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ABSTRACT. The changeable, variable and fragile nature of snow creates unique sampling challenges. In
this paper, we present Star: an efficient, field-usable method for use in point-sampling spatial studies. We
validate the accuracy of the Star method using a comparative Monte Carlo simulation of 1024 detailed
samples of elevation data. As spatial snow studies generally attempt to find spatial continuity in layers and
other properties, we use variogram ranges to compare the ability of four sampling methods to accurately
reveal such spatial correlation. The three methods compared to Star represent gridded, gridded-random
and pure-random methods; Star can be described as a linear-random method. The simulation shows Star’s
accuracy to be comparable to both gridded and gridded-random methods. Following this comparative
process we introduce a new measure of appropriateness for sampling methods: the correct convergence
on a variogram model, which we call correct spatial correlation detection. This directly measures how
many sampled areas become correctly classified with either spatially correlated or non-correlated
variance for a given variogram model fit. In this measure, Star performs equivalently to the other

methods, and in correct convergence it performs as well as pure-random sampling.

1. INTRODUCTION

Snow-sampling methods have a multitude of applications
and challenges. As snow properties change over days, or
even hours, and as sampling can be destructive to the snow
properties being measured, sampling methods must be as
efficient as possible. Time spent laying out a sampling grid
or moving from point to point can affect the number of
observations that can be made, and can affect the snow
properties if not done properly.

Here we compare point-sampling methods for surveys
such as depth, penetration resistance and surface conditions.
These can be thought of as minimal-support observations
(Bl6schl and Sivapalan, 1995), and they commonly enable
the observer to make many more observations in a day than
large-support tests such as the rutschblock.

Such point-observation surveys are usually performed
to spatially describe snow qualities of an area or spa-
tial processes affecting the area (Schweizer and others,
2008). Examples include finding the spatial extent of
snow layers (Kronholm, 2004) for use in avalanche
forecasting or obtaining good spatial visualizations of
water storage in the snowpack (D. Cline and others,
http://www.nohrsc.nws.gov/cline/clpx.html).

2. RELATED WORK

A few previous sampling-method evaluations and compar-
isons exist. Currently, the most common way to compare
and defend methods is lag-bin distributions, as used by
Kronholm (2004) and Bellaire and Schweizer (2008). These
distributions can be thought of as histograms showing how
many point pairs in a sample exist in a given lag bin for
possible variogram-type analysis.

Variograms measure the spatial correlation at different
distances, or lag bins, within a field, and therefore they
measure the continuity of similar measurements well. This
can be useful for tracing the two-dimensional extent of traits
such as snow layers (Kronholm, 2004) or wind and terrain
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affectation (Deems and others, 2006). The lag-bin type of
evaluation, then, comes from the understanding that the
more points in a lag bin, the better that sampling method
will capture spatial correlation at that lag.

An in-depth analysis performed by Kronholm and Birke-
land (2007) analyzed different sampling methods and how
they reproduced a known range, sill and nugget for a
spherical variogram model generated from a small subset
of generated random fields. This type of analysis directly
analyzed histograms of error, which addressed the accuracy
question much more thoroughly than lag-bin analysis.

Development of new sampling methods seems limited.
Most current methods derive from grid-type structures, with
their grid spacing varying to capture information on different
spatial scales. These include the LH grids (Birkeland and
others, 2004), the MT grids (Birkeland and others, 2004)
and the Swiss grid (Kronholm, 2004; Kronholm and others,
2004). Some studies (D. Cline and others, http://www.nohrsc
.nws.gov/cline/clpx.html; Bellaire and Schweizer, 2008)
utilize a sampling method with random locations placed
within and organized by an overall grid, but provide minimal
analysis of the method.

Gridded methods can be easier to divide into an orderly
day of work, but they often require extensive laying out. Pure
uniform random distributions are near impossible to divide
up and sample logically without destroying the area in the
process. However, they continue to be highly desirable due
to their accuracy (Kronholm and Birkeland, 2007). We feel
this leaves a gap, which defined our objectives — to design a
sampling method with:

Efficient and minimally destructive layout and sampling.

Similar spatial modelling accuracy to other current
methods.

