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The phenomenon of drag reduction induced by injection of bubbles into a turbulent
carrier fluid has been known for a long time; the governing control parameters
and underlying physics is, however, not well understood. In this paper, we use
three-dimensional numerical simulations to uncover the effect of deformability of
bubbles injected in a turbulent Taylor–Couette flow on the overall drag experienced
by the system. We consider two different Reynolds numbers for the carrier flow,
i.e. Rei = 5 × 103 and Rei = 2 × 104; the deformability of the bubbles is controlled
through the Weber number, which is varied in the range We= 0.01–2.0. Our numerical
simulations show that increasing the deformability of bubbles (that is, We) leads to
an increase in drag reduction. We look at the different physical effects contributing
to drag reduction and analyse their individual contributions with increasing bubble
deformability. Profiles of local angular velocity flux show that, in the presence of
bubbles, turbulence is enhanced near the inner cylinder while attenuated in the bulk
and near the outer cylinder. We connect the increase in drag reduction to the decrease
in dissipation in the wake of highly deformed bubbles near the inner cylinder.
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1. Introduction

Drag in turbulent flows is a major drain of energy. It is well known that the addition
of a secondary phase such as polymers or bubbles into a turbulent carrier fluid can
lead to significant reduction in the overall drag in the system (van den Berg et al.
2005; White & Mungal 2008; Ceccio 2010; van Gils et al. 2013; Verschoof et al.
2016). Here, we define drag reduction (DR) as

DR[%] = 100×
Cf ,0 −Cf ,α

Cf ,0
, (1.1)

where Cf ,0 and Cf ,α are the friction coefficients with α the volume fraction of the
secondary phase injected into the system. For example, a small volume fraction of
bubbles (<4 %) injected into a turbulent carrier liquid can reduce the overall drag of
the system by up to 40 % (van Gils et al. 2013; Verschoof et al. 2016). The extent
of modification in momentum transport that can be achieved through bubble injection
makes the phenomena relevant for both fundamental studies of multiphase flows and
large-scale industrial applications (Ceccio 2010). However, given the many challenges
and large number of control parameters in theoretical, experimental and numerical
techniques, the governing physics in multiphase flows is not fully understood. The key
parameters that play a role in the overall drag reduction measured in a multiphase
turbulent system are the Reynolds number of the carrier fluid, the geometry of the
flow, the relative size of the dispersed phase in comparison to the Kolmogorov scale
(either sub-Kolmogorov or finite size), gravity, volume fraction and surface tension
of the dispersed phase. In this paper, we use direct numerical simulations (DNS) to
uncover the effect of deformability of finite-size bubbles on the overall drag in a
canonical wall-bounded shear-driven system, namely in Taylor–Couette (TC) flow.

In TC flow, the fluid is driven by two independently rotating co-axial cylinders. It
has been one of the classical systems to study shear-driven fluid dynamics for the
past several decades (see Grossmann, Lohse & Sun (2016) for a recent review). The
geometry of TC flow is closed, simple and allows for exact global balance relations
between the driving and dissipation in the flow, which opens up the possibility for
high-precision experiments and numerical simulations. In the context of multiphase
TC flow, experimental and numerical studies have demonstrated that the overall
drag in the system can be reduced with the injection of a small volume fraction
of bubbles (Murai, Oiwa & Takeda 2005, 2008; Sugiyama, Calzavarini & Lohse
2008; Spandan et al. 2016). Given the simple and closed nature of TC flow, in
comparison to other canonical systems, multiphase TC flow is an ideal playground to
understand the governing physics behind bubble-induced drag reduction. In contrast,
studies on bubble-induced drag reduction in classical plane channel flows suffer from
limitations in the domain size in the streamwise direction. TC flow on the other
hand is naturally limited in the streamwise (azimuthal) direction, thus minimising any
domain-size effects.

