by liquid chromatography coupled with
214	tandem mass spectrometry relative to reference values [48].
215	Stress reactivity was also assessed by cognitive measures, comparing reality monitoring
216	performance before and after the period of stress and stimulation. Reality monitoring
217	performance was assessed as the total number of correct responses for each task condition:
218	imagined words (range 0-8), heard words (range 0-8), and new words (range 0-8).
219	Finally, schizotypal personality was assessed at baseline using the Schizotypal Personality
220	Questionnaire (SPQ) [49] in order to control this parameter, which could influence cortisol
221	levels. The level of depressive symptoms was assessed using the 13-item self-reported Beck
222	Depression Inventory – BDI [50].
222 223	Depression Inventory – BDI [50]. In order to assess the safety of tDCS in siblings of patients with schizophrenia, participants
222 223 224	Depression Inventory – BDI [50]. In order to assess the safety of tDCS in siblings of patients with schizophrenia, participants were asked to report any side effects they had experienced, based on the criteria
222 223 224 225	Depression Inventory – BDI [50]. In order to assess the safety of tDCS in siblings of patients with schizophrenia, participants were asked to report any side effects they had experienced, based on the criteria established by Antal and colleagues [51]. Moreover, they rated the potential pain associated
222 223 224 225 226	Depression Inventory – BDI [50]. In order to assess the safety of tDCS in siblings of patients with schizophrenia, participants were asked to report any side effects they had experienced, based on the criteria established by Antal and colleagues [51]. Moreover, they rated the potential pain associated with the electrical current application using a visual analog scale. Blinding was assessed at
222 223 224 225 226 227	Depression Inventory – BDI [50]. In order to assess the safety of tDCS in siblings of patients with schizophrenia, participants were asked to report any side effects they had experienced, based on the criteria established by Antal and colleagues [51]. Moreover, they rated the potential pain associated with the electrical current application using a visual analog scale. Blinding was assessed at the end of the session by both the experimenter and the participants (guessing method).
222 223 224 225 226 227 228	Depression Inventory – BDI [50]. In order to assess the safety of tDCS in siblings of patients with schizophrenia, participants were asked to report any side effects they had experienced, based on the criteria established by Antal and colleagues [51]. Moreover, they rated the potential pain associated with the electrical current application using a visual analog scale. Blinding was assessed at the end of the session by both the experimenter and the participants (guessing method).
222 223 224 225 226 227 228 229	Depression Inventory – BDI [50]. In order to assess the safety of tDCS in siblings of patients with schizophrenia, participants were asked to report any side effects they had experienced, based on the criteria established by Antal and colleagues [51]. Moreover, they rated the potential pain associated with the electrical current application using a visual analog scale. Blinding was assessed at the end of the session by both the experimenter and the participants (guessing method). 1. Statistical Analyses
222 223 224 225 226 227 228 229 230	Depression Inventory – BDI [50]. In order to assess the safety of tDCS in siblings of patients with schizophrenia, participants were asked to report any side effects they had experienced, based on the criteria established by Antal and colleagues [51]. Moreover, they rated the potential pain associated with the electrical current application using a visual analog scale. Blinding was assessed at the end of the session by both the experimenter and the participants (guessing method). 1. Statistical Analyses All statistical analyses were performed in Jasp (0.16.03 version, JASP team, 2022).
222 223 224 225 226 227 228 229 230 231	Depression Inventory – BDI [50]. In order to assess the safety of tDCS in siblings of patients with schizophrenia, participants were asked to report any side effects they had experienced, based on the criteria established by Antal and colleagues [51]. Moreover, they rated the potential pain associated with the electrical current application using a visual analog scale. Blinding was assessed at the end of the session by both the experimenter and the participants (guessing method). 1. Statistical Analyses All statistical analyses were performed in Jasp (0.16.03 version, JASP team, 2022). Distribution normality and homogeneity of variances assumptions were controlled with the

- 233 characteristics as well as tDCS safety data of both groups were compared using Fisher's exact
- 234 tests for qualitative variables, and bilateral Student's t-test or Mann-Whitney U test for

https://doi.org/10.1192/j.eurpsy.2025.2455 Published online by Cambridge University Press