Such a method would have an orderly implementation of
random points, without needing to lay out a grid; thereby
obtaining its accuracy via randomness and its efficiency via
some imposed order.
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3. METHODS AND DATA

Using the gstat package (Pebesma and Wesseling, 1998) in
the R Project for Statistical Computing (R Development Core
Team, 2006), we performed a Monte Carlo simulation to
compare the fitted variogram models for 1024 real datasets
to fitted variogram models of samples of that data. We
give details of the datasets, sampling methods, inclusion of
randomness and the variograms in the following subsections.

3.1. Dataset

We use naturally occurring datasets. Digital elevation model
(DEM) data, having both spatial correlation and occasional
fractal dimension, show the same general qualities of snow
cover (Deems and others, 2006).

We used four 1:50000 parcels of DEM data from
Geobase.ca (Geobase Orthoimage 2005-10, http://www
.geobase.ca): 93b, 93e, 93f and 93h. Each parcel contains
16 grids with 1201 x 1201 elevation points. We trimmed
each 1201 x 1201 grid down to 1000 x 1000 and then, due
to the O(n?) computational demands of the variogram, we
additionally split that into sixteen 250 x 250 point grids.

This gave 1024 grids of data, each with 62500 points.
Each can be thought to model a 25 x 25 m grid with possible
samples every 10cm. When sampling a point between
two known values, we used the closest known value. As
discussed below (section 3.4), we operated on the residuals
of the elevation values left after removing linear trends from
each grid.

This dataset enables us to examine enough data points to
assess each sampling method over a variety of spatially cor-
related data, including a wide variance of ranges and many
fractal and linear variograms (e.g. Deems and others, 2006).

Generally, normal distributions do not model snow data
well, and log-normal distributions perform only slightly
better (Kronholm, 2004). However, while investigating a
subset of the data for log-normal trends, we compared the
trends in the real data with the Swiss grid samples (described
below) of those data.

We found that, although 8-18% of the Swiss grid
samples showed a significance at p < 0.05 fit for a log-
normal distribution, (dependent on fit method, KS/Lillefors,
Anderson-Darling and Cramer-von Mises tests were used
through the Nortest R package; Gross, 2006), none of the
corresponding real datasets showed p < 0.05 fit to a log-
normal model. Thus, we did not include normal or log-
normal fit as a basis for choosing the dataset.

3.2. Sampling

We compare gridded, gridded-random, linear-random and
pure-random sampling methods. Figure 1 shows visual
layouts of the four sample methods used.

Due to the extensive analysis provided by Kronholm
(2004), we use the Swiss grid as the representative grid
method. For the gridded-random method we choose the
L-grid (D. Cline and others, http://www.nohrsc.nws.gov/
cline/clpx.html; Bellaire and Schweizer, 2008), which enjoys
relatively wide use. A simple uniform random-sample
distribution served as the pure-random sample.

To approximately equalize its number of points and
maintain its original spacing, we add an additional outer
layer (16 points) to the Swiss grid. The 16 additional points
give it the most sample points (129) of the methods. Random
sampling consisted of 125 points, Star consisted of 126 points
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(21 points per line over 6 transects) and L-grid consisted of
125 points (5 points per grid over 25 equal grids).

Our method, Star, fills the linear-random niche, as we
could find no others. It consists of six transects which always
divide up the area the same way, as shown in Figure 1. Each
transect has the same number of sample locations. Only
the spacing between points varies randomly from sample to
sample and transect to transect.

After one winter of use, we found the effective minimum
spacing varies by the type of sampling being performed (Shea
and Jamieson, 2009). For point crystal size measurements,
our smallest usable spacing was 10.cm. For measurements
that require larger support or equipment, the smallest spacing
may be larger to prevent overlap of measurement effects.

To use Star, one begins at the top of observer’s left and
traverses across the area to one-third of the way down the
opposite (right) side, sampling at uniform random intervals
along the way. This forms transect one. From there, the user
repeats the random sampling process, turning and traversing
again to a point two-thirds down the left side, and turns again
— still sampling — to traverse to the lower right corner. This
forms transects two and three, respectively. The same "by
thirds’ spacing structures transects four, five and six, which
are essentially a 90° counterclockwise rotation of the first
three transects over the same area.