Various mechanisms have been proposed to explain the origin of the bubble-induced
drag reduction effect (Ferrante & Elghobashi 2004; Lu, Fernández & Tryggvason
2005; L’vov et al. 2005; van den Berg et al. 2007; Lu & Tryggvason 2008; Sugiyama
et al. 2008; Ceccio 2010; van Gils et al. 2013; Spandan et al. 2016; Verschoof
et al. 2016; Spandan, Verzicco & Lohse 2017b). When the carrier fluid is weakly
turbulent (laminar boundary layers and turbulent bulk), the effective buoyancy of
dispersed sub-Kolmogorov bubbles, which is described by the Froude number, plays
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Finite-size bubbles in Taylor–Couette turbulence

an important role in governing drag reduction in the system (Spandan et al. 2016).
When the carrier fluid becomes highly turbulent (both boundary layer and bulk are
turbulent), the buoyancy of sub-Kolmogorov bubbles is no longer sufficient to achieve
strong drag reduction effects. Numerical simulations have shown that in the highly
turbulent regime, even deformability of sub-Kolmogorov bubbles does not contribute
to drag reduction (Spandan et al. 2017b). In the highly turbulent regime, deformability
of finite-size (larger than the Kolmogorov scale) bubbles seems to be a promising
mechanism to achieve strong drag reduction (van Gils et al. 2013; Verschoof et al.
2016). However, it is unclear why the extent of deformability of finite-size bubbles
is important for achieving strong drag reduction in highly turbulent TC flow.

In this paper, we show that the origin of deformability-induced drag reduction is
linked to reduced dissipation in the wake of finite-size (larger than the Kolmogorov
scale) deformable bubbles in comparison to rigid spherical bubbles. Using fully
resolved numerical simulations we are able to identify and separate the various
effects contributing to drag reduction in the flow, and furthermore look at the
individual contributions from these effects. We find that the reduced dissipation
in the bubble wake is the dominant mechanism of drag reduction, irrespective of
whether the carrier fluid is weakly or highly turbulent.

2. Numerical details and parameters

The dynamics of the carrier phase is solved using DNS of the Navier–Stokes
equations in cylindrical coordinates. The governing equations for the carrier phase
are

∂u
∂t
+ u · ∇u=−∇p+

1
Re
∇

2u+ f b(x, t), (2.1)

∇ · u= 0. (2.2)

u and p are the carrier phase velocity and pressure, respectively, while f b(x, t) is
a source term included in the fluid momentum equation arising from the immersed
boundary method (IBM) and is used to enforce the interfacial boundary condition at
the bubble–fluid interface. A second-order-accurate finite-difference scheme with
fractional time stepping is used for the spatial and temporal discretisation of
equations (2.1) and (2.2) (Verzicco & Orlandi 1996; van der Poel et al. 2015).
Unlike sub-Kolmogorov bubbles which can be modelled using the point-particle
approximation (Elghobashi 1994), finite-size bubbles which are much bigger than the
Kolmogorov scale experience non-uniform flow conditions on the surface. In such
a case, momentum exchange between the carrier fluid and dispersed bubbles cannot
be modelled using pointwise approximations, but has to be fully resolved. This is
done using IBM where each dispersed bubble is discretised using an unstructured
Lagrangian mesh which resides over a structured Eulerian mesh on which equations
(2.1) and (2.2) are solved. The influence of the dispersed bubbles on the carrier fluid
is accounted for through a volume-averaged force first computed on the Lagrangian
mesh and then transferred to the Eulerian mesh in a conservative manner. A no-slip
boundary condition is imposed on the interface of each bubble which physically
corresponds to a contaminated interface. While the IBM also allows for imposing
a free-slip boundary condition which replicates a free-slip interface, we restrict
ourselves to contaminated interfaces in this work as it can be handled easily from a
numerical point of view. Due to the lack of a boundary layer along the surface of
clean bubbles with a free-slip interface, it can be expected that the resulting local
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dissipation is lower in comparison to contaminated no-slip bubbles. This may lead to
an increase in the magnitude of drag reduction in comparison to contaminated no-slip
bubbles. In this study, we focus on understanding the physical mechanisms relevant
for increasing drag reduction with increasing deformability of contaminated no-slip
finite-size bubbles.