235	quantitative variables. A Welch correction was applied when a deviation from the
236	assumption of equal variance was detected.
237	As primary analysis, we conducted a repeated measure Analysis of variance (rmANOVA) on
238	cortisol concentration with Time (10 time points corresponding to the 10 saliva samples) and
239	Group (active, sham) as factors. Age was introduced as a covariate in the analysis. Missing
240	cortisol data (insufficient quantities of saliva to measure cortisol) were imputed using spline
241	interpolation.
242	To evaluate the effects on reality monitoring performance, a rmANOVA was performed on
243	the number of correct responses, with Time (pre- and post-stimulation) and Task Condition
244	(hear, imagine, or new) as within-subject factors, and Group (active, sham) as a between-
245	subject factor.
246	The alpha level was set at .05, and partial eta squared $(\eta_p{}^2)$ were reported as the measure of
247	effect size.
248	
249	Results
250	
251	Active and sham groups were comparable at baseline concerning socio-demographic and
252	clinical characteristics (Table 1).
253	
254	Please insert the Table 1 around here
255	
256	tDCS Effects on Cortisol Release
257	The rmANOVA revealed a significant main effect of Time ($F_{(9,216)}$ = 2.174; p = 0.025; η_p^2 =
258	0.083) and a significant interaction between group and time ($F_{(9,216)} = 1.972$; p = 0.044; $\eta_p^2 =$

0.076) (Figure 1). No significant effect of age ($F_{(1,24)} = 4.063$; $p = 0.055$; $\eta_p^2 = 0.145$), group
$(F_{(1,24)} = 2.651; p = 0.117; \eta_p^2 = 0.099)$, or Time × Age interaction $(F_{(9, 216)} = 1.509, p = 0.146, p = 0.146)$
${\eta_p}^2$ = 0.059) was observed. Post-hoc comparisons were conducted between the active and
sham groups at each time point to further examine the significant Time × Group interaction.
Significant differences in cortisol elevation were observed at time points 7 and 8, with the
active group showing lower cortisol increases than the sham group (Mean Difference = -
8.385, SE = 2.670, t = -3.140, p = 0.002, Cohen's d = -1.285 for time point 7; Mean Difference
= -6.422, SE = 2.670, t = -2.405, p = 0.019, Cohen's d = -0.984 for time point 8). No other time
points showed statistically significant differences (all $p_{corr} < 0.05$). The mean cortisol levels
increased to 241% of the basal level in the active group, as compared to 385% in the sham
group (Figure 1).
Please insert the Figure 1 around here
tDCS Effects on Reality Monitoring
tDCS Effects on Reality Monitoring Two participants were excluded from these analyses due to missing data, resulting in 25
<i>tDCS Effects on Reality Monitoring</i> Two participants were excluded from these analyses due to missing data, resulting in 25 participants, divided between the active (n = 13) and sham (n = 12) groups.
<i>tDCS Effects on Reality Monitoring</i> Two participants were excluded from these analyses due to missing data, resulting in 25 participants, divided between the active (n = 13) and sham (n = 12) groups. The rmANOVA revealed a significant interaction between Time and Group (F _(1,23) = 9.954; p =
tDCS Effects on Reality Monitoring Two participants were excluded from these analyses due to missing data, resulting in 25 participants, divided between the active (n = 13) and sham (n = 12) groups. The rmANOVA revealed a significant interaction between Time and Group ($F_{(1,23)} = 9.954$; p = 0.004; $\eta_p^2 = 0.302$; Figure 2), and a significant interaction between Task and Group ($F_{(2,46)} =$

279 Task ($F_{(2,46)} = 1.931$; p = 0.16; $\eta_p^2 = 0.077$) and between Time, Group, and Task ($F_{(2,46)} = 0.953$;

280 p = 0.39; η_p^2 = 0.040). The rmANOVA revealed a significant main effect of Task (F_(2,46) =

281 45.317, p < 0.001, η_p^2 = 0.663). No significant main effects were found for Time (F_(1,23) =

282 1.741, p = 0.200, η_p^2 = 0.070) or Group (F(1,23) = 0.002, p = 0.964, η_p^2 = 0.0001).

283	Post hoc analyses for the interaction between Time and Group indicated a significant
284	reduction in the number of correct responses between pre- and post-stimulation in the
285	sham group (Mean Difference = 0.750, SE = 0.242, t = 3.102, Cohen's d = 0.552, p = 0.005;
286	Figure 2). The active group showed no statistically significant change in performance over
287	time (Mean Difference = -0.308, SE = 0.232, t = -1.325, Cohen's d = -0.227, p = 0.198).
288	Findings suggested that active tDCS may prevent stress-induced effects on reality monitoring
289	performance. This effect seems driven by a 22% decrease in the recognition of imagined
290	words in the sham group (8 % for heard words), whereas a 5% increase in performance was
291	observed in the active group (14% for heard words).
292	
293	Please insert the Figure 2 around here
294	
295	Safety and blinding
296	Stimulation was well tolerated by all participants, with mild discomfort reported in both
297	groups during application. Self-reported pain induced by tDCS, assessed on a Visual Analog
298	Scale (VAS) from 0 to 10, showed no significant difference between the groups: the sham
299	group reported an average pain level of 3.8 (SD = 3.2), while the active group reported an
300	average of 2.8 (SD = 2.8) (p = 0.38). Similarly, no significant difference was observed in the
301	frequency of tDCS-related side effects between the groups ($p = 0.33$).
302	Regarding blinding, neither the participants (log OR = -0.54 , p = 0.71) nor the experimenters
303	(log OR = -1.64 , p = 0.07) were able to correctly identify the stimulation condition to which
304	the participant had been subjected.
305	