Star’s efficiency comes from a number of qualities. Most
notably, the user always travels a known and reasonable
distance, including a small number of turns, to sample an
area. Here, on the 25 m squares, the user would traverse
~184 m total with only six turns, including the traverse on the
bottom from the end of transect three to the start of transect
four. To sample the Swiss grid in the most efficient way would
take 191 m of travel with 18 turns.

The L-grid does not have a constant travel distance, since
the positions of the Ls in the method vary. As a lower bound
(when all of the Ls are as small as possible and ideally
stacked linearly with respect to one another) the user would
travel just under 160 m. However, the user would make
75 turns: one for each L, one to head toward the next L
and one to align themselves along the new L. At the upper
distance bound (using the largest L size and with Ls placed
in opposite corners of their grids) the user would travel
>240m, again with 75 turns.

Finding the shortest distance to travel and minimal
required turning for the random-sampling method is a very
difficult problem, and we do not present its efficiency here.
However, the high number of turns required to perform
L-grid sampling should give the reader an intuitive sense
of why pure-random sampling methods remain essentially
unusable in the field.

Thus, we feel the structure of Star adequately fulfils our
objective of efficiency and minimal destructiveness as the
user can stay on one line at a time on skis or on foot; the
remainder of this paper focuses on the comparative accuracy
of the method.

3.3. Randomness

For the three methods containing randomness — Random,
L-grid and Star — the simulation varied that randomness
for every sample layout. For Star, the spacing along
each sampling transect varied. For Random, the x and y
coordinates for each point varied. For L-grid, the axis point
of each L within each grid, the spacing between points and
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Fig. 1. The four sampling methods used. Note that the three methods that contain randomness (Random, Star and L-grid) varied with every
instance. Each grid consists of 250 x 250 points, which we show here as 10 cm spacing.

the orientation of the L varied. So, the layouts in Figure 1 are
only one instance of many random variations used.

When the formative process varies, so should the measure-
ment spacing (Bloschl and Sivapalan, 1995). This variation
in spacing ’catches’ and identifies correlation by being
itself an independent function of what it measures. Thus
the attractiveness of random methods comes from process-
independent variance in the sample method. In other words,
randomness does not oscillate in step with any measured
data (other than random data), and it may help discover the
operation of unknown formative process scales.

However, this means that methods which use randomness
must maintain it. Even if the locations of a sample are decided
randomly once, one cannot easily know whether that single
instance lies at the extreme end of a random distribution, or
the more desirable median of a random distribution. Thus, if
we selected a single instance of Star, L-grid or (pure) Random
methods, it could introduce bias or skew, and our results
would be very different.

3.4. Variogram

For each real data grid and its four samples, we produced
omnidirectional variograms using Cressie’s (1993) robust
method. Each semivariance, calculated over 15 bins with
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respect to residuals left after linear trend removal, then
provided a basis for fitting a variogram model. We removed
all linear trends, regardless of significance, because we
prioritized removing all linear anisotropy over retaining the
original data values.

The general variogram, shown in Equation (1) (O’Sullivan
and Unwin, 2003), simply finds the squared difference
between all n residual value pairs (z;, z;) within a lag bin
of width 2A and given lag distance, d = A wide, from each
other:

A 1 2
)= > (z2-27). (M
ij € d+A
Cressie found that, although this general form has no
bias, it can have skew because the squared factor amplifies
large outliers. His robust model calculates the variogram
based on transformed differences of | z; —zj|% (Cressie, 1993)
with a numerical denominator to account for the bias this
introduces:

4
1 1
0 2ijedsalZ —Zjlz)

0.457 + 9494

24(d) = (
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After calculating the variogram, we fit a standard spherical
model v (Equation (3)). The model has range, a, sill, ¢, and
nugget, co, and is defined up to the range d = a. After that,
we use the linear function v(d) = ¢, where ¢ = ¢; + .
This means ¢; represents the y-axis distance over which the
semivariance rises from nugget co to sill ¢ (O’Sullivan and
Unwin, 2003):

3
y(d) = co + ¢ [3‘: —0.5 (Cal) ] . 3)

We present the model and its use on a single real data
variogram in Figure 2. It can be seen that the variogram
can serve as a tool for relating to physical-process scales,
as the range demonstrates the physical extent at which
measurements cease being similar to one another.