The deformation dynamics of the immersed bubbles is computed through an
interaction potential (IP) approach where the characteristic surface tension of a
liquid–liquid interface is replicated using a triangulated network of in-plane elastic
and out-of-plane torsional springs. The IP approach for modelling deformation of
immersed liquid–liquid interfaces has proved to be reliable and self-consistent as
long as the immersed interfaces do not approach their breakup limit. The basic idea
behind the IP approach is that under the action of external forces, the immersed
interface adjusts itself through the action of internal spring forces such that the total
displacement potential energy tends to a minimum. All bubbles are initialised with a
spherical triangulated network of springs. While external forces such as local pressure
fluctuations and viscous stresses deform the surface, the internal spring forces tends to
bring the deformed surface back to its initial spherical shape with a goal to minimise
the overall potential energy stored in the network. Given the finite-size nature of
the immersed bubbles, the pressure fluctuations and viscous stresses are computed
locally on individual triangular elements (Spandan et al. 2017a). The elastic constants
required to model the triangulated network in the IP approach for interfaces is chosen
through a tuning procedure. The tuning of the surface properties of the triangulated
network and its corresponding Weber number (defined later) is performed for a
centroid fixed bubble in a cross-flow, as described in Spandan et al. (2017a). Here,
it is important to note that the IP model is not an exact representation of the surface
tension phenomenon and it is to be taken as a phenomenological approach to mimic
the deformation characteristic of immersed drops or bubbles. Additional details on
the IBM, the interaction potential approach and the parallelisation schemes can be
found in de Tullio & Pascazio (2016) and Spandan et al. (2017a).

The geometrical control parameters in TC flow are the radius ratio η = ri/ro and
the aspect ratio Γ = L/(ro − ri), where ri, ro are the radii of the inner cylinder (IC)
and outer cylinder (OC), respectively, and L is the height of the cylinders. In this
paper, we set η = 0.909 and Γ = 2.0. The driving in the system is characterised by
the IC Reynolds number Rei = Ud/ν, where U is the velocity of the IC, d = ro − ri
is the gap width between the cylinders and ν is the kinematic viscosity of the
carrier fluid; the OC is kept stationary. In the following section, we study the effect
of finite-size deformable bubbles on the carrier fluid dynamics for two different
IC Reynolds numbers i.e. Rei = 5 × 103 and Rei = 2 × 104, which are hereafter
referred to as low- and high-Rei cases, respectively. The extent of deformability of
the immersed bubbles is controlled through the Weber number We= ρf U2dp/σ , where
ρf , dp and σ are the fluid density, bubble diameter and surface tension, respectively.
The Weber number of the bubbles considered are We= 10−2, 0.5, 1.0, 2.0. In order to
simulate rigid non-deformable bubbles (We= 10−2), numerical stiffness is avoided by
treating the immersed bubbles as rigid spheres rather than compute the small-scale
deformations from the IP model. The non-dimensional in-plane elastic constants
for We = 0.5, 1.0, 2.0 are k∗e = 12.0 × 10−3, 8 × 10−3, 5 × 10−3, respectively. The
remaining constants used for the triangulated network are scaled according to the
guidelines specified in Spandan et al. (2017a); i.e. bending constant k∗b = ke/10.0,
volume constant k∗v ∼ 105k∗e and area constant k∗a = k∗e . The ratio of the mean edge
length on the initial triangulated sphere to the gap width between the cylinders is
approximately 7.5× 10−3.
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In this paper, the main focus is to understand the effect of the Weber number We,
which quantifies the ratio between inertial and surface tension forces acting on the
immersed bubbles. The choice of the reference velocity in the definition of We varies
from one study to another; regardless of the definitions in simulations and experiments,
the main idea is that the Weber number indicates the extent of deformability of the
dispersed phase. We only consider bubbles which do not break up or coalesce in
the flow; modelling the breakup and coalescence dynamics of bubbles in a turbulent
environment is an extremely challenging task from both a physical and numerical
point of view, and is not in the scope of this study. Collisions among the immersed
bubbles and of the bubbles with the cylinder walls are implemented through an elastic
potential between the Lagrangian markers and the centre of the Eulerian cell in which
the Lagrangian marker resides. The numerical algorithm is as follows. At every time
step, when two or more Lagrangian markers from different bubbles reside in the same
Eulerian cell, all the Lagrangian markers in that Eulerian cell face a repulsive force
proportional to the square of the inverse distance between the marker and the centre of
the Eulerian cell. This ensures that different bubbles never come into contact with each
other, thus avoiding any ‘ghost’ overlap between the Lagrangian meshes (Spandan
et al. 2018). In the following simulations, in addition to ensuring energy conservation,
we keep the same formulation of the collision elastic potential in all cases to eliminate
any numerical artefacts among the different cases. The grid resolution for the carrier
fluid is set to Nθ × Nr × Nz = 768× 192× 384 and Nθ × Nr × Nz = 1536× 384× 768
for the low- and high-Rei cases, respectively.