Discussion

307

308	This randomized sham-controlled study investigated the impact of bifrontal tDCS on stress
309	reactivity in unaffected siblings of patients with schizophrenia. To the best of our knowledge,
310	this is the first study to investigate this paradigm in a population at risk of psychosis, which is
311	thought to present an exaggerated response to stress. A single session of tDCS over the
312	prefrontal cortex (PFC) delivered during acute stress resulted in a reduction in stress-induced
313	cortisol release and cognitive changes in participants who received active stimulation
314	compared to those who received sham stimulation. These findings suggest that tDCS may
315	attenuate both biological and cognitive stress reactivity, which is often hyperactive in
316	individuals at risk for schizophrenia. For example, in a comparable study using tDCS the
317	during stress exposure with the MAST protocol conducted in healthy volunteers [42], we
318	observed a mean increase in cortisol of 179.8% in the sham group and a 138.5% increase in
319	the active group. In contrast, in the current study conducted in unaffected siblings of
320	patients with schizophrenia and suggesting an hyperreactivity to stress in this population, we
321	observed a 385% increase in cortisol in the sham group and a 241% increase in the active
322	group (see Figure 1).
323	

The observed effects on cortisol release suggested that tDCS may enhance the inhibitory control of the prefrontal cortex over the HPA axis stress reactivity in acute stress situations. These results are consistent with lesion studies, which have identified the prefrontal cortex as playing a crucial role in stress regulation [52], through indirect inhibitory projections on the paraventricular nucleus of the hypothalamus [29]. These findings are also consistent with other noninvasive brain stimulation studies that have reported a reduction in stressinduced cortisol release following a single session of brain stimulation over the PFC in

331	healthy volunteers [31]. In stressful situations, the performance of executive functions is
332	disrupted [42,53,54], which also suggests an alteration in the activity of the prefrontal
333	cortex. This region might then no longer be able to exert its inhibitory control over the HPA
334	axis. Assuming that tDCS may have increased the PFC excitability in the current study, the
335	inhibitory control of the PFC over the effector structures of the stress response could be
336	reinforced, exerting its influence from the onset of stress. Our results suggested that this
337	improved regulation of the stress response would manifest itself in a reduced release of
338	cortisol by the HPA axis.

339

340 In addition to inhibiting stress-induced cortisol release, tDCS appears to mitigate the adverse 341 effects of stress on reality monitoring. Indeed, a significant detrimental reduction in 342 performance was observed in the sham group following stress induction, whereas no such 343 reduction was observed in the active group. These findings are in contrast with those of 344 previous studies involving healthy participants, which reported enhanced performance 345 following stress [40,41]. The ambivalent effect of stress on reality monitoring in healthy and 346 at-risk individuals may also be explained by the timing of stimulation with respect to the 347 task. This is evidenced by a previous study which reported decreased memory when stress 348 was induced before the encoding phase and improved memory when stress was induced 349 between the encoding and the retrieval phases [55]. Furthermore, our results do not 350 support the idea that stress specifically impairs recognition of a particular type of source; 351 rather, they suggest a global deficit in reality monitoring. Notably, although not statistically 352 significant, we observed that stress may impair recognition of imagined words more than 353 heard words. These results are consistent with previous studies reporting that acute stress affects mental imagery [56] but not auditory perception [57]. Moreover, our results 354

https://doi.org/10.1192/j.eurpsy.2025.2455 Published online by Cambridge University Press