Due to its current prevalence in snow literature as a
measure for evaluating data, as well as sampling methods
(Kronholm, 2004; Bellaire and Schweizer, 2008), we select
the omnidirectional variogram and a spherical model. We
utilize least squares to fit the spherical model form to each
variogram.

Use of these methods allows us to compare Star to the
Swiss and random models, which have been previously
compared (Kronholm and Birkeland, 2007). However, such
a set-up — and the variogram in particular — has many
limitations. In section 4.4 we briefly discuss the limitations
of the spherical model and omnidirectional variogram.

As previous work has already reported the variances of all
spherical semivariogram model attributes (range, a, sill, c,
and nugget, cp) across different sampling methods excepting
Star (Kronholm and Birkeland, 2007), we choose to simply
present the error in range, a, to comparatively demonstrate
Star’s fitness as a sampling method.

Kronholm and Birkeland (2007) showed that those sam-
pling methods which performed well in range comparisons
also performed well in sill comparisons. Here, after removing
linear trends individually for each dataset, the remaining sill
values complicate comparison across datasets, and thus we
refer to the relation present in that work. Then, the nugget can
be thought of as a measure of how much small-scale process
detail a method can capture. It may also be interesting for
additional comparison in the future, but here we focus on
the larger perspective of spatial correlation detection.

4. RESULTS

On completion of the Monte Carlo simulation, there were
four possible cases of how each sample’s variogram model
could compare with that of the original real data model.
With a least-squares-fit method for the spherical model in
Equation (3), the real data model could converge on a spatial
correlation range, the sample data could converge on an
spatial correlation range, and the two did not necessarily
happen together.

Non-convergences imply that the variogram would be
better served by a linear model, a fractal model or any
number of other possibilities. Fractal variograms rise up to a
levelling-off point (pseudo-sill) before rising again to another
levelling-off point. We show an example from our dataset in
Figure 3.

These fractal variograms imply spatial correlation within
spatial correlation and, although they can be interesting and
useful (Deems and others, 2006), they often reduce to a
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Fig. 2. (a) A diagram showing how the equations of the spherical
variogram model determine range. (b) An example variogram and
fit spherical model. The spherical model shows a reasonable, but
not perfect, fit to the variogram.

non-converged model when spherical models attempt to fit
to them. This comes from the spherical model’s inability to fit
multiple ranges and sills and thus reducing, by least squares,
to fitting none of them.

Even more visually near-spherical variograms, such as the
semivariance rise of the Gaussian-type variogram shown in
Figure 3c, can reduce to a linear, non-converged fit. The
fitting mechanism (in this case least squares) must attempt to
fit the lesser rising slope at the low distances and thus may
undershoot and miss the sill when it does occur at higher
distances.

As the spherical model must curve eventually, these non-
convergences present with very large ranges, often several
orders of magnitude larger than the data extent. Thus, unless
otherwise noted, we define a converged spherical model as
one having a range of 500 points or fewer. This definition
includes spatial correlation within the 25 m area and twice
that width in a hypothetical prediction beyond it.

This hypothetical extension, though not statistically sig-
nificant, is used in other sources in practice (Kronholm,
2004), and thus for comparison consistency we include those
extents in our analysis here. Also, where possible, we present
results for different definitions of convergence at less than
500 points.

This gives us four possible categories, each with some
unique subset of the 1024 tests, as not all the real data
converged on a good fit to the spherical model:
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Fig. 3. (a, ¢) Two example datasets, both from Geobase grid 093b04, presented in greyscale varying with the point values. Each has the
semi-variance rise of its corresponding variogram shown on the right. The variogram in (b) should be more properly fit with a Gaussian
model than a spherical one. Compare to the variogram plot in (d), which presents a complex fractal character of multiple ranges, or ‘spatial

correlation within spatial correlation’.

Common non-convergence (CNC): Where neither real
data nor sample data variograms converged on a
spherical model.

False convergence (FC): Where the sample data vario-
gram converged on a spherical model but no spherical
model fit the real data variogram.

False non-convergence (FNC): Where the real data
variogram fit a spherical model, but the sample data
variogram did not converge on a spherical model.

Common convergence (CC): Where both the real data
and sample data variograms converged on a spherical
model, though not necessarily the same one.