A total of 120 bubbles are simulated along with a turbulent carrier fluid which
corresponds to a global volume fraction of 0.1 %; each individual bubble is discretised
using 1280 and 2560 Lagrangian markers for the low- and high-Rei cases, respectively.
The density ratio of the bubbles to that of the carrier fluid is taken to be approximately
ρ̃ = ρb/ρf = 0.05, which is larger than real gas bubbles but easier to handle
numerically. The effective Froude number of the bubbles in all the simulations
is kept the same and is defined as Fr=

√
ρ̃U2/((ρ̃ − 1)gri)= 0.64. For the IBM, we

assume that the viscous force acting on the interface from the fluid entrapped inside
the immersed ‘bubble’ is close to negligible; in the context of the IBM, this would
correspond to a ratio of bubble-gas viscosity and carrier fluid to be approximately
zero. To achieve numerical convergence, we run our simulations in a series of three
steps. First, we allow the single-phase system to converge. We then initialise rigid
bubbles and allow them to develop in the flow. Next, we allow them to deform
corresponding to their imposed Weber number and run the simulation until the
two-phase system has the developed statistical stationarity. The convergence criteria is
described later. Since we keep the relative diameter (dp) of the bubbles with respect
to the gap width between the cylinders the same for both the low- and high-Rei cases
(db/(ro− ri)= 0.1), the relative size of the bubbles in comparison to the Kolmogorov
scale (ηK) of the corresponding single-phase flow is approximately dp/ηK ∼ 14 and
dp/ηK ∼ 25 for the low- and high-Rei case, respectively.

3. Results

We now present results on the influence of the immersed bubbles on the carrier
flow dynamics. The net percentage of drag reduction in a two-phase TC flow (here
bubbles injected into carrier fluid) can be computed from the kinetic energy transport
budget of the system as follows (see Appendix of Sugiyama et al. (2008) for a
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FIGURE 1. (a) Drag reduction (DR) versus Weber (We) number. (b) Probability
distribution function (PDF) of the radial (wall-normal) position of the centre of mass of
individual bubbles. Since the bubbles are finite size and collide with the cylinders there
is no data in the PDF very close to r̃= 0 and r̃= 1, which correspond to the IC and OC,
respectively.

detailed derivation):

DR= 100[〈DR1〉 + 〈DR2〉] = 100
[(

1−
〈εt〉

〈εs〉

)
+

(
〈 f b · u〉
〈εs〉

)]
. (3.1)

Here 〈εt〉 and 〈εs〉 are the mean kinetic energy dissipation rate per unit mass of
the carrier fluid in the two-phase (with bubbles) and single-phase (without bubbles)
cases, respectively; f b is the volume-averaged source term arising from the effect
of the dispersed phase on the carrier fluid (cf. (2.1)); u is the local fluid velocity.
A similar decomposition of the stresses transported in a multiphase channel flow
is presented in Zhang & Prosperetti (2010). The two terms on the right-hand side
of (3.1), which are named 〈DR〉1 and 〈DR〉2, correspond to different effects in the
flow and the implications of this decomposition is discussed later. In figure 1(a), we
plot the overall drag reduction DR versus the Weber number (We) of the bubbles
injected into the flow for both low-Rei and high-Rei cases. One can clearly observe an
increasing trend in the drag reduction with increasing Weber number (i.e. increasing
bubble deformability).

Before analysing the trend in drag reduction with increasing Weber number, it is
useful to understand the origin of drag reduction with buoyant bubbles. Similar to
the effect seen in Spandan et al. (2016), the buoyancy of bubbles causes a mean slip
in the direction of the gravity (axial direction) and, in doing so, the bubbles weaken
the plumes ejected from the inner cylinder, which are primarily wall-normal velocity
fluctuations. The weakening of plumes occurs primarily through an axial (direction
of buoyancy) perturbation of the wall-normal velocity fluctuations. By weakening the
plumes, the bubbles also reduce the effective momentum transport from the inner
cylinder to the outer cylinder, which consequently leads to drag reduction.