355	indicated that active bifrontal tDCS would prevent the detrimental effect of stress on reality
356	monitoring. A recent review has highlighted the positive effects of prefrontal stimulation on
357	reality monitoring performance in healthy individuals [37]. Indeed, the prefrontal cortex is
358	considered a key region for reality monitoring [58], and a reduction in its activity has been
359	associated with impaired reality monitoring performance in patients with schizophrenia [59].
360	Consequently, the preservation of reality monitoring observed after active bifrontal tDCS
361	could be attributed to the prevention of stress-induced alterations in prefrontal cortex
362	activity, thereby sustaining the neural activation of this region during the task. This
363	perspective is of considerable interest, given that these cognitive alterations have been
364	associated with symptoms of schizophrenia [60].
365	
366	Improving the biological and cognitive stress response in unaffected siblings of patients with
367	schizophrenia is crucial, as these individuals have elevated mean daily cortisol levels and an
368	exaggerated cortisol response to acute stress [18,61,62]. Altered cortisol levels have been
369	repetitively associated with an increased risk of psychosis. Indeed, individuals at clinical risk
370	of schizophrenia exhibited increased cortisol levels at baseline and in response to stress
371	[23,63]. Furthermore, individuals who developed psychosis had higher initial baseline
372	cortisol levels than those who remitted and controls [25]. By normalizing the stress response
373	of at-risk populations, it might be possible to prevent the degenerative processes that are
374	responsible for the onset of schizophrenia and the worsening of symptoms. The diathesis-
375	stress model proposes that environmental stresses will alter the HPA axis, as well as brain
376	regions involved in regulating the stress response [10]. The accumulation of these alterations
377	to a breaking point would then be responsible for the onset of the first symptoms. Acting on
378	the systems involved in the stress response in at-risk populations such as siblings of patients

would therefore appear to be the key to curb these pathological mechanisms. We chose to
investigate these mechanisms in young adults, believing that they had not yet reached their
peak risk for developing schizophrenia and could therefore still benefit from the effects of
tDCS [64].

383

384 This study has some limitations that need to be emphasized. Firstly, we included only siblings 385 of patients, which precluded comparison of stress response with a control group. Secondly, 386 although the sex distribution was balanced between the groups (11 females and 3 males in 387 the active group versus 9 females and 4 males in the sham group), it has been reported that 388 sex may influence stress response [65]. Given the limited sample size, we did not conduct a 389 subgroup analysis. However, the effects of this intervention should be explored separately in 390 these populations. Finally, although the bifrontal model is thought to be able to reach areas 391 of the brain close to the electrodes, we have not been able to verify which areas are actually 392 affected by the stimulation. Further studies combining tDCS, stress induction, and 393 neuroimaging are required to ascertain whether this region is indeed involved in regulating 394 the stress response. Moreover, the specific effect of the bifrontal montage on stress 395 response should be validated by comparison with other active control montages. Lastly, the 396 timing between the stress situation and the tDCS session appears to be a critical factor. A 397 recent review of the literature on this specific issue [31] indicates that, for beneficial effects 398 on cortisol release, stimulation sessions must be delivered either before or during the stress 399 situation. Delivering brain stimulation session after stress exposure did not result in 400 modulation of cortisol release. In our study, we chose to administer tDCS during stress 401 exposure [42]. Further research exploring the effects of delivering tDCS before stress

- 402 exposure is warranted to better understand its potential as a preventive tool in real-life
- 403 situations

404

- 405 In conclusion, this study highlights the potential of tDCS as an effective intervention to
- 406 prevent exaggerated stress-induced cortisol release and protect against cognitive alterations
- 407 induced by stress in first-degree relatives of patients with schizophrenia. These results offer
- 408 new insights into the development of early intervention strategies for individuals at risk for
- 409 psychosis, which display hyperreactivity to stress, but also in people at risk for other
- 410 psychiatric conditions where abnormal stress responses have been observed.

412 Funding

- 413 This research was supported by the Brain and Behavior Research foundation BBR NARSAD
- 414 YI grant 2013 (#20988) [J.B.] and by the scientific research council of Le Vinatier Hospital
- 415 (#2016-CSRJ01; #2019-CSRL08) [J.B.].
- 416

417 Acknowledgments

- 418 We thank the Fondation Pierre Deniker for their interest in this research and funding
- 419 support for [O.A.]. We thank the Fondation de l'Avenir for their interest in this research and
- 420 funding support for [C.D.]. We would like to thank the medical investigators from the Clinical
- 421 Units of CH Le Vinatier for their assistance in participant recruitment and screening.
- 422