The main validation of accuracy lies in the common
convergences and common non-convergences, but we
examine the particulars of each category in turn. How often a
sampling method ends up in the right category can be at least
as important as how well it performs in any one category.
Without knowing how often a sampling method correctly
or incorrectly detects the existence of spatial structure in
the underlying data, one cannot put faith in the structures
that the sample does detect. For, as this paper shows, some
instances of ‘detected’ structure may not have been present

https://doi.org/10.3189/172756410791386463 Published online by Cambridge University Press

at all; and conversely, some structures that should have
been found went unnoticed. We consider spatial correlation
to be a measure of spatial structure, and we consider
spherical model fit to be a measure of detection, but false
spatial structure detection, whether by false presence or false
absence, should be of concern by any measure.

4.1. Common convergence

Finding the total number of correct convergences involves
a simple intersection. If C(real) represents the set of real
datasets which converge on a spherical model fit, and
C(sample) represents the set of sample datasets which
converge on a spherical model fit, then the intersection of
the two gives the common convergence (CC):

CC = C(real) n C(sample). 4)

Though only part of the picture, the number of times a
sampling method shows spatial correlation correctly can be
a measure of its performance. The correct convergence of
a sample measures how often it detects spatial correlation
when it exists in the real data.

Consider, for example, an ideal sampling method which
has a common convergence of 100%, and a common
non-convergence of 100%. Then, every time our sample
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(c) Star: n = 496, median = 25.2 points (2.5 m), standard deviation = 77.3 points (7.7 m). (d) Random: n = 498, median = 8.2 points

(0.8 m), standard deviation 77.9 points (7.8 m).

converged, we could know the real data actually demon-
strated some kind of spatial structure — here, variance -
such that it fits a spherical model with a reasonable range.
In reality, when samples have common convergence only
75% of the time or less on these elevation data, we know
that at least 25% of our linear variograms should have been
reasonably spherical, but which data compose that 25% is
unknown.

When both real data and sample data fit a spherical
model well, the next question becomes: how well? To
answer this, we find the residuals in ranges for the common
convergences. For example, if the real data present with a
range ar = 200, and the sample with a range as = 400,
although they both converge, the sample data range is not
very accurate with an error of —200 points (—20 m).

Figure 4 shows histograms for the range differences for
all common convergences with ranges less than 500 points
(50m). If the ranges of the sample set model variograms
are denoted as a(sample) and the ranges of the real
dataset model variograms as a(real), then the histograms
display a(real;) — a(sample)), V(real;, sample;) € CC for
each sampling method. Note that for range errors, medians
represent bias; in Figure 4 all medians are positive and
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thus imply that these four sampling methods generally
underestimate the range.

One can see that both more accurate convergence and
higher incidence of common convergence are highly desir-
able, as is higher incidence of common non-convergence
(see section 4.4). The common convergence numbers are
shown over different definitions of convergence range in
Figure 5a.

4.2. False convergence

We derive a sample’s false convergence, FC, by the set
difference of converged samples, C(sample), with the set of
common convergences, CC, from Equation (4):

FC = C(sample)/CC. 5)

Of all the methods, Star has the most false convergence:
the error of finding, via a spherical model, spatial trends
where none exist in the real data. The Swiss method errs on
the side of more false non-convergences, whereas both L-grid
and Random more evenly distribute their false convergence
and false non-convergence. Table 1 shows the FC values for
ranges less than 500 points.
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Fig. 5. (a) Common convergence (CC) and (b) correct spatial correlation detection (CSCD) graphs. Definitions vary by what range limit
we choose to define as a good spherical model fit, and we show the results over various definitions of convergence, 10-50 m. Note the
instability at 150 points (15m) and less for CSCD; the corresponding ranges in the CC graph show that relatively few data points exist at

this definition and thus we do not obtain a good model.

The reason for Star’s false convergences comes from its
pockets of concentrated points near the outer areas of the
sample. In Figure 1, areas of greater and lesser concentration
of points can be seen. In the few instances where small spatial
correlation happens to exist in those areas in the real data,
Star emphasizes it enough to cause the spherical model to
converge falsely.