When the dispersed bubbles are sub-Kolmogorov, deformable bubbles prefer to
accumulate near the IC, which enhances drag reduction because a higher concentration
of bubbles near the IC is more effective in disrupting plume ejections (Spandan et al.
2017b). In order to understand whether the increase in drag reduction with increasing
deformability of finite-size bubbles has any correlation with local bubble accumulation
near the IC, we plot the probability distribution function of the normalised radial
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FIGURE 2. Instantaneous snapshot of normalised dissipation ε̂ = ε/ν(U/d)2 in the mid-
azimuthal and mid-axial planes for single-phase (a,c) and two-phase flow (b,d). (a,b) Rei=

5 × 103, We = 1.0, (c,d) Rei = 2 × 104, We = 1.0. Dark colour indicates high dissipation
and light colour indicates low dissipation. The dissipation in the bulk and near the OC is
attenuated in the presence of bubbles (b,d) as compared to the single-phase flow (a,c).

position r̃= (r− ri)/(ro− ri) of the centre of mass of all bubbles in figure 1(b). In all
cases, the bubbles prefer to position themselves near the IC due to centrifugal forces.
However, in contrast to sub-Kolmogorov bubbles, we find no significant difference
in the accumulation patterns of finite-size bubbles with increasing deformability. A
possible explanation behind this distribution is that finite-size bubbles are less affected
by small-scale flow structures (ηK to 5ηK) in comparison to sub-Kolmogorov bubbles.
This suggests the presence of additional mechanisms which enhance drag reduction
with increasing deformability in the case of finite-size bubbles.

In order to show clearly the origin of drag reduction, in figure 2, we show
pseudo-colour plots of the normalised kinetic energy dissipation rate in both
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FIGURE 3. Radial profiles of angular velocity transport for Rei= 5× 103 (blue solid lines)
and Rei= 2× 104 (red dashed lines). Squares, circles and diamond markers correspond to
We = 0.5, 1, 2, respectively. Horizontal lines represent the angular velocity flux for the
corresponding single-phase flow.

single-phase and two-phase cases. In the case of single-phase flow (figure 2a,c),
one can clearly observe the large-scale plumes on the IC and OC for both Rei and
that the plumes are noticeably more turbulent in the high-Rei case. The magnitude
of dissipation is high around the plumes, owing to large strain rates, and also in
the boundary layers on the IC and OC. Upon injection of bubbles (figure 2b,d), the
plumes originating from the IC no longer protrude into the bulk, but rather become
a collection of small-scale intermittent plumes along the surface. Consequently, the
turbulence levels in the bulk and near the OC are much weaker as compared to
single-phase flow. The dispersed bubbles block/weaken the momentum transport such
that turbulence is enhanced and confined to regions close to the IC, while it is
strongly attenuated in the bulk and near the OC. Remarkably, the weakening of
large-scale plumes by the bubbles and subsequent turbulence attenuation in the bulk
and OC overpowers the turbulence enhancement near the IC, the combined effect of
which leads to a net positive drag reduction.

To quantify the effect seen in figure 2, we look at the angular velocity transport
from IC to OC. In single-phase flow, the angular velocity flux is conserved in
the radial (wall-normal) direction i.e. ∂r[r3

〈urω〉 − r3ν∂r〈ω〉] = ∂r[Jω] = 0 (Eckhardt,
Grossmann & Lohse 2007). In two-phase flows, due to the forcing from the dispersed
phase, this expression is corrected accordingly and is written as

∂r[r3
〈urω〉 − r3ν∂r〈ω〉] + r2fθ = ∂r[Jω] + Fθ = 0. (3.2)

In these expressions, Jω is the angular velocity flux, ω is the angular velocity, ur
is the radial velocity, r is the wall-normal position, 〈 · · · 〉 refers to averaging in the
homogeneous directions (azimuthal and axial) and over time; fθ is the forcing from
the dispersed phase onto the carrier fluid in the azimuthal (streamwise) direction.
The balance arises naturally from (2.1), following the same approach as described
in Eckhardt et al. (2007), but with the inclusion of a source term in the momentum
equation due to the dispersed bubbles. Here, we note that (3.2) is used as the
convergence criteria for two-phase simulations. After this condition is satisfied,
we collect statistics over approximately 20 full cylinder rotations. To analyse the
stresses that are transported from the IC to OC, we plot the azimuthally, axially and
time-averaged value of Jω normalised with its corresponding laminar value Jlam versus
the normalised radial position in figure 3.
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As mentioned earlier, in single-phase flow, Jω is constant along the radial position
(cf. figure 3). In the presence of bubbles, the value Jω is higher than that of single-
phase flow close to the IC and relatively lower in the bulk and near the OC. A lower
value of Jω in comparison to the single-phase case indicates attenuation of turbulence
in the flow, i.e. the bubbles reduce the radial and axial velocity fluctuations and in turn
the stresses that are transported between the cylinders (in the case of purely laminar
flow Jω/Jlam= 1). Close to the IC, Jω is much higher than that of a single-phase flow
due to two effects. Firstly, collision of bubbles with the IC increases local dissipation
in the region between the IC and the bulk. Second, as noted in figure 1(b), bubbles
tend to prefer regions close to the inner cylinder due to centrifugal forces and, since
we model the interfaces of bubbles with no-slip boundary conditions (contaminated
interface), the fluid in between the inner cylinder and the surface of the bubbles is
sheared strongly, which leads to an increase in dissipation. The increase in dissipation
due to bubble accumulation near the walls is also seen in channel flows injected with
bubbles (Dabiri, Lu & Tryggvason 2013). Furthermore, the wakes of the bubbles are
also regions of intense dissipation, which can be observed in figure 2.