423 **Conflict of interest**

- 424 The authors have nothing to disclose.
- 425

426 Data availability

427 Data are available upon request from the corresponding author [J.B.].

429 References

430	[1]	GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of
431		12 mental disorders in 204 countries and territories, 1990–2019: a systematic
432		analysis for the Global Burden of Disease Study 2019. The Lancet Psychiatry.
433		2022;9(2):137-50.
434	[2]	McGue M, Gottesman II. The genetic epidemiology of schizophrenia and the design
435		of linkage studies. Eur Arch Psychiatry Clin Neurosci. 1991;240(3):174-81.
436	[3]	Xu F, Xian Z. Study investigating executive function in schizophrenia patients and
437		their unaffected siblings. PLoS One. 2023;18(4):e0285034.
438	[4]	Velthorst E, Mollon J, Murray RM, de Haan L, Germeys IM, Glahn DC, et al. Cognitive
439		functioning throughout adulthood and illness stages in individuals with psychotic
440		disorders and their unaffected siblings. Mol Psychiatry. 2021;26(8):4529-43.
441	[5]	Cella M, Hamid S, Butt K, Wykes T. Cognition and Social Cognition in non-psychotic
442		siblings of patients with schizophrenia. Cogn Neuropsychiatry. 2015;20(3):232-42.
443	[6]	Saoud M, d'Amato T, Gutknecht C, Triboulet P, Bertaud JP, Marie-Cardine M, et al.
444		Neuropsychological deficit in siblings discordant for schizophrenia. Schizophr Bull.
445		2000;26(4):893-902.
446	[7]	Brunelin J, d'Amato T, Brun P, Bediou B, Kallel L, Senn M, et al. Impaired verbal
447		source monitoring in schizophrenia: An intermediate trait vulnerability marker?
448		Schizophrenia Research. 2007;89(1):287-92.
449	[8]	Lavallé L, Dondé C, Gawęda Ł, Brunelin J, Mondino M. Impaired self-recognition in
450		individuals with no full-blown psychotic symptoms represented across the continuum
451		of psychosis: a meta-analysis. Psychol Med. 2021;51(16):2864-74.
452	[9]	Hilker R, Helenius D, Fagerlund B, Skytthe A, Christensen K, Werge TM, et al.
453		Heritability of Schizophrenia and Schizophrenia Spectrum Based on the Nationwide
454		Danish Twin Register. Biological Psychiatry. 2018;83(6):492-8.
455	[10]	Pruessner M, Cullen AE, Aas M, Walker EF. The neural diathesis-stress model of
456		schizophrenia revisited: An update on recent findings considering illness stage and
457		neurobiological and methodological complexities. Neuroscience & Biobehavioral
458		Reviews. 2017;73:191-218.
459	[11]	Oliver D, Reilly TJ, Baccaredda Boy O, Petros N, Davies C, Borgwardt S, et al. What
460		Causes the Onset of Psychosis in Individuals at Clinical High Risk? A Meta-analysis of
461		Risk and Protective Factors. Schizophr Bull. 2020;46(1):110-20.
462	[12]	Gomes FV, Grace AA. Adolescent Stress as a Driving Factor for Schizophrenia
463		Development—A Basic Science Perspective. Schizophr Bull. 2017;43(3):486-9.
464	[13]	van Os J, Kenis G, Rutten BPF. The environment and schizophrenia. Nature.
465		2010;468(7321):203-12.
466	[14]	Castro MN, Bocaccio H, De Pino G, Sánchez SM, Wainsztein AE, Drucaroff L, et al.
467		Abnormal brain network community structure related to psychological stress in
468		schizophrenia. Schizophrenia Research. 2023;254:42-53.
469	[15]	Schifani C, Tseng HH, Kenk M, Tagore A, Kiang M, Wilson AA, et al. Cortical stress
470	-	regulation is disrupted in schizophrenia but not in clinical high risk for psychosis.
471		Brain. 2018;141(7):2213-24.
472	[16]	Mizrahi R, Addington J, Rusjan PM, Suridjan I, Ng A, Boileau I, et al. Increased Stress-
473	-	Induced Dopamine Release in Psychosis. Biological Psychiatry. 2012;71(6):561-7.