To examine these tendencies between samples, we
performed a simple type of cluster analysis through quadrat
counts (e.g. O'Sullivan and Unwin, 2003) every 50 points
square (5 x 5m). This means, by definition, the L-grid
contained five points per quadrat. The Swiss grid showed
quadrat count ranges between 0 (the outer corners) and
41 (centre quadrat). The random grid ranged from 4.88 to
5.09 samples per quadrat, with no readily apparent pattern.
The Star method ranged from 0 to 12.68 per quadrat,
with all four quadrats with more than 12 samples on the
outermost rim. One can see these clusters near the edges in
Figure 1.

Examination of the categorical chi-squared analysis of the
FC and FNC categories in Table 1 indicates that a main
distinction between the samples can be quantified by the
most populated quadrat on the outer rim. In the case of
random and L-grid, the most populated quadrat in the outer
rim is approximately 5, for Star it is more than 12 and for
Swiss it is only 4.

For the low bias in distribution (an unbiased distribution
would have every quadrat count equal to 5), we see low con-
tributions to the x? total. For the two methods with bias, Star
and Swiss, we see high contributions to the x? total, with the
Swiss method demonstrating the most categorical bias. Note
that here bias does not mean error; rather, it demonstrates a
method’s tendency to have more FNC or FC within its total
false results (FNC U FC) relative to the other samples.

Also of interest is that although four quadrats of the
Star method along the outer edges averaged more than 12
samples over the 1024 runs, all of the outer edge quadrats to-
gether averaged to 5.22 samples per quadrat, explaining the
success of Star in finding spatial correlation over the dataset.

4.3. False non-convergence

We can derive a sample method’s false non-convergence
(FNC) by the set difference between the set of converged
real data C(real) versus the set of common convergences,
CC from Equation (4):

FNC = C(real)/CC. (6)

The numbers for false non-convergence appear in Table 1.
Overall, the Swiss grid shows the greatest tendency to
not converge on a good spherical model fit when the
real data do. This means it is more likely to present

Table 1. Chi-squared analysis for categorical FC and FNC tendencies. O(FC) and O(FNC) represent observed false convergence and false
non-convergence rates out of 1024 samples for each sample method, with convergence being a model fit at range a < 500 points. E(FC)
and E(FNC) represent the weighted expected FC and FNC rates out of the n = 1391 total false results represented by the four samples.
Finally, (O — E)2 /E represents the standardized squared difference between observed and expected values, which when summed yield the
X2 statistic of 52.05. With degrees of freedom, f = 3, this implies categorical distinctness at p < 0.001 across incorrect spatial correlation

detection results per method

Method O(FC) O(FNQ) Total false E(FC) E(FNC) FC (O — E)*/E FNC (O — B?/E
Random 137 164 301 122.59 177.87 1.69 1.08
Star 181 166 347 141.31 205.04 11.15 7.43
L-grid 147 215 362 150.39 218.22 0.76 0.05
Swiss 103 278 381 155.50 225.63 17.73 12.16
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a linear semivariogram (or a very large, poorly fitting
spherical model) when the real data present stronger spatial
correlation. We feel that this occurs due to the points being
concentrated in the centre with very few near the edges,
as discussed above. Such a method may only detect spatial
correlation in that area well. Indeed, other sampling methods
(such as the MT2004 grid described by Kronholm and
Birkeland, 2007) have been developed to try to spread the
points over a larger area while retaining the field advantages
of gridded construction.

4.4. Common non-convergence

To be a correct model of the real data, a sampling method
should not only converge upon a range with a given model
(here, the spherical one in Equation (3)), but also not
converge when the model does not fit the real data well.
We can find the common non-convergence (CNC) via the
set difference of all real data models, {real}, with the union
of both convergence sets, C(sample) and C(real), given by:

CNC = {real}/(C(real) U C(sample)). (7)

Though all real data show visual spatial correlation, some
real data instances do not fit a spherical semivariogram
model well. Two examples are shown in Figure 3, where
we can see obvious spatial patches which we would like to
discover using our sampling method, but the corresponding
variograms next to the images are obviously non-spherical.

In fact, from the low numbers of real data instances
which did not converge, we observe that (although common
in snow data analysis) spherical variograms, and even
variograms in general, are not necessarily good solve-all tools
for detecting patterns and process effects.