We now move on to understanding the role of deformability, i.e. the Weber number,
on drag reduction. As shown in (3.1), the overall drag reduction DR can be written as
sum of two terms which correspond to two different physical effects. This formulation
of DR is useful in distinguishing the various mechanisms by which a dispersed phase
influences the carrier phase and consequently the overall drag in the flow. The first
term on the right-hand side of (3.1) is a contribution from the cumulative effect of the
reduction in dissipative vortex structures in the flow. If the overall dissipation in the
two-phase case 〈εt〉 is less than that of the single-phase case 〈εs〉, 〈DR1〉= 1−〈εt〉/〈εs〉

contributes positively to the overall drag reduction. The second term 〈DR2〉 on the
other hand is a contribution from the momentum transfer from the bubbles to the
carrier liquid, and in a physical sense either assists or impedes the IC in driving the
fluid depending on the sign of the term 〈DR〉2. In figure 4(a), we plot the individual
contributions from both these terms for the low- and high-Rei cases. We find that
the contribution from 〈DR1〉 increases significantly with deformation in comparison to
〈DR2〉. The energy injection rate 〈DR〉2 does not change significantly in comparison
with 〈DR〉1. This is expected, as due to the averaging in 〈DR〉2 in both space and time,
the primary source of momentum transfer between the bubbles and the carrier fluid
comes from the buoyancy of the bubbles, which does not change with deformability.
In all cases, we ensure that every individual bubble has the same volume and is
incompressible. It is also important to note here that in contrast to sub-Kolmogorov
bubbles, because of the strong buoyancy of an individual finite-size bubble, they rarely
get trapped in the descending part of the Taylor roll, which may lead to a negative
〈DR〉2.

While the term 〈DR〉1 is overall positive for all cases, it is negative only at low Rei
with rigid bubbles. In this case, the dissipation in the wake generated by the rigid
bubbles overcomes the dissipation in large-scale coherent structures. It is difficult
to generalise this effect given that db/ηK is different for the low- and high-Rei
cases. To understand the primary source of increasing drag reduction with increasing
deformability, we must understand the trend of 〈DR〉1, and for this we look into the
effect of finite-size bubbles on the surrounding turbulent flow. Finite-size bubbles
with sufficiently high slip velocity and particle (local) Reynolds number shed wakes
which are additional sources of dissipation in the flow. While bubble wakes typically
increase dissipation, the bubbles themselves also weaken the large-scale plumes which
are the primary sources for momentum transport (cf. figures 2 and 3); the weakening
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FIGURE 4. (a) Individual contributions from 〈DR〉1 (squares) and 〈DR〉2 (circles) to
DR versus Weber number for Rei = 5 × 103 (blue solid lines) and Rei = 2 × 104 (red
dashed lines). (b) Probability distribution function of the bubble Reynolds number Rep for
different Weber numbers for Rei = 2 × 104. Arrow indicates increasing Weber number;
colour coding of lines similar to figure 1.

of plumes overcomes the dissipation induced by bubbles’ wakes, thus leading to a net
positive drag reduction. When the immersed bubbles are made more deformable by
lowering their surface tension (or increasing the Weber number), they are stretched
along the streamwise direction similar to that of sub-Kolmogorov deformable bubbles
(Spandan et al. 2017b). The stretching leads to a lower projected surface area in the
direction of the relative velocity, which in turn leads to a lower bubble Reynolds
number. This is shown in figure 4(b), where we plot the probability distribution
function of the bubble Reynolds number defined as Rep = (|u − v|)

√
4Ā/π/ν for

Rei = 2 × 104. Here it is important to note that the exact calculation of particle
Reynolds number in simulations involving IBM is non-trivial as the local fluid velocity
u in Rep is ill-defined. A discussion on the calculation is given in the Appendix.