474	[17]	Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, et al.
475		Functional Connectivity and Brain Networks in Schizophrenia. J Neurosci.
476		2010;30(28):9477-87.
477	[18]	Brunelin J, d'Amato T, van Os J, Cochet A, Suaud-Chagny MF, Saoud M. Effects of
478		acute metabolic stress on the dopaminergic and pituitary–adrenal axis activity in
479		patients with schizophrenia, their unaffected siblings and controls. Schizophrenia
480		Research. 2008;100(1):206-11.
481	[19]	Pariante CM. Pituitary volume in psychosis: the first review of the evidence. J
482		Psychopharmacol. 2008;22(2_suppl):76-81.
483	[20]	Joëls M. Corticosteroids and the brain. Journal of Endocrinology.
484		2018;238(3):R121-30.
485	[21]	Misiak B, Pruessner M, Samochowiec J, Wiśniewski M, Reginia A, Stańczykiewicz B. A
486		meta-analysis of blood and salivary cortisol levels in first-episode psychosis and high-
487		risk individuals. Frontiers in Neuroendocrinology. 2021;62:100930.
488	[22]	Girshkin L, Matheson SL, Shepherd AM, Green MJ. Morning cortisol levels in
489		schizophrenia and bipolar disorder: A meta-analysis. Psychoneuroendocrinology.
490		2014;49:187-206.
491	[23]	Chaumette B, Kebir O, Mam-Lam-Fook C, Morvan Y, Bourgin J, Godsil BP, et al.
492		Salivary cortisol in early psychosis: New findings and meta-analysis.
493		Psychoneuroendocrinology. 2016;63:262-70.
494	[24]	Berger M, Kraeuter AK, Romanik D, Malouf P, Amminger GP, Sarnyai Z. Cortisol
495		awakening response in patients with psychosis: Systematic review and meta-analysis.
496		Neuroscience & Biobehavioral Reviews. 2016;68:157-66.
497	[25]	Walker EF, Trotman H, Pearce BD, Addington J, Cadenhead KS, Cornblatt BA, et al.
498		Cortisol Levels and Risk for Psychosis: Initial Findings from the North American
499		Prodrome Longitudinal Study. Biol Psychiatry. 2013;74(6):410-7.
500	[26]	Sugranyes G, Thompson JL, Corcoran CM. HPA-axis function, symptoms, and
501		medication exposure in youths at clinical high risk for psychosis. Journal of Psychiatric
502		Research. 2012;46(11):1389-93.
503	[27]	Brunelin J, d'Amato T, Van Os J, Costes N, Suaud Chagny MF, Saoud M. Increased left
504		striatal dopamine transmission in unaffected siblings of schizophrenia patients in
505		response to acute metabolic stress. Psychiatry Research: Neuroimaging. r
506		2010;181(2):130-5.
507	[28]	van Leeuwen JMC, Vinkers CH, Vink M, Kahn RS, Joëls M, Hermans EJ. Disrupted
508		upregulation of salience network connectivity during acute stress in siblings of
509		schizophrenia patients. Psychol Med. 2020;1-11.
510	[29]	Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress
511		responses. Nature Reviews Neuroscience. 2009;10(6):397-409.
512	[30]	Arnsten AFT. Stress weakens prefrontal networks: molecular insults to higher
513		cognition. Nat Neurosci. 2015;18(10):1376-85.
514	[31]	Vignaud P, Adam O, Palm U, Baeken C, Prieto N, Poulet E, et al. Can a single session
515		of noninvasive brain stimulation applied over the prefrontal cortex prevent stress-
516		induced cortisol release? Progress in Neuro-Psychopharmacology and Biological
517		Psychiatry. 2023;121:110667.
518	[32]	Kim S, Stephenson MC, Morris PG, Jackson SR. tDCS-induced alterations in GABA
519		concentration within primary motor cortex predict motor learning and motor