Nevertheless, CNC, along with CC, completes the set
of correct spatial correlation answers a sampling method
can produce via the variogram and a model. Though
technically uninteresting, as CNC does not discover any
spatial correlation, it assists in calculating the correct
spatial correlation detection total for a sampling method, as
discussed in the next subsection.

4.5. Correct spatial correlation detection

When we know the common convergences from Equa-
tion (4) and the number of common non-convergences from
Equation (7), we know the total number of correct spatial
correlation answers a given sampling method finds. This total
gives the measure of correct spatial correlation detection
(CSCD) for a sample:

CSCD = CNCuU CC. (8)

Figure 5b shows the numbers of correct spatial correlation
detections for each sample over various ranges. In this case,
rather than simply using 500 points (50m) as a general
convergence measure, we find how many correct answers
each sample detected for ranges of 500-100 points, at
intervals of 50 points (5m). Since linear and other non-
spherical variograms forced to fit spherical models can be
identified by extremely large range values, this initially assists
in finding which should be converging on a good model fit,
and for lower ranges simply reduces the window of good fits
we need to analyze.

As the number of converged simulation data points be-
comes fewer and fewer, it becomes easier and easier to use a
so-called “ignorant’ sampling algorithm. For example, being
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picky enough to only consider ranges of <100 points (10 m)
leaves us with so few real data convergences (154 of 1024
samples) that we could theoretically not sample anything at
all, and thus never converge, and still achieve the 'correct’
answer (non-convergence) over 80% of the time. This should
give some intuitive sense of the instability demonstrated at
the left edge of Figure 5b at ranges of 150 points and fewer.

Finally, we note from Figure 5b that, even in a best case, no
sampling method detects spatial correlation correctly better
than three out of four times. Considering various definitions
of range, the three non-random sampling methods perform
comparatively.

5. DISCUSSION

Above all, this paper demonstrates that different sampling
methods have different strengths and weaknesses. Of course,
all statistical strengths and weaknesses presented here
depend greatly on the spherical model fit.

But given that, for the smallest range error bias per known
converging variogram model, the L-grid seems the obvious
choice. For focus at the centre of an area, the Swiss grid may
assist in revealing details there with its point concentration.
For detection of unknown ranges of a process, the Star prop-
erly matches or rejects a spherical fit when the data do more
often than the other methods, implying better correlation
across varied datasets. In addition, Star has efficient design
and a small standard deviation of range error in its common
convergences. Of course, the pure-random model presents
the best correlation and smallest error of all but remains very
inefficient to properly implement in the field.

6. CONCLUSIONS

Given the strengths and weaknesses of each sampling
method and the range of applications for each method, we
cannot simply say one method presents the best mix. Ease
of use allows one to obtain the most points in a given time.
Mathematical robustness allows one to feel more confident
in the results.

As an initial design of a sampling method intended to
make randomness usable and efficient in the field, the Star
method shows promise for linear-random sampling methods
in general, due to its ease of layout plus comparably accurate
spatial correlation detection. One could spend some time
minimizing the clustering effects in the corners to improve
Star and better approach a purely random distribution.

However, when measuring spatial variability on snow,
we cannot really know what the variability range is
without measuring every single point. Thus, when using
the variogram, we only know the spatial correlation range
of our measurements, and a little about how good our
measurement methods probably are. Furthermore, when we
find spatial correlation in our sample data without knowing
every measurable point, false convergence and false non-
convergence will occur with any sampling method, and
Figure 5b shows that, even in the best case, FC or FNC
will occur at least one out of four times for these sampling
methods using this dataset.

The greatest question posed by this paper centres around
how to model spatial correlation in snow. The real data
we use had visual spatial correlation in every sample;
however, the spherical model converged on a reasonable
fit to the semivariograms of those data fewer than two
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out of three times. It may be possible to scale a sampling
method to extend well beyond the expected range, which
would then obtain more robust measurements of spatial
correlation. However, the destructiveness of snow sampling
often presents a barrier to adaptive sample method scaling.

Furthermore, when manually treated to detect anisotropy,
to discover better fits with different models or to use
techniques other than the variogram, the sample data will
probably be much less limited than presented here. Thus,
investigating how variograms, or other process detection and
correlation tools, can be best used with the particulars of
snow-science sampling may prove useful.
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