It is easily seen that the bubble Reynolds number distribution is much wider for
rigid non-deformable (We = 0.01) bubbles in comparison to deformable (We = 2.0)
bubbles. We have found no significant differences in the distribution of the relative
velocities between individual bubbles and the local fluid velocity |u − v|; the
differences in the projected areas of the bubbles (Ā) is the primary source of
differences in the distribution of Rep. The Reynolds numbers of deformable bubbles
are much lower in comparison to those of rigid non-deformable bubbles, which
corresponds to a relatively lower dissipation induced in the flow by the bubble wake.
Thus, while the energy injection rate from the bubbles remains roughly the same for
bubbles with varying Weber numbers, the dissipation originating from the bubbles’
wakes decreases with increasing deformability. This leads to a positive contribution
to the drag reduction from the term 〈DR〉1. When the bubbles are non-deformable,
the positive contribution to DR induced by the momentum forcing term 〈DR〉2 is
compensated by the dissipation arising from the wake of non-deformable bubbles, as
can be seen for We = 0.01 in figure 4(a). This is shown qualitatively by visualising
isocontours of vortical structures through the Q-criterion in figure 5. While one can
clearly see the coherent Taylor rolls for the single-phase case, with the inclusion of
bubbles, dissipative vortices change completely, with a high concentration near the
inner cylinder. In the case of high Weber number, the dissipative structures are much
weaker as compared to that of the flow with rigid bubbles.
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IC OC IC OC IC OC

(a) (b) (c)

FIGURE 5. Vortical structures mapped using the Q-criterion for Rei = 5× 103 (a) Single
phase. (b) Two-phase We∼ 0. (c) Two-phase We∼ 2.0.

4. Summary and outlook

With the help of fully resolved numerical simulations, we have been able to identify
different physical effects and their individual contributions to bubble-induced drag
reduction in turbulent Taylor–Couette (TC) flow. We show that drag reduction in
two-phase TC flow is an effect of the bubbles weakening the large-scale plumes
responsible for momentum transport. The net effect of immersed bubbles is that in
comparison to single-phase flow, turbulence near the inner cylinder is enhanced (due
to dissipation between the bubbles and the bounding wall, and from bubble wake
and bubble collision with walls) while turbulence is attenuated in the bulk and near
the outer cylinder (due to bubbles blocking the momentum transfer between the
cylinders). Furthermore, we have identified different physical mechanisms and their
corresponding contributions to drag reduction. The net drag reduction is written as a
sum of two terms which are contributions from (i) changes in dissipative structures in
the flow and (ii) an energy injection rate from the dispersed bubbles. We find that the
intensity of dissipative structures in the flow decreases with increasing deformability.
Due to stretching in the streamwise direction, deformable bubbles have on average a
lower local Reynolds number in comparison to non-deformable bubbles, which leads
to reduced dissipation in the flow. While the energy injection rate from the bubbles
always contributes to drag reduction, the net effect from dissipation becomes the
governing factor in achieving significant drag reduction.

The current numerical simulations only operate in the regime where coalescence and
breakup of bubbles is avoided, which ensures a mono-dispersed bubble distribution.
However, in a real system, coalescence and breakup of bubbles might lead to a
distribution of sizes, in which case their effect on the underlying turbulent structures
may vary, and we are currently working on implementing these features within our
numerical framework.
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Appendix

In numerical simulations involving fully resolved techniques (such as IBM),
calculating Rep is extremely non-trivial for two primary reasons. First, while the mean
bubble velocity (v) is clearly defined and is computed in the simulation, the mean
fluid velocity (u) that the bubble experiences needs to be computed through a filtering
approach. In this paper, we compute the mean of the fluid velocity interpolated at the
end of a probe from each Lagrangian marker (see Spandan et al. (2017a) for more
details on the probe technique). Second, the calculation of a mean projected area of a
deformable body along specific directions is done using a coarse-grained ray-tracing
technique. This is achieved by computing the projected areas of individual Eulerian
cells immersed inside the bubble along specific directions; the mean projected area
is then computed as Ā=

∑i=3
i=1 γiAi, where γi are the direction cosines of the relative

velocity vector and Ai is the projected area in the ith direction.
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