520	memory: A 7T magnetic resonance spectroscopy study. NeuroImage.
521	2014;99:237-43.
522	[33] Kwon YH, Jang SH. The enhanced cortical activation induced by transcranial direct
523	current stimulation during hand movements. Neuroscience Letters.
524	2011;492(2):105-8.
525	[34] Baudewig J, Nitsche MA, Paulus W, Frahm J. Regional modulation of BOLD MRI
526	responses to human sensorimotor activation by transcranial direct current
527	stimulation. Magnetic Resonance in Medicine. 2001;45(2):196-201.
528	[35] Keeser D, Meindl T, Bor J, Palm U, Pogarell O, Mulert C, et al. Prefrontal transcranial
529	direct current stimulation changes connectivity of resting-state networks during
530	fMRI. J Neurosci. 2011;31(43):15284-93.
531	[36] Wischnewski M, Mantell KE, Opitz A. Identifying regions in prefrontal cortex related
532	to working memory improvement: a novel meta-analytic method using electric field
533	modeling. Neurosci Biobehav Rev. 2021;130:147-61.
534	[37] Perret M, Neige C, Brunelin J, Mondino M. Unraveling the brain mechanisms of
535	source monitoring with non-invasive brain stimulation: A systematic review. Int J Clin
536	Health Psychol. 2024;24(2):100449.
537	[38] Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, et al.
538	Evidence-based guidelines and secondary meta-analysis for the use of transcranial
539	direct current stimulation (tDCS) in neurological and psychiatric disorders.
540	International Journal of Neuropsychopharmacology. 2021;pyaa051.
541	[39] Brunelin J, Fecteau S. Can the Effects of Noninvasive Brain Stimulation Alleviating
542	Neuropsychiatric Symptoms Result From a Common Beneficial Regulation of the
543	Hypothalamic-pituitary-adrenal Axis? Brain Stimulation. 2015;8(2):173-6.
544	[40] Smeets T, Jelicic M, Merckelbach H, Peters M, Fett A, Taverniers J, et al. Enhanced
545	memory performance on an internal-internal source monitoring test following acute
546	psychosocial stress. Behav Neurosci. 2006;120(6):1204-10.
547	[41] Smeets T, Sijstermans K, Gijsen C, Peters M, Jelicic M, Merckelbach H. Acute
548	consolidation stress enhances reality monitoring in healthy young adults. Stress.
549	2008;11(3):235-45.
550	[42] Brunelin J, Fecteau S. Impact of bifrontal transcranial Direct Current Stimulation on
551	decision-making and stress reactivity. A pilot study, Journal of Psychiatric Research.
552	2021;135:15-9.
553	[43] Imperit L, Moirand R, Bediou B, Koenig O, Chesnoy G, Fakra E, Bruhelin J. A Single
554	Session of Birrontal LDCS Can improve Facial Emotion Recognition in Major
555	Depressive Disorder: An Exploratory Phot Study. Biomedicines. 2022 Sep
550 557	20;10(10).2397. doi: 10.3390/bioinedicines10102397
557 FF0	[44] Monand R, Imperit L, Haesebaert F, Chesnoy G, Bediou B, Poulet E, Bruneim J. Ten
220	Sessions of 30 Min (DCS Over 5 Days to Achieve Remission in Depression: A Bandomized Bilot Study, J Clip Med. 2022 Jap 21:11/2):782. doi:
559	10.2200/icm11020782
500	10.5550/julii1050762.
562	[45] Sineets T, Comensse S, Quaedineg Cwelvi, Meyer T, Jencic W, Merchenbach H.
563	annoach to alicit robust autonomic and ducocorticoid stress responses
564	Psychoneuroendocrinology 2012.37/12).1998-2008
565	161 Brunelin I Poulet F. Marsella S. Bediou B. Kallel I. Cochet A. et al. Un déficit de
566	mémoire de la source spécifique chez les patients schizophràpes comparés à des
500	memorie de la source specifique chez les patients schizophilenes compares à des

567		volontaires sains et des patients présentant un épisode dépressif majeur. European
568		Review of Applied Psychology. 2008;58(2):105-10.
569	[47]	Hellhammer DH, Wüst S, Kudielka BM. Salivary cortisol as a biomarker in stress
570		research. Psychoneuroendocrinology. 2009;34(2):163-71.
571	[48]	Antonelli G, Ceccato F, Artusi C, Marinova M, Plebani M. Salivary cortisol and
572		cortisone by LC–MS/MS: validation, reference intervals and diagnostic accuracy in
573		Cushing's syndrome. Clinica Chimica Acta. 2015;451:247-51.
574	[49]	Raine A. The SPQ: a scale for the assessment of schizotypal personality based on
575		DSM-III-R criteria. Schizophr Bull. 1991;17(4):555-64.
576	[50]	Beck AT, Ward CH, Mendelson M, Mock J, Erhaugh J. An Inventory for Measuring
577		Depression. Archives of General Psychiatry. 1961;4:561-71.
578	[51]	Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, et al. Low
579		intensity transcranial electric stimulation: Safety, ethical, legal regulatory and
580		application guidelines. Clin Neurophysiol. 2017;128(9):1774-809.
581	[52]	Diorio D, Viau V, Meaney M. The role of the medial prefrontal cortex (cingulate gyrus)
582		in the regulation of hypothalamic-pituitary-adrenal responses to stress. The Journal
583		of Neuroscience. 1993;13(9):3839-47.
584	[53]	Shields GS, Sazma MA, Yonelinas AP. The effects of acute stress on core executive
585		functions: A meta-analysis and comparison with cortisol. Neuroscience &
586		Biobehavioral Reviews. 2016;68:651-68.
587	[54]	Qin S, Hermans EJ, van Marle HJF, Luo J, Fernández G. Acute psychological stress
588		reduces working memory-related activity in the dorsolateral prefrontal cortex.
589		Biological Psychiatry. 2009;66(1):25-32.
590	[55]	Shields GS, Sazma MA, McCullough AM, Yonelinas AP. The effects of acute stress on
591		episodic memory: A meta-analysis and integrative review. Psychol Bull.
592		2017;143(6):636-75.
593	[56]	Schlatter S, Guillot A, Faes C, Saruco E, Collet C, Di Rienzo F, et al. Acute stress affects
594		implicit but not explicit motor imagery: A pilot study. International Journal of
595		Psychophysiology. 020;152:62-71.
596	[57]	Hoskin R, Hunter MD, Woodruff PWR. The effect of psychological stress and
597		expectation on auditory perception: A signal detection analysis. Br J Psychol.
598		2014;105(4):524-46.
599	[58]	Simons JS, Garrison JR, Johnson MK. Brain Mechanisms of Reality Monitoring. Trends
600		in Cognitive Sciences. 2017;21(6):462-73.
601	[59]	Garrison JR, Fernandez-Egea E, Zaman R, Agius M, Simons JS. Reality monitoring
602		impairment in schizophrenia reflects specific prefrontal cortex dysfunction.
603		Neuroimage Clin. 2017;14:260-8.
604	[60]	Waters F, Woodward T, Allen P, Aleman A, Sommer I. Self-recognition Deficits in
605		Schizophrenia Patients With Auditory Hallucinations: A Meta-analysis of the
606		Literature. Schizophr Bull. 2012;38(4):741-50.
607	[61]	Habets P, Collip D, Myin-Germeys I, Gronenschild E, Van Bronswijk S, Hofman P, et al.
608		Pituitary volume, stress reactivity and genetic risk for psychotic disorder. Psychol
609		Med. 2012;42(7):1523-33.
610	[62]	Collip D, Nicolson NA, Lardinois M, Lataster T, van Os J, Myin-Germeys I. Daily
611		cortisol, stress reactivity and psychotic experiences in individuals at above average
612		genetic risk for psychosis. Psychol Med. 2011;41(11):2305-15.

- 613 [63] Nordholm D, Rostrup E, Mondelli V, Randers L, Nielsen MØ, Wulff S, et al. Multiple 614 measures of HPA axis function in ultra high risk and first-episode schizophrenia 615 patients. Psychoneuroendocrinology. 2018;92:72-80.
- 616 [64] Dondé C, Pouchon A, Brunelin J, Polosan M. tDCS as a first-choice agent in individuals at high-risk for psychosis? Encephale. 2022;48(4):472-473. doi: 617 618
- 10.1016/j.encep.2021.02.011.
- 619 [65] Heck AL, Handa RJ. Sex differences in the hypothalamic-pituitary-adrenal axis' 620 response to stress: an important role for gonadal hormones.
- 621 Neuropsychopharmacology. 2019;44(1):45-58.

622

- 624 Figure Legends
- 625 Figure 1. Variations in cortisol concentrations during the experimental protocol. The timing
- 626 of the collection of salivary samples was noted in relation to the onset of the stimulation -
- 627 tDCS- and stress -MAST- periods (*T0*). The repeated-measures ANOVA revealed a significant
- 628 interaction between Time and Group. The mean cortisol levels increased to 241% of the
- basal level in the active group, as compared to 385% in the sham group. MAST protocol =
- 630 Maastricht Acute Stress Test, which includes the Hand Immersion Test (HIT) in cold water
- 631 and Mental Arithmetic (MA) stress tasks and their duration.
- 632 *p<0.05

633

- 635 Figure 2. Variations in reality monitoring performances (number of correct responses).
- 636 There was a significant interaction between Time (pre and post stress) and Group (active or
- 637 sham tDCS). We observed a significant reduction in the number of correct responses
- 638 between pre- and post- exclusively in the sham group, regardless of the task condition
- 639 (imagined, heard, new). **p<0.01, ns: not significant

	Active grou	Sham group		n Valuo	
	mean (SD)	n	mean (SD)	n	p-value
n total		14		13	
Age (years)	22.3 (3.4)		24.7 (3.4)		0.09
Sex (F/M)		11/3		9/4	0.67
Laterality (R/L)		11/3		13/0	0.22
Education (years)	14.6 (2.7)		14.6 (2.7)		0.94
BDI ₁₃	3.6 (3.6)		2.4 (2.3)		0.33
SPQ	12.1 (10.5)		12.4 (7.9)		0.93

642 Table 1. Sociodemographic and clinical data of the participants.

643 BDI₁₃, Beck Depression Inventory; SD, Standard Deviation; SPQ, Schizotypal Personality

644 Questionnaire; p values: Fisher's exact test (sex, laterality) and Student t test for other

645 variables

646